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payments and the replenishment cycle time is less thanM2, they must settle the full payment
in M2 in order to obtain as much benefit as possible. On the other hand, if retailers
choose the cash discount and the replenishment cycle time is greater than M1, then they
settle the revenue of sold items in M1 and pay the cost of interest charges for unsold items
beyond M1. Hence the payment is separated into two parts. If retailers choose M2 for their
payments and the replenishment cycle time is greater than M2, they settle the revenue of
sold items in M2 and pay the cost of interest charges for unsold items beyond M2. Again,
the payment is separated into two parts. Based on these two periods, from the retailer’s
points of view, there are two policies. If the retailer chooses the permissible delay period for
their payments, then the economic production quantity (EPQ) models under the condition of
permissible delay in payment can be produced. Alternatively, if the retailers choose the cash
discount period, then the EPQ models under condition of cash discount can be produced
instead. Investigating these two models can help retailers to improve profit in comparison
to traditional EPQ models. More details are given by Huang et al. [3].

In addition to the two policies discussed in [3], another policy is given in this paper.
The retailers can obtain more profits, if they have the option of separating can separate the
payment into two or three parts. If the replenishment cycle time is less than the permissible
delay period M2, then the first portion is settled in the cash discount period and the re-
maining portion is settled in the permissible delay period. This is in contrast to the policies
of [3] that settle the whole payment in either M1 or M2. Our proposed policy separates the
payment into two parts. In the case of the replenishment cycle time being greater than the
permissible delay period M2, then the first portion is settled in the cash discount period
M1, the second portion is settled in the permissible delay period M2 and the retailer pays
the cost of interest charges for unsold items beyond M2. Both policies of [3] separate the
payments into two portions, while our policy separates the payments into three parts. In
order to distinguish the two policies and our given policy, we term our policy a two stage
payment which was first discussed by [11] and refer to the the policies of [3] as single-stage
payment.

Intuitively, if the unpaid payment after the cash discount period can generate more
revenue from interest earned than from the cash discount rate, retailers should choose to
separate the payments into more parts. This idea motivates the discussion of EPQ models
under our policy. The first objective of this paper is to design an EPQ model with our
proposed policy. The second objective is to discuss under what kind of situation the retailer
should choose our policy. From the perspective of analytic decision making, a third objective
is to find the minimum of the three models, that is, EPQ models under the condition of
permissible delay in payment, EPQ models under the condition of cash discount, and EPQ
models under our proposed policy.

Goyal [4] first developed the economic order quantity (EOQ) models under conditions
of permissible delay in payments. Later, Aggarwal & Jaggi [1] and Chu et al. [2] discussed
ordering policies of deteriorating items under permissible delay in payments. Jamal et
al. [10] further generalized the models of deteriorating items under permissible delay in
payments to allow for shortages. Huang [5] assumed that suppliers would offer the retailer
a partially permissible delay in payments in the case of the order quantity being smaller
than a predetermined quantity. Huang & Hsu [7] investigated the retailers’ inventory policy
under two levels of trade credit to reflect the supply chain management situation. More
discussion related to EOQ models under conditions of permissible delay in payments can be
found in Teng [13] and Ouyang et al.[12].

In addition to EOQ models, Huang & Chung[6] and Huang & Lai [8] discussed EPQ
models under conditions of permissible delay in payments. They successfully extended
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Goyal’s model [4] to address the case where all items are replenished at a finite rate. Huang
& Lin [9] and Huang et al. [3] discussed EPQ models under conditions of permissible delay
in payments and cash discount.

The EPQ models under the two stage payment policy are given in Section 2. Some
analysis of single-stage payment and two stage payment are given in Section 3. Further-
more, based on this analysis, we present an analytic method to find the minimum of these
models. In Section 4, some numerical results are provided that show that the two stage pay-
ment is better than a single-stage payment in some cases. We also provide some economic
interpretations in Section 4.

2 Optimal Replenishment Cycle of EPQ models under Conditions
of Permissible Delay in Payments and Cash Discount

In this paper, we adopt the following notations and assumptions:
Notations:

D: demand rate(unit/years)

P : replenishment rate(unit/years)

s: selling price (dollars/unit)

p: purchasing price (dollars/unit)

A: setup cost (dollars/order)

h: stock holding cost per year excluding interest charges(dollars/unit)

Ic: interest charged on stock (dollars/year)

Id: interest earned (dollars/year)

ρ: ρ =
D

P

H: H = h(1− ρ) = h

(
1− D

P

)
r: cash discount rate

M1: cash discount period(years)

M2: permissible delay period(years)

T : cycle time(years)

Assumptions:

1. Both the demand rate and the replenishment rate are known and constant.

2. The demand rate D is smaller than the replenishment rate P , i.e. D < P and ρ < 1.

3. Shortages are not allowed.

4. The unit selling price is strictly greater than the unit purchasing price, that is, s > p.
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5. The supplier offers two periods for trade credit: the cash discount period M1 and
permissible delay period M2. We assume the permissible delay period M2 is strictly
larger than the period M1 for cash discount, that is, M1 < M2.

