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OPTIMAL REPLENISHMENT FOR EPQ MODELS UNDER
CONDITIONS OF PERMISSIBLE DELAY IN PAYMENTS AND
CASH DISCOUNT

JEN-YEN LIN* AND CHIA-YU CHENG

Abstract: In order to stimulate order quantity, the suppliers permit their retailers to delay the settlement
of payments within a given period. Retailers can accumulate revenue and deposit it into an account for more
profits before a permissible delay period. From the supplier’s perspective, however, it is better to obtain
payments from their retailers as soon as possible. This leads suppliers to implement the policy of a cash
discount. When retailers utilize this policy and settle payments before the end of a given period, they can
receive a cash discount. In general, retailers can only use one of these policies. In this paper, we propose
a new economic production quantity (EPQ) model that considers both policies simultaneously. In this new
model, retailers are allowed to separate payments into several parts, settling in the cash discount period and
in a permissible delay period, and paying interest after the permissible delay period if necessary. This policy
is called a two-stage payment. In addition to proposing this new model, this paper discusses the properties
of its objective function. Based on these properties, the optimal solutions can be analytically determined.
We also discuss some economic interpretations of the analytical method.
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Introduction

In practice, suppliers often offer to their retailers two types of trade credit for their goods. If
the retailer settles the payments within a permissible delay period, then no penalty will be
charged by the supplier. Alternatively, in order to encourage retailers to settle payments as
soon as possible, suppliers may offer a cash discount for retailers that settle their payment
within the cash discount period, which is shorter than the permissible delay period. Retailers
can accumulate the money obtained from selling goods and deposit it in a bank to earn
interest before settling payments. However, retailers will be charged interest if the payments
are settled after the permissible delay period. Hence, the cost function for retailers must
consider setup costs and holding costs, as well as cash discounts, charged interest, and earned
interest.

Although suppliers provide two kinds of trade credit, retailers can only choose one. If
retailers choose the cash discount and the replenishment cycle time is less than the cash
discount period M;, then they must settle the full payment in M; in order to obtain as
much benefit as possible. If retailers choose the permissible delay period Ms for their
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payments and the replenishment cycle time is less than Ms, they must settle the full payment
in My in order to obtain as much benefit as possible. On the other hand, if retailers
choose the cash discount and the replenishment cycle time is greater than Mj, then they
settle the revenue of sold items in M; and pay the cost of interest charges for unsold items
beyond M;. Hence the payment is separated into two parts. If retailers choose My for their
payments and the replenishment cycle time is greater than Ms, they settle the revenue of
sold items in My and pay the cost of interest charges for unsold items beyond Mj. Again,
the payment is separated into two parts. Based on these two periods, from the retailer’s
points of view, there are two policies. If the retailer chooses the permissible delay period for
their payments, then the economic production quantity (EPQ) models under the condition of
permissible delay in payment can be produced. Alternatively, if the retailers choose the cash
discount period, then the EPQ models under condition of cash discount can be produced
instead. Investigating these two models can help retailers to improve profit in comparison
to traditional EPQ models. More details are given by Huang et al. [3].

In addition to the two policies discussed in [3], another policy is given in this paper.
The retailers can obtain more profits, if they have the option of separating can separate the
payment into two or three parts. If the replenishment cycle time is less than the permissible
delay period Ms, then the first portion is settled in the cash discount period and the re-
maining portion is settled in the permissible delay period. This is in contrast to the policies
of [3] that settle the whole payment in either M; or Ms. Our proposed policy separates the
payment into two parts. In the case of the replenishment cycle time being greater than the
permissible delay period M, then the first portion is settled in the cash discount period
M, the second portion is settled in the permissible delay period M> and the retailer pays
the cost of interest charges for unsold items beyond Ms. Both policies of [3] separate the
payments into two portions, while our policy separates the payments into three parts. In
order to distinguish the two policies and our given policy, we term our policy a two stage
payment which was first discussed by [11] and refer to the the policies of [3] as single-stage
payment.

Intuitively, if the unpaid payment after the cash discount period can generate more
revenue from interest earned than from the cash discount rate, retailers should choose to
separate the payments into more parts. This idea motivates the discussion of EPQ models
under our policy. The first objective of this paper is to design an EPQ model with our
proposed policy. The second objective is to discuss under what kind of situation the retailer
should choose our policy. From the perspective of analytic decision making, a third objective
is to find the minimum of the three models, that is, EPQ models under the condition of
permissible delay in payment, EPQ models under the condition of cash discount, and EPQ
models under our proposed policy.

Goyal [4] first developed the economic order quantity (EOQ) models under conditions
of permissible delay in payments. Later, Aggarwal & Jaggi [1] and Chu et al. [2] discussed
ordering policies of deteriorating items under permissible delay in payments. Jamal et
al. [10] further generalized the models of deteriorating items under permissible delay in
payments to allow for shortages. Huang [5] assumed that suppliers would offer the retailer
a partially permissible delay in payments in the case of the order quantity being smaller
than a predetermined quantity. Huang & Hsu [7] investigated the retailers’ inventory policy
under two levels of trade credit to reflect the supply chain management situation. More
discussion related to EOQ models under conditions of permissible delay in payments can be
found in Teng [13] and Ouyang et al.[12].

In addition to EOQ models, Huang & Chung[6] and Huang & Lai [8] discussed EPQ
models under conditions of permissible delay in payments. They successfully extended
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Goyal’s model [4] to address the case where all items are replenished at a finite rate. Huang
& Lin [9] and Huang et al. [3] discussed EPQ models under conditions of permissible delay
in payments and cash discount.

The EPQ models under the two stage payment policy are given in Section 2. Some
analysis of single-stage payment and two stage payment are given in Section 3. Further-
more, based on this analysis, we present an analytic method to find the minimum of these
models. In Section 4, some numerical results are provided that show that the two stage pay-
ment is better than a single-stage payment in some cases. We also provide some economic
interpretations in Section 4.

Optimal Replenishment Cycle of EPQ models under Conditions
of Permissible Delay in Payments and Cash Discount

In this paper, we adopt the following notations and assumptions:
Notations:

D: demand rate(unit/years)

P: replenishment rate(unit/years)

s: selling price (dollars/unit)

p: purchasing price (dollars/unit)

A: setup cost (dollars/order)

h: stock holding cost per year excluding interest charges(dollars/unit)
I.: interest charged on stock (dollars/year)

I;: interest earned (dollars/year)

Y,
pp=7
D

r: cash discount rate
M;: cash discount period(years)
My: permissible delay period(years)
T: cycle time(years)
Assumptions:
1. Both the demand rate and the replenishment rate are known and constant.
2. The demand rate D is smaller than the replenishment rate P, i.e. D < P and p < 1.
3. Shortages are not allowed.

4. The unit selling price is strictly greater than the unit purchasing price, that is, s > p.
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supplier offers two periods for trade credit: the cash discount period M; and

permissible delay period Ms. We assume the permissible delay period M is strictly
larger than the period M; for cash discount, that is, M; < Ms.

The interest rates I. and I; are constant and satisfy 0 < I; < I..

During the period in which the account is not settled, generated sales revenue is
deposited in an interest-bearing account.

The rate r of cash discount is r € (0, 1).

No additional cash is added.

The time horizon is infinite.

The single-stage payment policy is defined as follows:

(a)

Suppose that the cycle time T satisfied T' < M;. Then the retailer has earned
enough money to settle payments before the period M;. If the retailer has chosen
the cash discount policy, then it makes economic sense for them to delay the
settlement of the replenishment account up to the last moment of the period Mj.

Suppose the cycle time T satisfied T" > M;. Then the retailer has not earned
enough money to settle payments before the period M. If the retailer has chosen
cash discount policy, then it makes economic sense for them to delay the settle-
ment of the replenishment account up to the last moment of the period M;. The
cost of interest charged for the remaining amount needs to be considered.

Suppose the cycle time T satisfied T' < Ms. Then the retailer has earned enough
money to settle payments before the period Ms. If the retailer has chosen the
permissible delay in payments policy, then it makes economic sense for them to
delay the settlement of the replenishment account up to the last moment of the
period M.

Suppose the cycle time T satisfied T" > Mjy. Then the retailer has not earned
enough money to settle payments before the period Ms. If the retailer has chosen
the permissible delay in payments policy, then it makes economic sense for them
to delay the settlement of the replenishment account up to the last moment of
the period Ms. The cost of interest charged for the remaining amount needs to
be considered.

12. The two-stage payment policy is described as follows:

The retailer settles part of the account at the end of the period M; and receives cash
discount. The unpaid amount is paid at the end of the period M. If the cycle time
T satisfied T > My, then the retailer has not earned enough money for the entire
amount owed before the end of the period M, and the cost of interest charged for the
remaining amount needs to be considered.

These two types of policies adopt different assumptions. In Section 2.1, we discuss the two-
stage payment policy and adopt assumptions (1)-(10) and (12). In Section 2.2, we discuss
the single-stage payment policy and adopt the assumptions (1)-(10) and (11).
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Two-stage Payment Policy

In two stage payment policy, the following six cases (2.1a)-(2.1e) are considered.

DT

M, < - <T < M, (2.1a)
%ng <T < My, (2.1b)
M, < M, < % <T, (2.1c)
M; < % <M, <T, (2.1d)
% <M <M, <T, (2.1e)
% <T < M; < M,. (2.1f)

If the condition (2.1a) holds, then the retailer settles the payment pDM; at time M;
and settle the remained payment pD(T — M;) at time Ms. Hence, if (2.1a) holds, then we

define Case 1.1
M

P
Case 1.1 : <T < M,

and the average total cost function is defined by AT'C4 1(T") which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned.

If the condition (2.1b) holds, then the retailer settles the payment pDM; at time M;
and settle the remained payment pD(T — M;) at time Ms. Hence, if (2.1b) holds, then we
define Case 1.2

PM
Case 1.2 : Tgmin{ DI’MQ}

and the average total cost function is defined by AT'C4 2(T") which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned.

If the condition (2.1c¢) holds, then the retailer settles the payment pDM; at time My,
settle the payment pD(Ms — M7) at time Ms. The retailer must pay the cost of interest
charges for unsold items behind M,. Hence, if (2.1c) holds, then we define Case 1.3

PM.
Case 1.3: My < 2

<T

and the average total cost function is defined by AT'C4 3(T") which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned, average interest
charges.

