Preface

While preparing the manuscript of this book, we were informed the
very sad news that Dr. J. Nagata died in November, 2007 and finished
his eighty two years lifetime. This is the biggest grief to the Japanese
researchers of general topology as well as all researchers in the world.

To my memory, it is about thirty years ago that I personally met
this world figure in general topology, and it was at Tsukuba University,
where he gave us a lecture and afterward at the party I have had a
little conversation with him. This is the first contact with him. Since
that time, I have been given many helpful suggestions not only on study
on general topology but also on other matters, for example, on doing
mathematics.

To be frank, the content of this book is very related with the Nagata’s
result. In fact, let us recall the famous Nagata-Smirnov theorem that a
regular space X is metrizable if and only if there exists a o-locally finite
base for X. It is needless to say that this is one of the most valuable
contributions that he has made to general topology.

Our topic treated here is about the Mi-spaces, Ms-spaces. But they
are defined by relaxing the condition “locally finite” in the theorem to
“closure-preserving” or, “base” to “quasi-base”.

On the other hand, Nagata himself proposed the following problem:
For an M;j-space X, is dim X < n (or Ind X < n) characterized by the
existence of a o-closure-preserving base U for X such that dim Bd(U) <
n—1 (or Ind Bd(U) < n—1, respectively) for each U € U. ( stated later
as (P10)) . This remains still open.

Thinking that way, this publication is deeply influenced by his exis-
tence.

Here, I again thank him for all the contact with him and sincerely
condole him.

Takemi Mizokami , December, 2007
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