6. The interest rates Ic and Id are constant and satisfy 0 < Id < Ic.

7. During the period in which the account is not settled, generated sales revenue is
deposited in an interest-bearing account.

8. The rate r of cash discount is r ∈ (0, 1).

9. No additional cash is added.

10. The time horizon is infinite.

11. The single-stage payment policy is defined as follows:

(a) Suppose that the cycle time T satisfied T ≤ M1. Then the retailer has earned
enough money to settle payments before the period M1. If the retailer has chosen
the cash discount policy, then it makes economic sense for them to delay the
settlement of the replenishment account up to the last moment of the period M1.

(b) Suppose the cycle time T satisfied T > M1. Then the retailer has not earned
enough money to settle payments before the period M1. If the retailer has chosen
cash discount policy, then it makes economic sense for them to delay the settle-
ment of the replenishment account up to the last moment of the period M1. The
cost of interest charged for the remaining amount needs to be considered.

(c) Suppose the cycle time T satisfied T ≤ M2. Then the retailer has earned enough
money to settle payments before the period M2. If the retailer has chosen the
permissible delay in payments policy, then it makes economic sense for them to
delay the settlement of the replenishment account up to the last moment of the
period M2.

(d) Suppose the cycle time T satisfied T > M2. Then the retailer has not earned
enough money to settle payments before the period M2. If the retailer has chosen
the permissible delay in payments policy, then it makes economic sense for them
to delay the settlement of the replenishment account up to the last moment of
the period M2. The cost of interest charged for the remaining amount needs to
be considered.

12. The two-stage payment policy is described as follows:
The retailer settles part of the account at the end of the period M1 and receives cash
discount. The unpaid amount is paid at the end of the period M2. If the cycle time
T satisfied T > M2, then the retailer has not earned enough money for the entire
amount owed before the end of the period M2 and the cost of interest charged for the
remaining amount needs to be considered.

These two types of policies adopt different assumptions. In Section 2.1, we discuss the two-
stage payment policy and adopt assumptions (1)-(10) and (12). In Section 2.2, we discuss
the single-stage payment policy and adopt the assumptions (1)-(10) and (11).
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2.1 Two-stage Payment Policy

In two stage payment policy, the following six cases (2.1a)-(2.1e) are considered.

M1 ≤ DT

P
≤ T ≤ M2, (2.1a)

DT

P
≤ M1 ≤ T ≤ M2, (2.1b)

M1 ≤ M2 ≤ DT

P
≤ T, (2.1c)

M1 ≤ DT

P
≤ M2 ≤ T, (2.1d)

DT

P
≤ M1 ≤ M2 ≤ T, (2.1e)

DT

P
≤ T ≤ M1 ≤ M2. (2.1f)

If the condition (2.1a) holds, then the retailer settles the payment pDM1 at time M1

and settle the remained payment pD(T −M1) at time M2. Hence, if (2.1a) holds, then we
define Case 1.1

Case 1.1 :
PM1

D
≤ T ≤ M2

and the average total cost function is defined by ATC1.1(T ) which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned.

If the condition (2.1b) holds, then the retailer settles the payment pDM1 at time M1

and settle the remained payment pD(T −M1) at time M2. Hence, if (2.1b) holds, then we
define Case 1.2

Case 1.2 : T ≤ min

{
PM1

D
,M2

}
and the average total cost function is defined by ATC1.2(T ) which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned.

If the condition (2.1c) holds, then the retailer settles the payment pDM1 at time M1,
settle the payment pD(M2 − M1) at time M2. The retailer must pay the cost of interest
charges for unsold items behind M2. Hence, if (2.1c) holds, then we define Case 1.3

Case 1.3 : M2 ≤ PM2

D
≤ T

and the average total cost function is defined by ATC1.3(T ) which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned, average interest
charges.