If the condition (2.1d) holds, then the retailer settles the payment pDM; at time My,
settle the payment pD(Ms — M7) at time Ms. The retailer must pay the cost of interest
charges for unsold items behind Ms. Hence, if (2.1d) holds, then we define Case 1.4

PM,

PM
Case 1.4 : maX{Dl,Mg} <T<

and the average total cost function is defined by AT'C 4(T") which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned, average interest
charges.
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If the condition (2.1e) holds, then the retailer settles the payment pDM; at time M,
settle the payment pD(Ms — M7) at time Ms. The retailer must pay the cost of interest
charges for unsold items behind My. Hence, if (2.1e) holds, then we define Case 1.5

PM,

Case 1.5: My <T <

and the average total cost function is defined by AT'C4 5(T") which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned, average interest
charges.

If the condition (2.1f) holds, then the retailer settles the whole payment at time M; in
order to obtain the maximum benefit. Hence the value of the average total cost of (2.1f) is
the same as the value of AT'C} 1(M;). Hence the condition (2.1f) is included by the condition
(2.1a). In the rest of this subsection, we describe the explicit formulas of average total costs
of the five cases: Case 1.1-Case 1.5.

DTH

(1) The sum of average setup cost and average holding cost is T + —

D (T —rM
(2) All the purchasing costs of Case 1.1-Case 1.5 are the same and the cost is %

because all the cases settle the same payment at time M.

(3) Average Interest charges: Only Case 1.3-Case 1.5 need to consider interest charges.

I.(1— DT? — PM?2
Case 1.3 pLe( p)( 2>

2T
I.(1— DT? — PM2
Case 1.4 pLe( p)( 2>
2T
2
Case 1.5 M

2T

(3) Average Interest earned:

s1yD (My (My — My) — T (AT — M)
T
slyD (My (My — My) = T (3T — My))
sIaD (My (M, — MTz) + 3 M3)
sIuD (M, (MlT— M) + §M3)
sI,D (M, (MlT— M,) + §M3)
T

Case 1.1

Case 1.2

Case 1.3

Case 1.4

Case 1.5

The average total costs of Case 1.1-Casel.5 are defined as follows:

A DTH  pD(T —rMy) slaD (M (M — M) =T (37 — M,))
T 2 T T
DTH pD(T —rM;) slaD (My(My — M) =T (3T — My))

A
ATC 2 (T) = T + 3 + T - T )

ATCy, (T) = . (2.2)
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A DTH pD(T —rM sIyD (My (M — My) + M2
ATCy5(T) = F4+ =5 +° (T 1) _ 1D (M T )+ 505 25
pl(1 = p) (DT? — PM3) 23
+ 2T ’
A DTH pD(T—rM sIyD (M (My — M) + L M2
ATCL(T) = T+ — : (T ) D 1T - (2.4)
+pIcD (T — Ms)? '
2T ’
and

ATC 5 (T) = T3 T

A DTH pD(T —rM) slaD (My (M — My) + 1 M3) L PLD (T - M,)®

T 2T

Therefore, the average total cost function ATCp(T) of EPQ models under conditions of
cash discount and permissible delay in payment in a cycle time 7' is formulated as

ATCA(T) if My <T < My
. PM,
ATCp(T) = { ATC13(T) if My < <T
ATCy4(T) it My <T < PM,

Note, since the average total cost function AT'Cy o(T) is the same as ATC; 1(T) and the
average total cost function AT'Cy 5(T) is the same as AT Cy 4(T'), Case 1.2 is combined with
Case 1.1 and Case 1.5 is combined with Case 1.4.

@ Single-stage Payment Policy
According to [3], we consider the following cases:

Case 2.1: 0<T < My;
Case 2.2: My <T < PM,/D;

Case 2.3 :
Case 2.4 :
Case 2.5 :
Case 2.6 :

and re-define the cost functions in the follows.

functions are defined by

PM,/D < T;
0<T < My;
PM,/D <T.

In Case 2.1-2.6, the average total cost

A DTH 1
ATCZl(T) = T + T +pD (1 — T) — SIdD (Ml — 2T>
A  DTH sI;DM? 1—7)I.D(T — M;)*
ATCQ_Q(T):?JF—2 +pD(1—71)— dT A ) 2T( )
A DTH pl.(1 —7r)(1—p) (DT? — PM? sI;DM?
ATCQ.B(T) = T + 5 +p(1 — T)D + ( )( 2;( 1> - d2T !
A DTH 1
ATCQ_4(T) = f + T +pD — SIdD <M2 — 2T>
A DTH sI;DM2  pI.D (T — Ms)?
ATO2.5(T) = f + T +pD — d2 2 Pl (2T 2)
A DTH pl.(1—p) (DT? — PM3)  sI,DM?2
ATCy(T) = o + —5— +pD + (1=r) (2T 1) _ dQT 2

The detail of model formulation of the function AT'Cy(T) is referred to the function

TV C,.3(T) of [3]. Similarly,
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the function ATC52(T) is referred to the function TV Cy o(T) of [9];
the function ATCy 3(T) is referred to the function TV Cy 1(T) of [9];
the function ATC5 4(T) is referred to the function TV Cs 3(T) of [9];
the function AT'Cy 5(T) is referred to the function TV Cy.5(T) of [9];
the function AT'Cy6(T) is referred to the function TV Cy1(T) of [9].

Hence we define the following functions. The average total cost ATCep(T) of EPQ models
under conditions of cash discount is formulated as

ATCo1(T) HH0<T <M

ATCeop(T) = ATCoo(T) i My <T < PM:/D
ATCy3(T) if PMy/D <T

The average total cost ATCpp(T) of EPQ models under conditions of permissible delay in
payments is formulated as

ATCy4(T) f0<T < My
ATCpp(T) ={ ATCo5(T) if My <T < PMy/D
ATCy6(T) if PMy/D <T

The objective of this paper is to solve the problem

min {rT]g% ATCp(T), min ATCcp(T), min ATCpp(T) } : (2.5)

Theoretical Analysis

For short notation, we define some parameters

A =rp—sly(My — M)
ki = DM}(H + sla),

ko = DM3Z(H + sl),

ks = 2DM; A,

P2 ) (3.1)
k4 = (D2 — 1) DMI (H +plc(1 — ’f')),
p? 9
ks = (DQ — 1) DM5(H + pl.).
Then we can observe that
ki = DM?(H + sI;) < DM3(H + sl) = ko (3.2)
and
p? 9 P2 9
ks = D2 1)DM;(H +pl.(1-71)) < D2 1) DM5(H +pl.) = ks. (3.3)
Moreover, if A = rp — sIy (Ms — My) > 0, then ks = 2DM;A > 0. Hence
k1 <kiy+ks<ko+ks<ko+ks+ksif A>D0. (34)

Because of the inequalities (3.2), (3.3) and (3.4), we can simply determine the optimal
solutions of average total cost functions AT'C; ;(T'), and then determine the optimal value
of (2.5).
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First, we analyze the average total cost functions ATCy 1(T), ATCy 3(T) and ATC1 4(T)
in Theorem 3.1, Theorem 3.2 and Theorem 3.3 respectively. We obtain that the function
ATC1.1(T) is not always convex, although the average total cost function of traditional EPQ
models is convex. We describe that if A — DM A > 0, then ATC 1(T) is convex. On the
other hand, if A — DM A < 0, then ATC, 1(T) is increasing. Moreover, we use these two
observations to obtain the optimum of min ATCy 1(T).

Te[My,Ms]

Theorem 3.1. Let

Ai1=A—DMA. (3.5)
If A\1.1 > 0, then we define
T, = .
1-1 D(H + sI) (3.6)

Then we obtain the statements as follows:

(1) If M1 >0, then ATCy1(T) is strictly convex. The stationary point of ATCy 1(T) is
Ty1.

(2) If \11 =0, then ATC,1(T) is strictly increasing.

(3) If M1 <0, then ATC, 1(T) is strictly increasing and concave.
(4) If2A < ks, then A1 < 0.

(5) If 2A > ks, then A1 > 0.

(6) If2A € (ks ki + k3), then A\y.1 >0 and Ty, < M;.

(7) If2A > ki + k3, then A\11 > 0 and Ty.1 > M.

(8) If2A € (k3, ko + k3), then A\1.1 > 0 and T1.1 < M.

(9) If2A > ko + ks, then A\1.1 >0 and Ty.1 > M.

(

10) An optimal solution of —min  ATCy1(T) is Ty, which is defined as
Te[M:1,Ms) :

My if2A<k1+k3

Try =< Tix if 2A € [ky + k3, ko + k3)
My if 2A > ko + k3

In Theorem 3.2, we discuss some properties of the function ATCy 3(T). Similar to
Theorem 3.1, the convex and increasing properties of the function ATC4 5(T) are discussed.
Also we find out the optimum of min  ATC, 5(T) in Theorem 3.2.

Te[ 252,00

Theorem 3.2. Let
A3 =2\ — M2 (pI.(1 — p)P + sIyD). (3.7)

If \1.3 > 0, then we define
_— 213
Ty o = 3.8
¢ D= p)(h + pl,) (38)

Then we obtain the statements as follows:
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(1)]7]‘/\1‘3 > 0, then ATCy.3(T) is strictly convex. The stationary point of ATCY 3(T) is
T3

(2) If M3 =0, then AT'C1.3(T) is strictly increasing.
(3) If \1.3 <0, then ATC4 3(T) is strictly increasing and concave.

—  PM
(4) If 24 < ka + ks + ks and Avs > 0, then Ty s < — 2,

__ _ PM
(5) If 24 > ky + ks + ks, then Avs > 0 and Tys > — =y

(6) An optimal solution of [Igljbn ]ATC'1.3(T) is Ty 5 which is defined as
Te D2 ,00

D

PM.
T — S22 F2A < ko + ks + ks
1.3 — 1/

Tis  if 2A > ko + ks + ks

In Theorem 3.3, we discuss the function ATC;4(T). Again, the optimum of

min  ATCy 4(T) is stated in (8) of Theorem 3.3.
Te[My,Ms]

Theorem 3.3. Let

Mg =2\ — DM2 (sly —pl,). (3.9)
If \1.4 > 0, then we define
. 2\1.1 — DM2 (sIy — pl.)
T, 4 = 3.10
14 \/ D(H + pl,) (3.10)

Then we obtain the statements as follows:

(1) If M4 > 0, then ATCy.4(T) is strictly convex. The stationary point of ATCy 4(T) is
T4

(2) If M4 =0, then ATC, 4(T) is strictly increasing.
(3) If M4 <0, then ATC, 4(T) is strictly increasing and concave.
(4) If 2A < ko + ks and A\ 4 > 0, then H < Ms.
(5) If2A > ko + k3, then A\1.q4 > 0 and Ty.4 > Mo.
— —  PM.
(6) ]f 24 € []{12 + k3, ko + k3 + k‘5), then A4 >0, T14 > My and Ty 4 < D 2.