If the condition (2.1d) holds, then the retailer settles the payment pDM1 at time M1,
settle the payment pD(M2 − M1) at time M2. The retailer must pay the cost of interest
charges for unsold items behind M2. Hence, if (2.1d) holds, then we define Case 1.4

Case 1.4 : max

{
PM1

D
,M2

}
≤ T ≤ PM2

D

and the average total cost function is defined by ATC1.4(T ) which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned, average interest
charges.
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If the condition (2.1e) holds, then the retailer settles the payment pDM1 at time M1,
settle the payment pD(M2 − M1) at time M2. The retailer must pay the cost of interest
charges for unsold items behind M2. Hence, if (2.1e) holds, then we define Case 1.5

Case 1.5 : M2 ≤ T ≤ PM1

D

and the average total cost function is defined by ATC1.5(T ) which consists of average setup
cost, average holding cost, average purchasing cost, average interest earned, average interest
charges.

If the condition (2.1f) holds, then the retailer settles the whole payment at time M1 in
order to obtain the maximum benefit. Hence the value of the average total cost of (2.1f) is
the same as the value of ATC1.1(M1). Hence the condition (2.1f) is included by the condition
(2.1a). In the rest of this subsection, we describe the explicit formulas of average total costs
of the five cases: Case 1.1-Case 1.5.

(1) The sum of average setup cost and average holding cost is
A

T
+

DTH

2
.

(2) All the purchasing costs of Case 1.1-Case 1.5 are the same and the cost is
pD (T − rM1)

T
because all the cases settle the same payment at time M1.

(3) Average Interest charges: Only Case 1.3-Case 1.5 need to consider interest charges.

Case 1.3
pIc(1− ρ)

(
DT 2 − PM2

2

)
2T

Case 1.4
pIc(1− ρ)

(
DT 2 − PM2

2

)
2T

Case 1.5
pIcD (T −M2)

2

2T

(3) Average Interest earned:

Case 1.1
sIdD

(
M1 (M1 −M2)− T

(
1
2T −M2

))
T

Case 1.2
sIdD

(
M1 (M1 −M2)− T

(
1
2T −M2

))
T

Case 1.3
sIdD

(
M1 (M1 −M2) +

1
2M

2
2

)
T

Case 1.4
sIdD

(
M1 (M1 −M2) +

1
2M

2
2

)
T

Case 1.5
sIdD

(
M1 (M1 −M2) +

1
2M

2
2

)
T

The average total costs of Case 1.1-Case1.5 are defined as follows:

ATC1.1 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2)− T

(
1
2T −M2

))
T

, (2.2)

ATC1.2 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2)− T

(
1
2T −M2

))
T

,
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ATC1.3 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T

+
pIc(1− ρ)

(
DT 2 − PM2

2

)
2T

,

(2.3)

ATC1.4 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T

+
pIcD (T −M2)

2

2T
,

(2.4)

and

ATC1.5 (T ) =
A

T
+
DTH

2
+
pD (T − rM1)

T
−
sIdD

(
M1 (M1 −M2) +

1
2M

2
2

)
T

+
pIcD (T −M2)

2

2T
.

Therefore, the average total cost function ATCD(T ) of EPQ models under conditions of
cash discount and permissible delay in payment in a cycle time T is formulated as

ATCD(T ) =


ATC1.1(T ) if M1 ≤ T ≤ M2

ATC1.3(T ) if M2 ≤ PM2

D
≤ T

ATC1.4(T ) if M2 ≤ T ≤ PM2

D

Note, since the average total cost function ATC1.2(T ) is the same as ATC1.1(T ) and the
average total cost function ATC1.5(T ) is the same as ATC1.4(T ), Case 1.2 is combined with
Case 1.1 and Case 1.5 is combined with Case 1.4.

2.2 Single-stage Payment Policy

According to [3], we consider the following cases:

Case 2.1 : 0 ≤ T ≤ M1;
Case 2.2 : M1 ≤ T ≤ PM1/D;
Case 2.3 : PM1/D ≤ T ;
Case 2.4 : 0 ≤ T ≤ M2;
Case 2.5 : M2 ≤ T ≤ PM2/D;
Case 2.6 : PM2/D ≤ T.

and re-define the cost functions in the follows. In Case 2.1-2.6, the average total cost
functions are defined by

ATC2.1(T ) =
A

T
+

DTH

2
+ pD (1− r)− sIdD

(
M1 −

1

2
T

)
ATC2.2(T ) =

A

T
+

DTH

2
+ pD (1− r)− sIdDM2

1

2T
+

p (1− r) IcD (T −M1)
2

2T

ATC2.3(T ) =
A

T
+

DTH

2
+ p(1− r)D +

pIc(1− r)(1− ρ)
(
DT 2 − PM2

1

)
2T

− sIdDM2
1

2T

ATC2.4(T ) =
A

T
+

DTH

2
+ pD − sIdD

(
M2 −

1

2
T

)
ATC2.5(T ) =

A

T
+

DTH

2
+ pD − sIdDM2

2

2T
+

pIcD (T −M2)
2

2T

ATC2.6(T ) =
A

T
+

DTH

2
+ pD +

pIc(1− ρ)
(
DT 2 − PM2

2

)
2T

− sIdDM2
2

2T
.

The detail of model formulation of the function ATC2.1(T ) is referred to the function
TV C1.3(T ) of [3]. Similarly,
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the function ATC2.2(T ) is referred to the function TV C1.2(T ) of [9];
the function ATC2.3(T ) is referred to the function TV C1.1(T ) of [9];
the function ATC2.4(T ) is referred to the function TV C2.3(T ) of [9];
the function ATC2.5(T ) is referred to the function TV C2.2(T ) of [9];
the function ATC2.6(T ) is referred to the function TV C2.1(T ) of [9].

Hence we define the following functions. The average total cost ATCCD(T ) of EPQ models
under conditions of cash discount is formulated as

ATCCD(T ) =

 ATC2.1(T ) if 0 ≤ T ≤ M1

ATC2.2(T ) if M1 ≤ T ≤ PM1/D
ATC2.3(T ) if PM1/D ≤ T

.

The average total cost ATCPD(T ) of EPQ models under conditions of permissible delay in
payments is formulated as

ATCPD(T ) =

 ATC2.4(T ) if 0 ≤ T ≤ M2

ATC2.5(T ) if M2 ≤ T ≤ PM2/D
ATC2.6(T ) if PM2/D ≤ T

.

The objective of this paper is to solve the problem

min

{
min
T≥0

ATCD(T ),min
T≥0

ATCCD(T ),min
T≥0

ATCPD(T )

}
. (2.5)

3 Theoretical Analysis

For short notation, we define some parameters

∆ = rp− sId (M2 −M1)
k1 = DM2

1 (H + sId),
k2 = DM2

2 (H + sId),
k3 = 2DM1∆,

k4 =

(
P 2

D2
− 1

)
DM2

1 (H + pIc(1− r)),

k5 =

(
P 2

D2
− 1

)
DM2

2 (H + pIc).

(3.1)

Then we can observe that

k1 = DM2
1 (H + sId) < DM2

2 (H + sId) = k2 (3.2)

and

k4 =

(
P 2

D2
− 1

)
DM2

1 (H + pIc(1− r)) <

(
P 2

D2
− 1

)
DM2

2 (H + pIc) = k5. (3.3)

Moreover, if ∆ = rp− sId (M2 −M1) > 0, then k3 = 2DM1∆ > 0. Hence

k1 < k1 + k3 < k2 + k3 < k2 + k3 + k5 if ∆ > 0. (3.4)

Because of the inequalities (3.2), (3.3) and (3.4), we can simply determine the optimal
solutions of average total cost functions ATCi,j(T ), and then determine the optimal value
of (2.5).
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First, we analyze the average total cost functions ATC1.1(T ), ATC1.3(T ) and ATC1.4(T )
in Theorem 3.1, Theorem 3.2 and Theorem 3.3 respectively. We obtain that the function
ATC1.1(T ) is not always convex, although the average total cost function of traditional EPQ
models is convex. We describe that if A −DM1∆ > 0, then ATC1.1(T ) is convex. On the
other hand, if A −DM1∆ ≤ 0, then ATC1.1(T ) is increasing. Moreover, we use these two
observations to obtain the optimum of min

T∈[M1,M2]
ATC1.1(T ).

Theorem 3.1. Let

λ1.1 = A−DM1∆. (3.5)

If λ1.1 > 0, then we define

T1.1 =

√
2λ1.1

D(H + sId)
. (3.6)

Then we obtain the statements as follows:

(1) If λ1.1 > 0, then ATC1.1(T ) is strictly convex. The stationary point of ATC1.1(T ) is
T1.1.

(2) If λ1.1 = 0, then ATC1.1(T ) is strictly increasing.

(3) If λ1.1 < 0, then ATC1.1(T ) is strictly increasing and concave.

(4) If 2A < k3, then λ1.1 < 0.

(5) If 2A > k3, then λ1.1 > 0.

(6) If 2A ∈ (k3, k1 + k3), then λ1.1 > 0 and T1.1 < M1.

(7) If 2A ≥ k1 + k3, then λ1.1 > 0 and T1.1 ≥ M1.

(8) If 2A ∈ (k3, k2 + k3), then λ1.1 > 0 and T1.1 < M2.

(9) If 2A ≥ k2 + k3, then λ1.1 > 0 and T1.1 ≥ M2.

(10) An optimal solution of min
T∈[M1,M2]

ATC1.1(T ) is T ∗
1.1 which is defined as

T ∗
1.1 =


M1 if 2A < k1 + k3
T1.1 if 2A ∈ [k1 + k3, k2 + k3)
M2 if 2A ≥ k2 + k3

.