— _ PM-
(7) If2A > ko + ks + ks, then A4 >0 and Ty 4 > 5 ey

(8) An optimal solution of  min  ATCy 4(T) is T5, which is defined as
Te[Ma, FH2]

% Zf 2A < ko + Ifg
T1*4 — T4 if 2A € []{32 + k3, ko + k3 + k5)

PM.
02 if 2A > ko + ks + ks
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Besides to discuss the functions ATCy 1(T), ATCy 3(T), ATCy 4(T), we also need some
properties of ATCs1(T), ATC22(T), ..., ATC54(T) in order to solve the problem (2.5).
Hence we re-stated and re-proved the properties of ATCy1(T), ATCoo(T), ..., ATC24(T)
in the following Theorem 3.4, Theorem 3.5, Theorem 3.6, Theorem 3.7 and Theorem 3.8.
Similar results can be found in [3].

Theorem 3.4. Let
(3.11)

Then we obtain the statements as follows:

(1) The function ATCy1(T) and ATCy 4(T') are strictly convex. Both of their stationary
point are Ty 1.

(2) If2A< kl, thenE< M.

(4) An optimal solution ofT %il?w ]ATCg,l(T) is Ty which is defined as
€(0,M,

T — Toa if 2A<h
2170 My if 2A> Ky
(5) If2A<k2, thenE<Mg.

(7) An optimal solution ofT %irltl ]ATCQA(T) is T, which is defined as
€(0,M2

T Ty if 2A <k
247 My if 2A> ks

Theorem 3.5. Let
oo = 2A — DM? (sIg — pI.(1 —1)). (3.12)

If Ao 5 > 0, then we define

— A2.2
TQQ:\/D(H%—pIC(l—T))' (3.13)

Then we obtain the statements as follows:

(1) If Aaa > 0, then ATC55(T) is strictly convezx. The stationary point of AT Coo(T) is
Tos.

2) If Ao =0, then ATC55(T) is strictly increasing.
4 If 2A < k1 and My > 0, then E < M.

(2)
(3) If Aoa <0, then ATC55(T) is strictly increasing and concave.
(4)
(5) If2A > ky, then Moo > 0 and Ty > M.

PM;

D

(6) If2A S [kl,]ﬁ + ]ﬂ4), then Aoo > 0, E > M, andE <
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— PM
(7) ]f 2A > k1 + ks, then Ago >0 and Ty o > D ! .

(8) An optimal solution of  min  ATCs5(T) is

M, Zf 2A<k’1

Tso =% Too if 2A€ [ky, k1 + ka)
PMLGif 24 > ky +
Theorem 3.6. Let
Ao =24 — M; (pI.(1 —r)(1 — p)P + sI4D). (3.14)

If Aa.3 > 0, then we define

— A2.3
Bos \/ D(H +pL1 - 1)1~ p))’ 319

Then we obtain the statements as follows:

1. If a3 > 0, then ATC55(T) is strictly convex. The stationary point of ATCo.3(T) is
Tys.

2. If \a3 =0, then ATCs3(T) is strictly convex.

3. If Ma3 <0, then ATCs 3(T) is strictly increasing and concave.

—  PM
4. If 2A < k1 + ks and Na3 > 0, then To 3 < D ! .

_ _ PM
5. If 2A > k1 + kg, then Aa3 > 0 and 153 > D ! .

6. An optimal solution of min ATCo3(T) is
TG[Pgﬁ ,+oo)

PM, .
TQ*B _ j Zf 2A < k] + k4
Tosz  if 2A> ki + ky

Theorem 3.7. Let

Ao = 2A — DMZ (sIy — pl.). (3.16)
If Ao 5 > 0, then we define
—— A2.5
Tos = || . 3.17
* \ D{H +pL) 40

Then we obtain the statement as follows:

1. If Ada5 > 0, then ATCy5(T) is strictly convex. The stationary point of of ATCs 5(T)
8 T2,5.

2. If \o5 =0, then ATCy5(T) is strictly increasing.

3. If Aa5 < 0, then ATCy5(T) is strictly increasing and concave.
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4. If2A < ko and Xo5 > 0, then Ths < M,.

5. If 2A > ko, then Ao > 0 and Th5 > M.
PM,

6. If 2A € (ka, ko + ks), then Aa5 > 0 and Ty 5 < D

— _ PM
T If2A4 > ky + ks, then dp5 > 0 and Tp5 > — =y

8. An optimal solution of  min  ATCs 5(T) is
TE[MQ,PgQ]

% if 2A < ks
T2*5 _ Ts 5 if 2A € (kg, ko + k5)

2 if 24> ko + ks

Theorem 3.8. Let
Ao = 2A — M2 (pI.(1 — p)P + sI4D). (3.18)

If Ao s > 0, then we define

_— A2.6
Tre = \/D(H+p[c(1 ) (3.19)

Then we obtain the statements as follows:

L If Ao > 0, then ATCo4(T) is strictly convex. The stationary point of ATCa6(T) is
Tog-

2. If Aog =0, then ATCy4(T) is strictly increasing.

3. If Mo <0, then ATCo6(T) is strictly increasing and concave.

4. If2A < ko + k5 and Mg > 0 then Tog < L2,

__ _ PM
5. If 24> ky + ks, then dag > 0 and Tog > — 2,

6. An optimal solution of min ATC56(T) is

Te[ 222 1o0)

T — Pig/lz Zf2A<I€2+I€5
2.6 Tog if 2A> ko + ks

From Theorem 3.1 - Theorem 3.8, we state the optimal conditions of

min ATCq 1 (T), min AT013(T)a min ATCh 4 (T)
Te[My,M,] Te[PgIZ ,oo] TG[M% Pglz]

min ATCQ 1 (T) s min ATCQ_Q (T) 5 min ATC2'3 (T)

T€(0,M;] Te[M;, P31 Te[ 25t +o0)
min AT Cy4(T), min ATC5 5(T) and min ATCo6(T).
T€(0,Ms] Te[Ma, P52] Te[ 52 +o0)

In the following theorem, we state some properties of the average total cost functions
ATC; ;(T).
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Theorem 3.9. Let A =rp— sIy (My — My).

1. The condition A > 0 is necessary and sufficient for the followings:

a) For allT < My, ATC51 (T) < ATC54(T) holds.
b) For all T € [Ml,MQ], ATCq 4 (T) < ATCo 4 (T) holds.

c) For allT > My, ATCy5(T) < ATCs6(T) and ATC1.4(T) < ATCy5 (T) hold
2. The condition A < 0 is necessary and sufficient for the followings:

a) For allT < My, ATC54(T) < ATC21 (T) holds.
b) For all T € [My, My, ATCy.4 (T) < ATCy., (T) holds.

C) For all T > Mo, ATCQ_ﬁ (T) < AT01_3 (T) and ATCQ_5 (T) = ATC, 4 (T) holds.
3. The condition A = 0 is necessary and sufficient for the followings:

a) For all T < Ml, ATCQ.l (T) = ATCQ_4 (T) holds.
b) For all T € [My, Ms), ATC,.1 (T) = ATCs.4 (T) holds.

C) For all T > Mg, ATC1_3 (T) = ATCQ_ﬁ (T) and ATC 4 (T) = ATC2_5 (T) holds.
Note: even the condition T < My, T € [My, Ms] and T > My are not satisfied, the results
still hold.

With Theorem 3.9, the problem (2.5) can be reduced. If A > 0, then the optimal value
ATC* of (2.5) is the minimal value of

min ATCll(T),
Te[M;,Ma>)

in ATCy:1(T i ATC59(T) and
r iy AT O D), iy, ATCoo(T) and |

Moreover, some simplified results are listed in Theorem 3.10.

Theorem 3.10. Suppose A > 0.

(a) The condition 2A < ki implies that

ATC* = ATCy1(To,).

(b) The condition ki1 < 2A < min{k; + k3, ko + k3, k1 + ka} implies that
ATC* = ATCy.5(Ts.2).

(¢) The condition ki + ks < 2A < min{ks + ks, k1 + ka} implies that
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(d) The condition max{ky + k3, k1 + ka} < 2A < ko + k3 implies that
ATC* = min{ATCy 1(T1.1), ATCo3(T53)}.
(e) The condition ko + ks < 2A < ki + ky implies that
ATC* = min{ATC, 1(T11), ATC22(T52)}.
(f) The condition k1 + kg < 2A < k1 + ks implies that
ATC* = ATCy 5(Ts.3).
(g) The condition max{ky + k3, ko + k3, k1 + ka} < 24 < ko + ks + ks implies that
ATC* = min{ATC 4(T1.4), ATCo3(T53)}.
(h) The condition ko + ks + ks < 2A implies that
ATC* = min{ATC, 3(T13), ATC23(Ta3)}.
If A <0, then, from Theorem 3.9, the optimal value AT'C* of (2.5) is the minimal value

of
min ATCQQ(T), min ATCQ_?, (T), min 141"16(24(11)7

refon. 20 re[ZH hoc) re(o.)
min  ATC55(T) and min ATC54(T).
Te[Ms, F12] Te[E2Y2 +00)

This result is very important, since it implies that if A < 0, retailers should choose single-
stage payment instead of two stage payment. Hence we re-state Theorem 1 of [3] in Theorem
3.11.

Theorem 3.11. Suppose A <0

(a) The condition 2A < ki implies that
ATC* = min{ATCy.1(M;), ATCs 4(T2.4)}.

(b) The condition k1 < 2A < min{ks, k1 + k4} implies that
ATC* = min{ATCy5(Ts.5), ATC2 4(To.4)}.

(¢) Suppose ki + k4 < ko. The condition ki + kg < 2A < ko implies that
ATC* = min{ATCy 3(Ts.3), ATC2.4(To.4)}.

(d) Suppose ko < ky + kyg. The condition ko < 2A < ki + ky implies that
ATC* = min{ATCy5(Ts.5), ATCy 5(Ta5)}.

(e) The condition max{ks, k1 + ka} < 24 < ko + k5 implies that
ATC* = min{ATCy 3(Ty.3), ATCy5(Ta5)}.

(f) The condition ko + ks < 2A implies that
ATC* = min{ATCy 3(Ts.3), ATC2.6(Ta6)}-

With Theorem 3.10 and Theorem 3.11, we can find the optimal replenishment of the
problem (2.5).
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Numerical Experiments

We design the following example based on the numerical example in [3]. In the following
testing problem, the minimum cost of the two-stage payment is smaller than that of the
single-stage payment.

Example 4.1. Let A = 100 dollars/order, P = 1500 units/year, D = 1000 units/year,
r = 0.01, h = 12 dollars/unit/year, p = 20 dollars/unit, s = 25 dollars/unit, I. = 0.15
dollars/year, I; = 0.07 dollars/year, M; = 0.1 years, and My = 0.15 years.

0.27
0.195¢

0.19¢

Time(Years)

0.185

1 ‘ ‘ ‘ ‘ ‘
0181 015 02 025 03 035

Figure 1: The optimal replenishment cycle times of Problem 4.1 with r € [0.1,0.35]

By Theorem 3.10, since
A =rp—sly(My — My) = 0.01125 > 0,

ki+ ks =80 < k1 +ky =144.625 < ko + k3 = 151.875 < 2A = 180 < 348.75 = ko + k3 + ks,

and

we obtain the optimal replenishment cycle time 77 4 = 0.171391 years and the minimized
average total cost AT'Cy 4(Ty.4) = 21435.305 dollars/year. The best objective value for a
single-stage payment is ATCy 3(T33) = 21447.825 dollars/year.

In an economic sense, the discount rate can stimulate the order quantity. This situation
can be observed from Figure 1. When the discount rate r is increased, the optimal replen-
ishment cycle time increases. Thus the optimal order quantity also increases. In Figure 2,
we consider Problem 4.1 and modify the production rate P and the selling price s. From
Figure 2, when P is fixed, the selling price s increases implying a decrease in the optimal
replenishment cycle time. This means that, if they wish to obtain the same benefit, retailers
must order less often as the selling price.

Conclusion

In this paper, we proposed a new policy involving a two-stage payment. Under this new
policy, the payments are separated into more portions than a single-stage payment. The
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Optimal Cycle Time(P=1100) Optimal Cycle Time(P=1225) Optimal Cycle Time(P=1350)
0.22 0.19

0.32
8- 8 021 8 0.185
Z 03 z Z
Q Q (3]
£ 029 E 02 £ 018
[ = [
0.19 0.175
20 30 40 20 30 40 20 30 40
s s s
Optimal Cycle Time(P=1475) Optimal Cycle Time(P=1600) Optimal Cycle Time(P=1725)
0.18 0.18 0.165
2 2 @
8 0475 8 0475 8
z z Z 016
() () ()
g 0.17 g 0.17 g
[ [ [
0.165 0.165 0.155
20 30 40 20 30 40 20 30 40
s s s
Optimal Cycle Time(P=1850) Optimal Cycle Time(P=1975) Optimal Cycle Time(P=2100)
0.16 0.16 0.155
Q Q Q
5 5 8 015 \
Z 0.155 . 0.155 z
() () Q
g g g 0.145
= = =
0.15 0.15
20 30 40 20 30 40 20 30 40
s s s

Figure 2: The optimal replenishment cycle times of Example 4.1 with P €
{1100,1225,...,2100} and s € {21,22,...,40}

mathematical representation of the economic production quantity (EPQ) models under a
two-stage payment policy was given and an analytical method for solving the given models
was stated and proved. Finally, we computed the value A of the difference between the
cash discount of the whole payment and the interest earned from the unpaid payment after
the cash discount period. If A > 0, retailers may choose a two-stage payment to obtain a
better profit than would result from a single-stage payment. In addition to providing the
economic interpretation of A, we discussed the relationships between the discount rate r
and the optimal cycle time, and between the selling price s and the optimal cycle time. In
future, we can extend our EPQ models to a new Economic Lot Scheduling Problem, using

the results of this paper.
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Appendix

The proof of Theorem 3.1

Proof. We have

A DTH pD(T —rM;) slaD (My(My — My) — T (AT — M.
ATCy, (T) = =+ L P ( rMy)  slg (M (M 2) (3 2))

2 T
A DH | rpDM,

)

M, (M, —MQ)T 1)

ATCL,(T) = —5 + = 73— — slaD — T )
_ D(H +sly) B A — DM (rp — sIyj(Ms — My))
B 2 T2
. D(H + SId) A11
- 2 T2
22
ATCY(T) = 5

T
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and

2A — k1 +ky = 2A— DME(H + slq) —2DM; (rp — sly(Ms — My))
= 2{A— DM, (rp— sly(My — M;))} — DMZ(H + sl)
= 211 — DME(H + sly)

2A —ky+ks = 2A— DM3Z(H + sly) —2DM; (rp — slqy(My — My))
= 2{A— DM, (rp— sIs(My — My))} — DM3(H + sla)
= 2\.1 — DM2Z(H + sly).

(1) Since A;; >0 and T' > 0 implies AT'CY | (T) > 0, the function ATCy1(T) is strictly
convex on {7 > 0}. The stationary point 77 ; of AT'Cy 1(T) can be obtained from the
following computation

D(H—std) A1

ATCL(T) =0 = =22 - 2l o
2A1.1
T= |
= D(H + sly)
D(H + sI,)

(2) If )\1.1 = 0, then ATCil(T) =
ATCy1(T) is strictly increasing.

(3) Since A\11 < 0 and T > 0 implies ATC} ; (T) > 0 and ATCY, (T) < 0, the function
ATCy1(T) is strictly increasing and concave on {T' > 0}.

(4) k3 >24=24A—k3 <0=24A-2DM A <0= X\;<0.
(5) k3 <24=24A—k3 >0=24A—-2DM;A>0= A1 >0.
(6) 2A € (ks, k1 + k3) implies 24 > ks, hence A1.; > 0. On the other hand,

2 > 0 which implies that the function

2A € (kj37k‘1 -|-k‘3) = 2A < ki +k3s=2\1 —DM12(H+SId> <0

Tii=,—2t
T TN DI sy S

(7) 2A > ki + k3 implies 24 > k3, hence A1 > 0.

2M 11

24> k1 +ks =221 —-DM?(H+sI))>0=>T11=4| ——— > M.
> K1+ k3 = 2A11 T(H+ sly) > 1.1 D(H + sly) — 1

(8) 2A € (ks, ko + k3) implies 2A > k3, hence A;1 > 0. On the other hand,

2A € (k3 ko +k3) = 24 < kg + k3 = 2\;, — DMZ(H +sI;) <0

—_— 2M 11
=17, = _ M.
A DH 1 sl S
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(9) 2A > ko + k3 implies 24 > k3, hence A1 > 0. On the other hand,

2M11 > M,

2A > ko + ks = 2X\1.1 — DM2(H + sly) > Tii= 4] ="
> ko + k3 = 2A11 S(H+slg) >0=T11 DH + 51p) =

(10) (a) Suppose 2A < ki + k3. Then we need to consider three cases: 24 < ks,
2A = ks, and 2A € (kg, ki1 + kg)

(i) 2A < ks = A1 < 0= ATC;1(T) is strictly increasing = ATC1(M;) =

min ATCLl (T)
Te[My,Ms]

(11) 2A = kg = A1A1 =0= ATCll(T) is StI‘iCtly increasing = ATCll(Ml) =

min ATCll(T)
TE[Ml,]\/Iz]

(ii)) 24 € (ks k1 +k3) = A1 > 0= ATClﬂ) is strictly convex. Moreover,
2A € (kg,kl + kg) implies A1 > 0 and T7.1 < M;. Hence, ATCl.l(Ml) =

min ATCll(T)
TG[Ml,MQ]

Therefore, if 2A < k1 + k3, then ATC, (M) = . [IJI\/llinM ]ATC’H(T).
€| M1,Ma2

(b) Suppose 24 € [k1 + k3, k2 + k3). Then A\;; > 0 and Ty ; € [My, Ms]. More-
over, A\11 > 0 implies ATCy 1(T) is strictly convex. Hence, ATCi1(T11) =

min ATCll(T),
Te[My,Ms]

(¢) Suppose 24 > ko+ks. Then \;; > 0 and 771 > Ms. Moreover, A1 1 > 0 implies
ATC1.1(T) is strictly convex. Hence, ATC; 1(Ms) = . [min ]ATCM(T),
S 2

1,

The proof of Theorem 3.2

Proof. We have

A L DTH  pD (T — M) slyD (M (My — Ms) + £ M3)

ATC3(T) = 74— T T
L pL(=p) (DT> = PM3)
A 1 1 D(M (My — Ms) 1M2)
DH rpD M, Slq 1 1— Ms) + 5
ATCL3(T) = —m+ = N T2 —
2
+pl(1—p) (% + P2A:/FIQ
— D(l—p)(h-‘,—p[c)
2
_2{A7DM1(rpfsld(M27M1)2)}fM22(pIC(lfp)P+sIdD)
2T
_ DOA-p)(h+pl) Ais
\ 2 272
ATCY (1) = 22

T3
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and
9A —ky — ks — ks = 2A— ks — DMZ(H + sly) — (% - 1) DMZ(H + pl.)
924 — ks — DM2(sI; — pl.) — (gi) DM2(H + p.)
2A — ks — M3(pI.(1 — p)P + sDI; — pI.(1 — p)P — pDI,)
( ) DMZ(H + pl.)
= 24— ky — M2(pI.(1 — p)P + sDI; — pI.P)
( ) DM2(H + pl,)
= 2A— k3 — M2(pI.(1 —p)P + sDI,) + M3pI.P
52 ) DM3(H + pl.)
) DM3 (H +ple — %)
= s~ (52) DM3 (h(1-p) + (1 - p)ple)

2

= s (52) DMZ(1—p) (h+pL.).