In Theorem 3.2, we discuss some properties of the function ATC1.3(T ). Similar to
Theorem 3.1, the convex and increasing properties of the function ATC1.3(T ) are discussed.
Also we find out the optimum of min

T∈[
PM2
D ,∞]

ATC1.3(T ) in Theorem 3.2.

Theorem 3.2. Let

λ1.3 = 2λ1.1 −M2
2 (pIc(1− ρ)P + sIdD) . (3.7)

If λ1.3 > 0, then we define

T1.3 =

√
2λ1.3

D(1− ρ)(h+ pIc)
(3.8)

Then we obtain the statements as follows:
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(1) If λ1.3 > 0, then ATC1.3(T ) is strictly convex. The stationary point of ATC1.3(T ) is
T1.3.

(2) If λ1.3 = 0, then ATC1.3(T ) is strictly increasing.

(3) If λ1.3 < 0, then ATC1.3(T ) is strictly increasing and concave.

(4) If 2A < k2 + k3 + k5 and λ1.3 > 0, then T1.3 <
PM2

D
.

(5) If 2A ≥ k2 + k3 + k5, then λ1.3 > 0 and T1.3 ≥ PM2

D
.

(6) An optimal solution of min
T∈[PM2

D ,∞]
ATC1.3(T ) is T ∗

1.3 which is defined as

T ∗
1.3 =

{ PM2

D
if 2A < k2 + k3 + k5

T1.3 if 2A ≥ k2 + k3 + k5
.

In Theorem 3.3, we discuss the function ATC1.4(T ). Again, the optimum of
min

T∈[M1,M2]
ATC1.4(T ) is stated in (8) of Theorem 3.3.

Theorem 3.3. Let
λ1.4 = 2λ1.1 −DM2

2 (sId − pIc) . (3.9)

If λ1.4 > 0, then we define

T1.4 =

√
2λ1.1 −DM2

2 (sId − pIc)

D(H + pIc)
(3.10)

Then we obtain the statements as follows:

(1) If λ1.4 > 0, then ATC1.4(T ) is strictly convex. The stationary point of ATC1.4(T ) is
T1.4.

(2) If λ1.4 = 0, then ATC1.4(T ) is strictly increasing.

(3) If λ1.4 < 0, then ATC1.4(T ) is strictly increasing and concave.

(4) If 2A < k2 + k3 and λ1.4 > 0, then T1.4 < M2.

(5) If 2A ≥ k2 + k3, then λ1.4 > 0 and T1.4 ≥ M2.

(6) If 2A ∈ [k2 + k3, k2 + k3 + k5), then λ1.4 > 0, T1.4 ≥ M2 and T1.4 <
PM2

D
.

(7) If 2A ≥ k2 + k3 + k5, then λ1.4 > 0 and T1.4 ≥ PM2

D
.

(8) An optimal solution of min
T∈[M2,

PM2
D ]

ATC1.4(T ) is T ∗
1.4 which is defined as

T ∗
1.4 =


M2 if 2A < k2 + k3
T1.4 if 2A ∈ [k2 + k3, k2 + k3 + k5)
PM2

D
if 2A ≥ k2 + k3 + k5

.
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Besides to discuss the functions ATC1.1(T ), ATC1.3(T ), ATC1.4(T ), we also need some
properties of ATC2.1(T ), ATC2.2(T ), . . . , ATC2.6(T ) in order to solve the problem (2.5).
Hence we re-stated and re-proved the properties of ATC2.1(T ), ATC2.2(T ), . . . , ATC2.6(T )
in the following Theorem 3.4, Theorem 3.5, Theorem 3.6, Theorem 3.7 and Theorem 3.8.
Similar results can be found in [3].

Theorem 3.4. Let

T2.1 =

√
2A

D(H + sId)
. (3.11)

Then we obtain the statements as follows:

(1) The function ATC2.1(T ) and ATC2.4(T ) are strictly convex. Both of their stationary
point are T2.1.

(2) If 2A < k1, then T2.1 < M1.

(3) If 2A ≥ k1, then T2.1 ≥ M1.

(4) An optimal solution of min
T∈(0,M1]

ATC2.1(T ) is T ∗
2.1 which is defined as

T ∗
2.1 =

{
T2.1 if 2A < k1
M1 if 2A ≥ k1

.

(5) If 2A < k2, then T2.4 < M2.

(6) If 2A ≥ k2, then T2.4 ≥ M2.