\
W N

(1) Since A1 3 >0 and T' > 0 implies ATCY 5 (T) > 0, the function ATC} 3(T) is strictly
convex on {T > 0}. The stationary point T} 3 of AT'C} 3(T") can be obtained from the
following computation

D1 —p)(h+pl.) Ais _

o712

M \/D(l —p)(h+pl)

D(1 = p)(h +pl.)
2

(2) If Ay 3 =0, then ATC] 4(T) =
ATC4 5(T) is strictly increasing.

(3) Since A1.3 < 0 and T > 0 implies ATC} 5 (T) > 0 and ATCY 5 (T) < 0, the function
ATC, 3(T) is strictly increasing and concave on {T' > 0}.

> 0 which implies that the function

4) 2A < ko + ks + ks and A3 > 0 implies T 3 < PM; since
( ) p D
2 PM2

D

P
2A<k2+k3+k5$)\1,3—<

DZ)DMQ( p)(h+pl)<0=T3<

(5) 2A > kg + ks + ks implies A\; 3 > 0 and T} 3 > Pgb since

2

P
2A2k2+k3+k5=>/\143—<D2

)DM2<1— p) (h+pL.) > 0

P2
= A3 > (1)2) DMZ(1 - p) (h+pl.) >0

and
P2
D2

PMs,

2A2k2+k3+k5:>)\13< )DMQ( )(h+pfc)20:>mz



742 J.-Y. LIN AND C.-Y. CHENG

(6) (a) Suppose 24 < kg +ks+ks and Ay.3 < 0. Then ATC, 5(T) is strictly increasing,
Hence ATC1 3 (%) = %ﬂ )ATCl_g(T),

T[D7oo

(b) Suppose 24 < ko + ks + ks and A; 3 = 0. Then ATC; 3(T) is strictly increasing,
Hence ATC1 3 (%) = min ATC4 3(T),
)

Te[PM2,

(¢) Suppose 2A < ko + k3 + ks and Ay 3 > 0. Then ATC} 3(T) is strictly convex and
T1A3 < Pg/b . Hence ATCL?, (%) = min ATClg(T),
)

D
Te[Z52 +

(d) Suppose 2A > ks + ks + k5. Then A3 > 0, ATCy 5(T) is strictly convex and
Tis > 2M2 Hence ATCy5(Th3) = min  ATCy5(T) .
P My
TG[T7+OO)

The proof of Theorem 3.3

Proof. We have

— I,D (M (M7 — M- ISV
ATCLA(T) = S PTH pD(TT’"Ml)—Sd (M ( 1T 2) + 3 M5)

+pICD(T—M2)2

2T
_i % I ’I"pDMl I slyD (Ml (Ml — Mg) -+ %MQQ)

2
+pLeD (4~ 3
_ D(H+pl) 2{A—DM(rp—sla(M>— M))} — DM3(sly — pl.)
N 2 272
_ D(H+plc) _ M
B \ 2 272
1.4
ATC{/A (T) = T3
214—]62 —k3 = 2A—DM22(H+SI¢1)—2DM1A
= 2A—2DMA — DM3(sly — pl.) + DMZ(sly — pl.) — DMZ(H + sl)
= A4-— DMQQ(H + p[c)
and
2 p? 2
2A — ko —ks—ks = Ma— DM;(H+pl.)— 2 —1)DM5(H +pl.)
P2M;3(H + pI.)

(1) Since A;.4 > 0 and T > 0 implies ATCY , (T) > 0, the function AT'C} 4(T) is strictly

convex on {T" > 0}. The stationary point T; 4 of AT'Cy 4(T) can be obtained from the
following computation

D(H +pl))  Ma
2 272
D(H +pl.)’

AT} (T) = 0

= T=
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D(H + pl, S .
(2) If A\;q4 = 0, then ATC] ,(T) = % > 0 which implies that the function

ATC4 4(T) is strictly increasing.

(3) Since A1 4 < 0 and T > 0 implies ATC} ,(T) > 0 and ATCY, (T) < 0, the function
ATC4 4(T) is strictly increasing and concave on {T" > 0}.

(4) 2A < ky + ks and Ay 4 > 0 implies Ty 4 < Ms since

2A < kg +kz = Ny — DMZ(H +pl.) <0=T 4 < M,.

(5) 2A > ky + k3 implies A\; 4 > 0 and Ty 4 > M, since
2A > ko +kz = Mgy — DMZ(H +pl.) > 0= A4 > DM3(H +pl.) >0

and

24 > ko + ks = A1y — DM3(H +pl.) > 0= T4 > Mo.

6) 2A € [ko + ks, ko + k3 + ks) implies A\; 4 > 0, Ty.a > Mo and T1.4 < £M2 because
(6) ; P : >
2A 2 kg + kg and

P2M2(H 1. —  PM
M<0:>T14< 2.

2A € [k ks, k k k A4 —
€ lko+ ks ko + ks +ks) = M D D

7) 2A > ko + ks + k5 implies A;4 > 0 and T 4 > 222 because 24 > ko + ks and
D

P2M3(H + pl. ___ _ PM
MZO#TIAZ D2'

2A > ko + ks + ks = A4 — D

(8) (a) Suppose 24 < ko + k3 and A1 4 < 0. Then ATC; 4(T) is strictly increasing.
Hence ATCy.4(Ms) = mir}l}M | AT Cy 4(T).
2

TE[M27 y5)

(b) Suppose 24 < ko + k3 and A\ 4 = 0. Then ATC) 4(T) is strictly increasing.

Hence AT014(M2) = min ATClA (T)
Te[Ms, F52]

(c) Suppose 2A < kg + k3 and A1 4 > 0. Then ATC 4(T) is strictly convex and
T1.4 S MQ. Hence ATCl4(M2) = miI}DM ]AT014(T)
2

TE[MQ, D

(d) Suppose 24 € [ko+ ks, ko +ks+ks). Then Ay 4 > 0, ATCy 4(T) is strictly convex
and Ty 4 € []\427 Pg/fz]. Hence ATC1 4 (T1.4) = min AT014(T)

Te[Ms, FH2]

(e) Suppose 2A > ko + k3 + ks. Then A\ 4 > 0, ATC} 4(T) is strictly convex and
T1A4 Z % Hence AT01A4 (%) = min AT014(T)
PM
TG[MQ, DZ]
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The proof of Theorem 3.4

Proof. We have

J.-Y. LIN AND C.-Y. CHENG

A DTH 1
ATCQ.l (T) = T + T +pD (1 - T) — SIdD <M1 — 2T>
A DH slgD
ATCY (T) = N +
2
arcy, (1) = 25
A DTH 1
ATCQA (T) = T + T —l—pD - SIdD (M2 — 2T)
A  DH sID
ATCéA (T) = _IZTQ+T+ 5
2
aTcy, (r) = 25

(1) Since ATCY(T) > 0 and ATCY ,(T) > 0 for all T > 0, both of ATC51(T) and

AT C5 4(T) are strictly convex. Since ATCY , (T) =

both of their stationary points are T5 ;.

(2) T2 < Mj holds because

2A < ky = 2A < DM?(H + sl;) =

(3) Ta.1 > M holds because

2A > ky = 2A > DM (H + sl) =

(4)

Suppose 24 > ky. Then Tp; > M;. Hence ATCy 1 (M) =

(5) Ta.4 < My holds because

2A < kg = 2A < DMZ(H + sI;) =

(6) Ta.4 > My holds because

2A > ko = 2A > DMZ(H + sI) =

(7)

Suppose 2A > ky. Then Ty 4 > Mo. Hence ATCy 4 (M) =

Suppose 24 < kq. Then Th 1 < M;. Hence ATCy 1 (E) =

Suppose 24 < ky. Then Ty 4 < Ms. Hence ATCo 4 (m) =

A DH

_Aa. SIdD
T2 2

= ATCé4 (T)a

24
- «cM?=T M.
D(H + sy ~ 17 2rsih
24
— e > M?=Ty, > M.
D(H +sly) = V7 &=
min ATOQl(T)
Te(0,M]
min ATCQl(T)
Te(0,M]

2A S
— < M2=Th4< M.
D(H + s 2 24 2
24
— L > M2=Ty4> M,.
D(H + sl — 2 7 =i
min ATCQ4(T>
T€(0,Mo)]
min ATCQ4(T>
T€(0,M>)]

O
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The proof of Theorem 3.5

Proof. We have

A DTH I,DM? 1—7)I.D(T — M;)?
ATCy3(T) = Z+—5—+pD(1—r)— =" L, pdon) ZT( )
A DH sI;DM? p(l—-nr)I.D p(—r)I.DM?
ATC(T) = —m+ =+ —om : 2) - 2)T2 1
_ D(H—l—p[c(l—’l’)) _ 2A—DM12(SId_pIc(1_T))
- 2 2772
_ DH+pl(1-7) oo
- \ 2 272
2.2
24—k, = 2A— DME(H + sly)
= 2A— DM%(sly —pl.(1 —71))+ DM?(sly — pI.(1 — 1)) — DM?(H + sly)
= 2A—DM%(sly —pl.(1 —71)) — DMZ(H + pI.(1 — 1))
= X2 — DMP(H+pl.(1—r))
and
9A ki — ks = Npo— DM2(H +pl.(1—1)) — (g% — 1) DM2(H + pL(1 — 1))

= Xoo— ESDME(H +pl.(1 7).

(1) Since Az2 > 0 and T' > 0 implies ATCY 5 (T) > 0, the function ATCq (T is strictly
convex on {T > 0}. The stationary point T 5 of AT'Cs5(T') can be obtained from the
following computation

D(H+plc(1 —7") _ @ _

2 272

B A2.2
= = \/D<H+pfc<1—r>>'

D(H +pl.(1—1))
2

ATC) o(T) =0

(2) If )\2'2 = 0, then ATCQQ(T) =
ATC55(T) is strictly increasing.

(3) Since A2z < 0 and T > 0 implies ATCS 5, (T) > 0 and ATCY, (T) < 0, the function
ATC5 5(T) is strictly increasing and concave on {T' > 0}.

> 0 which implies that the function

(4) 2A < ky and Mg 2 > 0 implies Tp o < M; since
2A < ki = Moo — DME(H 4 pI.(1 —7)) < 0= Toy < M.
(5) 2A > k; implies Moo > 0 and Tpo > M; since

2A > ky = Moo — DME(H + pI.(1 — 1)) > 0= Ago > DMZ(H + pl.(1 —7)) > 0.

and
2A > ki = \og — DME(H 4 pI.(1 —7)) > 0= Toy > M.
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(6) 2A € [k, k1 + ka) implies oo > 0, Too > My and To o < £20 hecause 24 > ki and

P2 —_  PM
2A € [klakl + k4) = )\2'2 — EDMI (H -‘rpIc(l — r)) <0= TQ.Q < D
(7) 2A > ky + ks implies A2 > 0 and Tpo > Z20 since 24 > ky and
PM,

(8)

P? _
2A > kl + k4 = )\2.2 — ﬁDMIQ(H +pfc(l — 7')) >0= TQ‘Q >

Suppose 24 < k1 and Mg < 0. Then ATC5o(T) is strictly increasing. Hence
ATCQ,Q(M:L) == min ATCQQ(T)
Te[My, 25]

Suppose 24 < k1 and Ago = 0. Then ATC55(T) is strictly increasing. Hence
ATCQ.Q(Ml) = l’niI]l_JM1 ATCQQ(T)

Te[Ml, z ]

Suppose 24 < ki and Ag.o > 0. Then ATCy o(T) is strictly convex and Tp.o < M.

Hence ATCs5(M;) = min  ATCy5(T).
Te [Ml s PAD/II ]

Suppose 2A € [k1,k1 + k4). Then Ago > 0, ATCy5(T) is strictly convex and

T2 2 € [Ml, PMI} Hence ATC,. Q(TQ 2) [mln ]ATCQQ(T)
TelnM, P

Suppose 24 > ki + k4. Then \yo > 0, ATCoo(T) is strictly convex and Tpo >
P2 Hence ATCh (A1) = min AT Cy5(T).

TE[Mh Dl]

O
The proof of Theorem 3.6
Proof. We have
A DTH pl.(1—7r)(1— DT? — PM? 2
ATC(T) = Tt o +p(l-rD+ o1 =) g)T( 0 SId;éMl .
—A DH pl.(1-7r)(1-p)D pl.(1—7r)(1—p)PM? sI4DM?
ATCL(T) =
Cas(T) T2 5 " 2 " ) 272 272
_ D(H+pL(-1)(1=p) 24— M} (pL(~1)(1 - p)P + sLsD)
B 2 2172
_ D(H+pLE-1)1=p)  as
A\ 2 - 27?
2.3
ATCél.s(T) = T3
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and
2 P2 2
24—k —ky = 2A—DMZ(H + sly) — o7 — 1) DM?(H + pI.(1—7))
P2
= 24— ﬁDMf(H —|—2plc(1 — 1)) — DM (sl — pI.(1 — 7))
P
= 24— DM?sI; — ﬁDMf(H +pl.(1—7)) + DMEpI.(1 — )
P2
= a3+ prfc(l —r)(1—=p)P - D2
—l—DMIQpIC(l —r)
P2
= 23— ﬁDMfH + M?pl.(1—7)(1—p)P
+DM12pIC(1 —r)
2

P P P2
= do3— ﬁDMfH — DM3ZpI.(1—7) (_(1 —p)=+ — — 1)

DM2(H + pL(1 - 1))

P2 9
— ﬁDMlpIc(l — T')

D ' D2
p? ) p? ) )
= Aog— 5y DMIH — 55 DMipl(1=7) (=(1=p)p+1 - ")
P2 p?
= o3 ﬁDMfH — ﬁDprIC(l —7)(1—p).

(1) Since A23 > 0 and T' > 0 implies AT'Cy 5 (T) > 0, the function ATCy3(T) is strictly
convex on {7 > 0}. The stationary point T5 3 of AT'Cs 3(T") can be obtained from the
following computation

D(H +pl(L—r)(1—p)) Aoz _
9 272

ATCY4(T) = 0

B 23
- T \/D<H+pfc<1 A=)

D(H + pl.(1 —7r)(1 = p))
2

(2) If )\2_3 = O, then ATCé?’(T) =
function ATCy 5(T) is strictly increasing.

(3) Since X253 < 0 and T > 0 implies ATC% 5 (T) > 0 and ATCY 5 (T) < 0, the function
ATC4y5(T) is strictly increasing and concave on {T" > 0}.

> 0 which implies that the

— PM
(4) 2A < k1 + k4 and a3 >0 imply Ty 3 < 1, since

PM,;
o

P2 P2 _
2A < ki +ky = dag— ﬁDMfH - ﬁDprIC(l 1) (1-p)<0=Ths<

__ _ PM
(5) 2A > ki + k4 implies Ao 3 > 0 and To.3 > 1, since

P2 P2
2A > ki +ky = o3 — —DMPH — o

D2 DMlszc(l_r) (1 _p) >0

P? P?
= g3 > ﬁDMfH — ﬁDprIc(l —r)(1—=p)>0



748 J.-Y. LIN AND C.-Y. CHENG

and
P2
2A2k1+k4=>/\2.3—ﬁ

P2
2
DMPH — 5
(6) Suppose 24 < ky + kg and A3 < 0. Then ATCs3(T) is strictly increasing.
Hence ATC5 3 (%) = min  ATCy5(T),

E[PZ\/Il

— _PM
DMpl,(1—r)(1—p)>0=Thg > —.

D
Suppose 2A < k1 + k4 and Ao 3 = 0. Then ATCs 3(T) is strictly increasing. Hence
ATCQ,g (PDMl ) == min ) ATCQg(T)

Te[H31,

Suppose 2A < k1 + k4 and X935 > 0. Then ATC53(T) is strictly convex and
Th3 < Pgh . Hence ATC’Q.:} (%) = min ATCQg(T)

Te[Pg417

Suppose 24 > ki + ky. Then Ag3 > 0, ATCo 3(T) is strictly convex and T3 >
%. Hence ATCQ_g (T2_3) = min ATCQg(T)
TelEM )

[D’OO

The proof of Theorem 3.7

Proof. We have

A DTH I,DM?2 I.D (T — M. 2
ATCQ.s (T) = f“'T‘FpD— S dg 2 Plc (2T 2)
A DH slgDM. pl.D pl, DM2
AT /r T - - 2 c o c 9
CQ.Q( ) T2 + 9 2T2 5 572
_ D(H+pl.) 24— DM3(sly—pl.)
B 2 272
_ D#H+pl)  Has
S, 2 oT?
2.5
ATCL (1) = 22
24 —ky = 2A— DM3Z(H + sly)
= 2A— DM3(sly —pl.) — DM3(H + pl..)
= Xos — DMZ(H + pl.).
and
P2
2A—keo—ks = A5 —DM22(H +pl.) — <D2 _ 1) DMQQ(H—i-pIC)

p? 9
= 25— ﬁDMz (H +pl.).

(1) Since Ag.5 > 0 and T > 0 implies ATCY 5 (T') > 0, the function ATCy5(T') is strictly
convex on {T > 0}. The stationary point T 5 of ATCs 5(T") can be obtained from the
following computation

D(H +pIc) >\2.5 _

2 T2

A2.5
D(H +pl.)’

ATCY (T) =0

= T=
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D(H + pl, S .
(2) If a5 = 0, then ATCY (T) = % > 0 which implies that the function

ATC5 5(T) is strictly increasing.

(3) Since o5 < 0 and T > 0 implies ATCY - (T) > 0 and ATCY ; (T) < 0, the function
ATC4 5(T) is strictly increasing and concave on {T" > 0}.

(4) 2A < ko and /\245 >0 implies E < M, since

2A < kg = \as — DMI(H +pl.) <0= T35 < M.

(5) 2A > ko implies Ao > 0 and Ty 5 > My since
2A > ko = Mos — DMI(H +pl.) > 0= \a5 > DM3I(H + pl.)

and

2A > ky = \os — DMZ(H + pl.) > 0= Ta5 > M.

(6) 2A € (ko, ko + ks) implies Ao5 > 0, Th.5 > My and Th 5 < sz because 24 > ko and

p? —— _PM
2A € (ka,kz + ks) = Aas — 53 DMF(H +pl.) < 0= To5 < —7.

(7) 2A > ko + ks implies Ao5 > 0, To.5 > My and T 5 > % since because 24 > ko and

p? — _ PM.
2A2k2+k5:>)\257ﬁDM22(H+pIC)ZO:>T25Z D2.

(8) Suppose 24 < ko and Mg 5 < 0. Then ATCy 5(T) is strictly increasing. Hence
ATCQ_5(M2) = min ATCQ5(T)
Te[M2, F52]

Suppose 24 < ko and Ao 5 = 0. Then ATCy 5(T) is strictly increasing. Hence
AT02_5(M2) = HliIl ATCQ5(T),
PMQ]

TE[MQ, D

Suppose 24 < ky and Ao.5 > 0. Then ATCy 5(T) is strictly convex and Ty 5 < Mo.
Hence AT Cy 5(Msy) = min ATCy 5(T),
M PMQ]

Te|M2,—

Suppose 24 € (kg, ko + k5). Then Ay 5 > 0, ATCo 5(T) is strictly convex, Ty 5 >

My and m < Pglz . Hence ATC25(E) = mir}’M ATng,(T),
Te[My,~52]

Suppose 24 > ky + ks. Then Ao5 > 0, AT Co5(T) is strictly convex, Tp 5 > %.
Hence, ATCQ.E)(%) = mirll)M ATCs 5(T).
2

Te[M2, A
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The proof of Theorem 3.8

Proof. We have

ATCo6(T)

ATCY o(T)

ATCy6(T)
and

2A — ko — ks

A DTH I.(1— DT? — PM2 1,DM?2
f—|—7+pD+p ( p)( 2)_5d 2
2 2T 2T

—A DH pl.(1—p)D pl.(1—p)PM3 sI;DM3
T2 T2 272
D(H +pl.(1—p)) . 2A — JW22 (ple(1 = p)P + sl4D)

2 272
D(H+plc(1-p)) Mg

2 272
A2.6
T3

P2

2A — DM3(H + sly) — (D2 - 1) DM3(H + pl.)
P2

24 — ﬁDMZ?(H +pl.) — DM3 (sl — pl.)