(7) An optimal solution of min
T∈(0,M2]

ATC2.4(T ) is T ∗
2.4 which is defined as

T ∗
2.4 =

{
T2.4 if 2A < k2
M2 if 2A ≥ k2

.

Theorem 3.5. Let
λ2.2 = 2A−DM2

1 (sId − pIc(1− r)) . (3.12)

If λ2.2 > 0, then we define

T2.2 =

√
λ2.2

D(H + pIc(1− r))
. (3.13)

Then we obtain the statements as follows:

(1) If λ2.2 > 0, then ATC2.2(T ) is strictly convex. The stationary point of ATC2.2(T ) is
T2.2.

(2) If λ2.2 = 0, then ATC2.2(T ) is strictly increasing.

(3) If λ2.2 < 0, then ATC2.2(T ) is strictly increasing and concave.

(4) If 2A < k1 and λ2.2 > 0, then T2.2 < M1.

(5) If 2A ≥ k1, then λ2.2 > 0 and T2.2 ≥ M1.

(6) If 2A ∈ [k1, k1 + k4), then λ2.2 > 0, T2.2 > M1 and T2.2 <
PM1

D
.
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(7) If 2A ≥ k1 + k4, then λ2.2 > 0 and T2.2 ≥ PM1

D
.

(8) An optimal solution of min
T∈[M1,

PM1
D ]

ATC2.2(T ) is

T ∗
2.2 =


M1 if 2A < k1
T2.2 if 2A ∈ [k1, k1 + k4)
PM1

D if 2A ≥ k1 + k4

.

Theorem 3.6. Let

λ2.3 = 2A−M2
1 (pIc(1− r)(1− ρ)P + sIdD) . (3.14)

If λ2.3 > 0, then we define

T2.3 =

√
λ2.3

D(H + pIc(1− r)(1− ρ))
. (3.15)

Then we obtain the statements as follows:

1. If λ2.3 > 0, then ATC2.3(T ) is strictly convex. The stationary point of ATC2.3(T ) is
T2.3.

2. If λ2.3 = 0, then ATC2.3(T ) is strictly convex.

3. If λ2.3 < 0, then ATC2.3(T ) is strictly increasing and concave.

4. If 2A < k1 + k4 and λ2.3 > 0, then T2.3 <
PM1

D
.

5. If 2A ≥ k1 + k4, then λ2.3 > 0 and T2.3 ≥ PM1

D
.

6. An optimal solution of min
T∈[PM1

D ,+∞)
ATC2.3(T ) is

T ∗
2.3 =

{ PM1

D
if 2A < k1 + k4

T2.3 if 2A ≥ k1 + k4
.

Theorem 3.7. Let
λ2.5 = 2A−DM2

2 (sId − pIc) . (3.16)

If λ2.5 > 0, then we define

T2.5 =

√
λ2.5

D(H + pIc)
. (3.17)

Then we obtain the statement as follows:

1. If λ2.5 > 0, then ATC2.5(T ) is strictly convex. The stationary point of of ATC2.3(T )
is T2.5.

2. If λ2.5 = 0, then ATC2.5(T ) is strictly increasing.

3. If λ2.5 < 0, then ATC2.5(T ) is strictly increasing and concave.
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4. If 2A ≤ k2 and λ2.5 > 0, then T2.5 ≤ M2.

5. If 2A > k2, then λ2.5 > 0 and T2.5 > M2.

6. If 2A ∈ (k2, k2 + k5), then λ2.5 > 0 and T2.5 <
PM2

D
.

7. If 2A ≥ k2 + k5, then λ2.5 > 0 and T2.5 ≥ PM2

D
.

8. An optimal solution of min
T∈[M2,

PM2
D ]

ATC2.5(T ) is

T ∗
2.5 =


M2 if 2A ≤ k2
T2.5 if 2A ∈ (k2, k2 + k5)
PM2

D
if 2A ≥ k2 + k5

.

Theorem 3.8. Let
λ2.6 = 2A−M2

2 (pIc(1− ρ)P + sIdD) . (3.18)

If λ2.6 > 0, then we define

T2.6 =

√
λ2.6

D(H + pIc(1− ρ))
. (3.19)

Then we obtain the statements as follows:

1. If λ2.6 > 0, then ATC2.6(T ) is strictly convex. The stationary point of ATC2.6(T ) is
T2.6.

2. If λ2.6 = 0, then ATC2.6(T ) is strictly increasing.

3. If λ2.6 < 0, then ATC2.6(T ) is strictly increasing and concave.

4. If 2A < k2 + k5 and λ2.6 > 0 then T2.6 < PM2

D .

5. If 2A ≥ k2 + k5, then λ2.6 > 0 and T2.6 ≥ PM2

D
.