P2
2A — DM3sl, — ﬁDMg(H +pl.) + DM3pl,)
P2
A6 + Mple(l = p)P — =5 DM (H + pl.) + DMgpl.
P? p2?
Moo = g DM3H + M3ple(1 — p)P — 255 DM3pl. + DM;pl,
P2 2 9 P P2
A2.6 - ﬁDMQH — DMQpIC —(1 — p)B —+ ﬁ —1
pPz_ P2 )
Arg = pe DMy H — 3 DM;ple (~A=p)p+1-p?
P? P?
2.6 ﬁDMgH - ﬁDMQQpIC (1-p)
P2
A2.6 ﬁDMQQ(H +plc(1-p))

(1) Since A2 6 > 0 and T' > 0 implies AT'Cy ¢ (T) > 0, the function ATCy (T is strictly
convex on {T' > 0}. The stationary point T ¢ of ATCs6(T") can be obtained from the
following computation

(2) If /\2.6 = 0, then ATCéG(T) =

ATCy(T) =0

D(H +pL(1=p) as
2 272

_ A2.6
- \/D<H+pfc<1p>>'

D(H +pIc<1 — p))
2

> 0 which implies that the function

ATC46(T) is strictly increasing.

(3) Since A2 < 0 and T > 0 implies ATCY 4 (T) > 0 and ATCY ¢ (T) < 0, the function
ATC54(T) is strictly increasing and concave on {T' > 0}.
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2 .
, since

(4) 2A < ko + ks and Ao g >0 imply m <
2

P
2A < kg + ks = Ao — D2DM22(H +pl. (1—p)) <0

_ Ao PM,
Too = .
26 \/D(H TpLa-p) D

(5) 2A > kg + ks, implies g6 > 0 and Th 6 > 2, since
P? 9
2A > k‘g +k5 = )\2.6 — EDM2(H+])IC(1 —p)) >0

P2
= Ao > ﬁDMQQ(H +pl. (1 —p)) > 0.

and
PQ )
24> by + ks = Moo — DM (H +ple (1-p)) 20

— A2.6 PN,
= THs = > .
\/ D(H+pl(1-p) = D
(a) Suppose 24 < ko + ks and Aag < 0. Then ATCy4(T) is strictly increasing.
Hence ATCQ.G (%) = min ATCQG(T)
Te[PgIQ ’
(b) Suppose 24 < ko + ks and Ay = 0. Then ATCs6(T) is strictly increasing.
PM. .
Hence ATC’Q.G (TQ) = Te[I}}lgl{I;’oo ATC26(T),
(¢) Suppose 24 < ko + ks and Ay > 0. Then ATCs4(T) is strictly convex and
min ) ATC26(T),

TG[PgZ,

(6)

—  PM
Top < 72 Hence ATCs ¢ (%) =

(d) Suppose 24 > ky + ks. Then Mg > 0, ATCy6(T) is strictly convex and Tp 6 >
PM,

D’ L
Hence, AT02_6(T2.6) = [mln )ATCQG(T)
Te PJA;Z ,00

The proof of Theorem 3.9

Proof.

a) Since
A DTH 1
ATCQJ (T) = T + T +pD (1 — 7‘) — SIdD M1 — 2T>

A DTH 1
ATCy4 (T) = T + 5 +pD — slyD (M2 — 2T> ,
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we obtain

1 1
ATOQ_l (T) - AT02_4 (T) = —’I“pD - SIdD <M1 — 2T> + SIdD (MQ — 2T>

= —D(rp—sly(My— My)).
Hence, combining it with D > 0, we obtain

ATCQJ(T) < ATCQ4(T) & A>0
ATCQl(T) > ATCQ4(T) & A<O

b) Since
A DTH D (T —rM
ATCy (T) = S+ pD (T —rM,)
—sI;D 2M1(M1—M2)—T(%T—M2))
A DTH 1
ATCo4(T) = Z+——+pD(1—r)=slD <M2 - 2T> 7
we obtain

_rpDM, slqgD(Mq(M1—Ms))
T T
— DM (rp—slq(Ma—DMy))
T .

ATCy 1 (T) — ATCy.4 (T)

M,

Hence, combining it with > 0, we obtain

ATCll(T) = ATCQ?,(T) = A=0

ATCll(T) < ATC23(T) & A>0
ATCl,l(T) > ATCQ?,(T) & A<O

¢) Since
A DTH pD(T —rM M, (M) — M) + 2 M2
ATCy3(T) = Z4+ =5+ (Tr Dy, p 30 (O Tg) 1M3)
DT? — PM3
+pl(l — p)———r—=
A  DTH D (T —rM sIyD (My (M — Ms) + 1 M2
ATCL(T) = Z+— LP (Tr 1) slaD (M ( 1T o) + 1M3)
2T , ( )2
A DTH sI;DMZ  pI.D (T — M,
ATCo5(T) = —+——+pD—
T 2 o7 T
A DTH SIdDM22 pI.D (T—M2)2
ATCo6 (T) = T+T+pD_ 5T + o7 7
we obtain

ATCy 4 (T) — ATCy 5 (T) = _rpDMy slyD (M (My — Ms))

T T
—DM1 (Tp — SId (MQ — Ml))

T
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and
_’I“pDMl . SIdD (M1 (Ml — Mz))

ATC,3(T) — ATCy4(T) = T T
—DM1 (Tp — SId (MQ — Ml))
T .

M,

Hence, combining it with > 0, we obtain

AT014(T) < ATC25(T) & A>0
ATC, 4(T) = ATC 5(T) A=0
AT01‘4(T) > AT025(T) & A<O

3

and
ATCl.g(T) < ATCQﬁ(T) & A>0

ATC) 5(T) = ATCh4(T) A=0
ATClg(T) > ATCQG(T) & A<O

i’

The proof of Theorem 3.10

Proof. In order to compare the values ATCy 1(T5 ), ATC: 3(T5 ), ATCy 4(T5 ,), ATC21(T5 1),
ATC55(T5 ), ATCy5(T5 3), we compute the following values

A DM{H D(M; —rM
ATCM(Ml) _ 1 +p ( 1—T 1)

E 2 M,y
_SIdD(Afl(lej\/fz)fMl(%leMz))
My
A DMH 1
= o 21 +pD(L =) = sIaD(My — My — 5 My + M)
1
A  DMH slgD M,
ATCya(My) = -+ 21 +pD(1 =) = sIaD(My — 5 My)
1
A DMH 14DM
= — 4+ ! erD(lfr)—sd !
M, 2 2 ,
A DM H 1aDM 1—r)I.D(M; — M
M, 2 20 2M,
_ A DMRH sI,DM,
M 2 2
Hence we obtain the following equalities:
ATCl.l(M]_) = ATCQl(M1> = ATCQQ(Ml) (41)

Then we computing the values

A DMyH pD(Ms—rM
ATCLA(My) = A DMoH | pD(Mz —rdy)

Mo 2 Mo
_SIdD(Ml(]\/fl—Mg)—MQ(%MQ—J\/Iz))
Mo
_ A+DM2H+pD(MrrM1) sIgD (M (M, — M) + $M3)
M, 2 Mo Moy Lo
A DMyH D(My —rM IgD(My (M1 — Ma) + 5 M.
ATCy4(Mz) = — + 27 42 (Mp = rih) _ sIaD(M (M1 2+ 3 2).

M, 2 My M,
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We also obtain the equalities:

ATCh 1 (M) = ATCy 4(Ms). (4.2)
and we computing the values
A DEM2pr pD(EMz2 _ 0y sIgD(My(M; — M) + 2 M3)
PM _ D D 22
ATC3(75*) = B 9 + P, - P,
D D D
PL(1 = p)(D(EM2)? — PAI)
+ 2PM2
A DPM2H pD(EM2 _ )Y sIgD(My(My — M) + 2M3)
PM _ D 22
ATCr4(752) = Pir; T 9 + I, - PM,
D D
pL.D(FH2 — My)®
2 M2
and ) o
(1-p) (DEgE — PM3) = (1-p) (555 - PM3)
- r-p (225 )
= (55 - Pz — PM3 + DM3) (4.3)
_ p(mm )
- (o)
We obtain the equalities:
PMQ _ PM2
arci (P2 - are (7). ”
After computing the values
A L sI3DM?
PM d 1
ATCyy (PM1) = - + g +pD(1—r)772PMl
jzc(l—r)D}g;#—Ml)? K
21
PM, A pfin sIyDM}
ATCQg( ) P, + 9 —|—pD(1—’I“>_ o PMy
D D
4 PLO=n=p)(D(EL)2 - PME)
o Py
D
and (4.3) we obtain
PM;\ _ PM;

(a) 2A < ky implies that 24 < k1 + k3, 2A < ko + k3 + k5, 2A < ko + k3, 2A < k1 + k4.

Hence
2A <ki+ks =T =M |24 <ky+ ks +ks = Ti5 = D50
2A <ko4ks=T7, =My |2A<ky =Ty, =T,
24 <ky = T34 =M 2A<I€1+I€4:>T2*'3:Pg11_
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By (42)7 ATCll(MQ) = AT014(M2) Hence we obtain

ATCl_l(Ml) = min ATCll(T) < ATCll(MQ)
Te[My,Ms]
= AT014(M2)
which implies
ATCl,l(Mﬁ < AT01‘4<M2). (46)

On the other hand, by (4.1), ATCs1(M;) = ATC5.2(M7). Hence

ATCo 1 (Ton) = - %irjlw ]ATCQ.l(T) < ATCo1 (M) = AT C3 5(Mh)
€(0,M;y

which implies
ATCoq (Ton) < ATCy(My). (4.7)
By (4.5) and T5 4 = M, we obtain

PM1 PMl

ATCQ_Q(Ml) = min ATCQQ(T) < ATCQQ( ) = ATCQg( )
TE [Mla ngl ] D D
By (4.4) and Ty, = M>, we obtain
PM PM.
AT01_4(M2) = min AT014(T) < AT014(72) = AT013(72)
Te[Mz, FH2] D D

D

Hence -
ATC* = ATCs1(T51).

(b) k1 <2A <ki+ks 1mphes that 24 < ko + k3 + k5, 2A < ko + kg, 2A € [kl,kl + ]€4)7
2A < k1 + k4. Hence

P
2A <ky+ks =T =M 2A<k:2+k:3+k5:>Tf3:TQ
2A<k‘2+k3:>T1*‘4:M2 2A2k1:>T;1:M1
R PN
2A € [k‘l,]ﬁ +I€4) $T2*'2 =Too | 2A < k1 + k4 :>T2*.3 = Tl
By (4.1) and T}, = T 2, we obtain
ATCs5 (Th2) = [mif}l,Ml] ATCo5(T) < ATCy.2(My) = ATC1.1(My) = ATCo 1 (My).
Te|M1,—5

By (4.2) and T5; = M;, we obtain

ATCl_l (Ml) = TE[I]ILIAHMQ] ATCll(T) < ATCl.l (MQ) = ATCl_4 (MQ) .

By (4.4) and Ty, = M>, we obtain

PM:. PM:.
ATCy 4 (My) = min  ATCy4(T) < ATCy 4 ( 2) = ATC 5 ( 2) .
Te[]\/[z,PgI2] D D
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By (4.5) and T3, = T 5, we obtain

— PM PM
AT02‘2 (Tg.g) = min ATCQQ(T) < ATCQ_Q (1> = ATCQ.?, <1> .

Te[py, FH] D D

Hence
ATC* = ATCo 5(T5).

(¢) k1 + ks < 2A < min{ks + k3, k1 + kq} implies that 24 € [k + k3, ko + k3), 24 <
ko + k3 + ks, 2A € [kl,kl + k4) Hence

_— PM
2A € [ky+ks ko +ks) =T =Ty |2A<ko+hks+ks = Tiy=——"
2A <ko+ ks =17, =M, 24> k1 =Ty, = M;

e PM
2A € [k?l,k‘l + k‘4) = T2*2 =15, 2A < k1 + k4 = T2*'3 = Tl

By (4.1) and T}, = T} 1, we obtain

ATC,1(T) 1) = Temilr_lw ATCy1(T) < ATCy 1 (My) = ATCo 1 (My).

By (4.2) and T}, = T} 1, we obtain

ATCll(ﬁ) = Te[r]{l/[inM ]ATCll(T) < ATCll(MQ) = AT014(M2)

By (4.4) and T}, = M>, we obtain

- PM,\ PM,
ATCq 4 (MQ) = Te[AIZ{I}”‘#] AT014(T) < ATCq 4 ( D ) =ATC, 3 ( D ) .

By (4.5) and Ty 5 = Ts.2, we obtain

— PM PM
ATOQ_Q (TQ.Q) = min ATCQQ(T) < ATCQ_Q ( D 1) = ATCQ.B < 1> .

e[, P D

Hence . _
ATC* = Hlil’l{ATCl.l(Tl'l),ATCQ,Q(TQ.Q)}.

(d) ki1 + kg <2A < ko + k3 implies that 24 € [kl + k3, ko -i-l{?3>7 2A < ko + k3 + k5. Hence

PM;
D

2A €[k + ks ko +ks) =>T7  =Tiq |2A<ka+ks+ks =105 =
2A <ko+ ks =17, =M, 24> k1 = Ty, = M

PM J—
2A2 ki + k= Tfy =~ 2A> ki +ky = Tsy=Tos
By (4.1) and T}, = T} 1, we obtain

ATCy 1(Th 1) = Te[rl{l/lilan] ATC11(T) < ATCy 1 (M) = ATCo 1 (My).

By (4.2) and T}, = T} .1, we obtain

ATCll(ﬁ) = Te[Ijl\l/[inM ]ATCll(T) < ATCll(MQ) = AT014(M2)
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By (4.4) and T}, = M>, we obtain

B _ PMy\ PM,
ATCq 4 (MQ) = Te[ﬂl}l:ﬁljgz] AT014(T) < ATC: 4 (D) =ATC, 3 (D) .

By (4.5) and Ty 5 = Ty 3, we obtain

— PM PM
ATCQ,?; (TQ.B) = [Iglwi[n )ATCQg(T) < ATCQ_g (D 1) = ATCQ.Q <D 1> .
Te Dl ,00

Hence

(e) ko + k3 < 2A < ki + k4 implies that 24 € Ufg + k3, ko + k3 + k‘5), 2A < ko + k3 + ks,
2A € [k1,k1 + k4). Hence

PM.
2A> ko + kg = T = M, 2A<k2+k3+k5:>Tf3:Tz
2A € [k2+k3,]<}2—|—/€3+k‘5) :>T1*.4 Zm 2A >k :>T2*_1 = M,

R PM
QA€ [k k1 +ka) = Ty =Too 2A < ky+ky =T, = Tl
By (4.1) and T}, = M>, we obtain
ATCl_l(MQ) = min ATCll(T) < ATCll(Ml) = ATCQl(Ml)
TE[Ml,]VIQ]
By (4.2) and T}, = T} 4, we obtain
AT014(H) = min ATC’14(T) < AT014(M2) = ATCll(MQ)
TG[MQ,PgIQ]
By (4.4) and T}, = T 4, we obtain
N PM. PM
ATCL4(T1_4) = min ATCl4(T) < ATClA < 2) = ATCl_g < 2> .
Te[My 222] D D
By (4.5) and Ty, = Ts 2, we obtain
— PM PM
AT02‘2 (Tg.g) = min ATCQQ(T) < ATCQ_Q ( 1> = ATCQ.?, < 1) .
Te[py, FH1] D D

Hence

(f) k1 + ks <2A < kq + ks implies that 24 < ko + k3, 24 < ko + ks + k5. Hence

PM,

2A<ki+ky =Tl =M |24<hks+ks+h =Tl =—F

2A<ko+ks=T7, =My [2A>k =T5, =DM

PN —
2A> ki +ky=Ti, = Dl QA> ki +ky=Ti s =Ths
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By (4.1) and T3, = £ we obtain
PM1>

D = min ATOQQ(T) < ATCQQ(Ml)

Te[My, EH]

= ATCy1(My) = ATCy1 (M),

ATCy 9 (

By (4.2) and T}, = M7, we obtain

ATCl‘l(Ml) = TE[IJ{I/[ilr}MQ] ATCll(T) < ATCll(MQ) = AT014(M2)

By (4.4) and Ty, = M>, we obtain

PM: PM:
AT01.4 (MQ) = min AT014(T) < AT01_4 ( 2) = ATCL?, ( 2> .
TG[MQ,Pg2] D D

By (4.5) and Ty 5 = Ty 3, we obtain

— ) PM PM
ATCQ.S (T23) = Te[% Do) ATCQg(T) < ATCQ'g ( D 1) = ATCQ.Q ( D 1) .

Hence -
ATC* = ATCQ_g (Tg_g) .

(g) max{kg + k3, k1 + k4} < 2A < ko + ks + ks implies that 2A € []CQ + k3, ko + k3 + k5)

Hence
PM.
24> ky + ky = Ty = Mo 24 <hy + kst ks = Tiy = —°
24 € kot ks kot hs+ks) =T =Ty |2A>k =Ty, =M
PM .
2A2k1+k4:>T2*‘2:Tl 2A> k1 + ks =T34 ="T53

By (4.1) and T} ; = Ms, we obtain

ATOl_l(Mg) = TG[I]&ilan] ATCll(T) < ATCll(Ml) = ATOQl(Ml)

By (4.2) and T}, = T} 4, we obtain
AT014(H) = min AT014<T) < AT014(M2) = ATCll(MQ)

Te[M;, T5>

By (4.4) and T}, = T} 4, we obtain

— PM: PM.
ATCL4(T1_4) = min ATCl4(T) < ATClA ( 2) = AT01_3 ( 2) .
re[Ma P32] D D

By (4.5) and Ty 5 = Ty 3, we obtain

S ) PM PM
ATCQg, (Tg.g) = TG[AI?H}:’Ml]ATCQ'S(T) < ATCQ.g (D1> == ATOQ.Q (l)1> .

Hence . _
ATC* = min{ATC’l.4(T1'4),ATCg,g(Tg.g,)}.
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(h) ko + k3 + ks < 2A implies that 24 > ko + k3, 2A > ko + k3 + ks, 2A > k1 + k4. Hence

2AZk2+k3=>T1*1:M2 2A2]€2—|—]€3—|—k5:>T1*.3:T1_3
P
2A2k2+k3+k5:>Tf4:TQ 24>k = Ty, = M,
P p—
2Azk1+k4;»T;_2:Tl QA> ki +ky=Tiy=Ths

By (4.1) and T} ; = M>, we obtain

ATOl,l(MQ) = Temin ATCll(T) < ATCll(Ml) = ATOQl(Ml)

By (4.2) and T}, = £&2 we obtain

PMs,
D

= min AT014(T) < ATCl4(M2) = ATCll(MQ)
TE[MQ,P;;IQ]

ATCLs

By (4.4) and T} 5 = T1 3, we obtain

ATC13(T) < ATCl.g <ng> = ATClA (sz) .

ATCl,g (m) = min
Te[52,00)

By (4.5) and Ty 5 = Ty 3, we obtain

—_ PM PM
ATCQ,g (Tg.g) = min ATCQg(T) < ATCQ_3 ( 1) = ATCQ.Q <1> .

Te[My, 23] D D

Hence . _
ATC* = mil’l{ATCl.g(Tl'g),ATCng(TQ.?,)}.

The proof of Theorem 3.11

Proof. As in [3], we define the values Aq, Ay, Az, Ay as follows

MQ
Ay = —2A+ fl[pfc(l —r)(P? — D*) + sI;D* + hP(P — D)]
Ay = —2A+ DM?Z(H + S1,)
2
Az =—2A+ %[plc(zﬂ — D?*) + sI;D* + hP(P — D))
Ay =—2A+ DMZ(H + S1,).

Then

Al:*2A+k1+k4,A2:*2A+k1,A3:*2A+k2+k5,A4:*2A+k’2.

(a) 2A <k; implies that Ay > 0. Hence, by Theorem 1(A) of [3], we obtain

ATC* = ATCy4(To.4).
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(b) k1 < 2A < min{ks, k1 +k4} implies that Ay > 0, As < 0, Ay > 0. Hence, by Theorem
1(B) of [3], we obtain

(¢) k14 ks < 2A < ko implies that Ay < 0, Ay > 0. Hence, by Theorem 1(D) of [3], we
obtain

(d) ko < 2A < ki + k4 implies that Ay > 0, Ay < 0, Ay < 0. Hence, by Theorem 1(C) of
[3], we obtain

(e) HlaX{]{iz,k'l + k’4} < 2A < ko + k5 implies that A < 0, A3 >0 A4 <O. Hence, by
Theorem 1(E) of [3], we obtain

(f) k2 + ks < 2A implies that A3z < 0. Hence, by Theorem 1(F) of [3], we obtain
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