6. An optimal solution of min
T∈[PM2

D ,+∞)
ATC2.6(T ) is

T ∗
2.6 =

{
PM2

D if 2A < k2 + k5
T2.6 if 2A ≥ k2 + k5

.

From Theorem 3.1 - Theorem 3.8, we state the optimal conditions of

min
T∈[M1,M2]

ATC1.1(T ), min
T∈[PM2

D ,∞]
ATC1.3(T ), min

T∈[M2,
PM2
D ]

ATC1.4(T )

min
T∈(0,M1]

ATC2.1(T ), min
T∈[M1,

PM1
D ]

ATC2.2(T ), min
T∈[PM1

D ,+∞)
ATC2.3(T )

min
T∈(0,M2]

ATC2.4(T ), min
T∈[M2,

PM2
D ]

ATC2.5(T ) and min
T∈[PM2

D ,+∞)
ATC2.6(T ).

In the following theorem, we state some properties of the average total cost functions
ATCi,j(T ).
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Theorem 3.9. Let ∆ = rp− sId (M2 −M1).

1. The condition ∆ > 0 is necessary and sufficient for the followings:

a) For all T < M1, ATC2.1 (T ) < ATC2.4 (T ) holds.

b) For all T ∈ [M1,M2], ATC1.1 (T ) < ATC2.4 (T ) holds.

c) For all T > M2, ATC1.3 (T ) < ATC2.6 (T ) and ATC1.4 (T ) < ATC2.5 (T ) hold.

2. The condition ∆ < 0 is necessary and sufficient for the followings:

a) For all T < M1, ATC2.4 (T ) < ATC2.1 (T ) holds.

b) For all T ∈ [M1,M2], ATC2.4 (T ) < ATC1.1 (T ) holds.

c) For all T > M2, ATC2.6 (T ) < ATC1.3 (T ) and ATC2.5 (T ) = ATC1.4 (T ) holds.

3. The condition ∆ = 0 is necessary and sufficient for the followings:

a) For all T < M1, ATC2.1 (T ) = ATC2.4 (T ) holds.

b) For all T ∈ [M1,M2], ATC1.1 (T ) = ATC2.4 (T ) holds.

c) For all T > M2, ATC1.3 (T ) = ATC2.6 (T ) and ATC1.4 (T ) = ATC2.5 (T ) holds.

Note: even the condition T < M1, T ∈ [M1,M2] and T > M2 are not satisfied, the results
still hold.

With Theorem 3.9, the problem (2.5) can be reduced. If ∆ > 0, then the optimal value
ATC∗ of (2.5) is the minimal value of

min
T∈[M1,M2]

ATC1.1(T ), min
T∈[PM2

D ,∞]
ATC1.3(T ), min

T∈[M2,
PM2
D ]

ATC1.4(T )

min
T∈(0,M1]

ATC2.1(T ), min
T∈[M1,

PM1
D ]

ATC2.2(T ) and min
T∈[PM1

D ,+∞)
ATC2.3(T ).

Moreover, some simplified results are listed in Theorem 3.10.

Theorem 3.10. Suppose ∆ > 0.

(a) The condition 2A < k1 implies that

ATC∗ = ATC2.1(T2.1).

(b) The condition k1 ≤ 2A < min{k1 + k3, k2 + k3, k1 + k4} implies that

ATC∗ = ATC2.2(T2.2).

(c) The condition k1 + k3 ≤ 2A < min{k2 + k3, k1 + k4} implies that

ATC∗ = min{ATC1.1(T1.1), ATC2.2(T2.2)}.
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(d) The condition max{k1 + k3, k1 + k4} ≤ 2A < k2 + k3 implies that

ATC∗ = min{ATC1.1(T1.1), ATC2.3(T2.3)}.

(e) The condition k2 + k3 ≤ 2A < k1 + k4 implies that

ATC∗ = min{ATC1.1(T1.1), ATC2.2(T2.2)}.

(f) The condition k1 + k4 ≤ 2A < k1 + k3 implies that

ATC∗ = ATC2.3(T2.3).

(g) The condition max{k1 + k3, k2 + k3, k1 + k4} ≤ 2A < k2 + k3 + k5 implies that

ATC∗ = min{ATC1.4(T1.4), ATC2.3(T2.3)}.

(h) The condition k2 + k3 + k5 ≤ 2A implies that

ATC∗ = min{ATC1.3(T1.3), ATC2.3(T2.3)}.

If ∆ ≤ 0, then, from Theorem 3.9, the optimal value ATC∗ of (2.5) is the minimal value
of

min
T∈[M1,

PM1
D ]

ATC2.2(T ), min
T∈[PM1

D ,+∞)
ATC2.3(T ), min

T∈(0,M2]
ATC2.4(T ),

min
T∈[M2,

PM2
D ]

ATC2.5(T ) and min
T∈[PM2

D ,+∞)
ATC2.6(T ).

This result is very important, since it implies that if ∆ ≤ 0, retailers should choose single-
stage payment instead of two stage payment. Hence we re-state Theorem 1 of [3] in Theorem
3.11.

Theorem 3.11. Suppose ∆ ≤ 0

(a) The condition 2A < k1 implies that

ATC∗ = min{ATC2.1(M1), ATC2.4(T2.4)}.

(b) The condition k1 ≤ 2A < min{k2, k1 + k4} implies that

ATC∗ = min{ATC2.2(T2.2), ATC2.4(T2.4)}.

(c) Suppose k1 + k4 ≤ k2. The condition k1 + k4 ≤ 2A ≤ k2 implies that

ATC∗ = min{ATC2.3(T2.3), ATC2.4(T2.4)}.

(d) Suppose k2 < k1 + k4. The condition k2 < 2A < k1 + k4 implies that

ATC∗ = min{ATC2.2(T2.2), ATC2.5(T2.5)}.

(e) The condition max{k2, k1 + k4} < 2A < k2 + k5 implies that

ATC∗ = min{ATC2.3(T2.3), ATC2.5(T2.5)}.

(f) The condition k2 + k5 ≤ 2A implies that

ATC∗ = min{ATC2.3(T2.3), ATC2.6(T2.6)}.

With Theorem 3.10 and Theorem 3.11, we can find the optimal replenishment of the
problem (2.5).
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4 Numerical Experiments

We design the following example based on the numerical example in [3]. In the following
testing problem, the minimum cost of the two-stage payment is smaller than that of the
single-stage payment.

Example 4.1. Let A = 100 dollars/order, P = 1500 units/year, D = 1000 units/year,
r = 0.01, h = 12 dollars/unit/year, p = 20 dollars/unit, s = 25 dollars/unit, Ic = 0.15
dollars/year, Id = 0.07 dollars/year, M1 = 0.1 years, and M2 = 0.15 years.

0.1 0.15 0.2 0.25 0.3 0.35
0.18

0.185

0.19

0.195

0.2
T*

r

T
im

e(
Y

ea
rs

)

Figure 1: The optimal replenishment cycle times of Problem 4.1 with r ∈ [0.1, 0.35]

By Theorem 3.10, since

∆ = rp− sId(M2 −M1) = 0.01125 > 0,

k1 + k3 = 80 < k1 + k4 = 144.625 < k2 + k3 = 151.875 < 2A = 180 < 348.75 = k2 + k3 + k5,

and
min

{
ATC1.4(T1.4), ATC2.3(T2.3)

}
= ATC1.4(T1.4) = 21435.305,

we obtain the optimal replenishment cycle time T1.4 = 0.171391 years and the minimized
average total cost ATC1.4(T1.4) = 21435.305 dollars/year. The best objective value for a
single-stage payment is ATC2.3(T2.3) = 21447.825 dollars/year.

In an economic sense, the discount rate can stimulate the order quantity. This situation
can be observed from Figure 1. When the discount rate r is increased, the optimal replen-
ishment cycle time increases. Thus the optimal order quantity also increases. In Figure 2,
we consider Problem 4.1 and modify the production rate P and the selling price s. From
Figure 2, when P is fixed, the selling price s increases implying a decrease in the optimal
replenishment cycle time. This means that, if they wish to obtain the same benefit, retailers
must order less often as the selling price.

Conclusion

In this paper, we proposed a new policy involving a two-stage payment. Under this new
policy, the payments are separated into more portions than a single-stage payment. The
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Figure 2: The optimal replenishment cycle times of Example 4.1 with P ∈
{1100, 1225, . . . , 2100} and s ∈ {21, 22, . . . , 40}

mathematical representation of the economic production quantity (EPQ) models under a
two-stage payment policy was given and an analytical method for solving the given models
was stated and proved. Finally, we computed the value ∆ of the difference between the
cash discount of the whole payment and the interest earned from the unpaid payment after
the cash discount period. If ∆ > 0, retailers may choose a two-stage payment to obtain a
better profit than would result from a single-stage payment. In addition to providing the
economic interpretation of ∆, we discussed the relationships between the discount rate r
and the optimal cycle time, and between the selling price s and the optimal cycle time. In
future, we can extend our EPQ models to a new Economic Lot Scheduling Problem, using
the results of this paper.
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Appendix

A.1 The proof of Theorem 3.1

Proof. We have

ATC1.1 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2)− T

(
1
2T −M2

))
T

,

ATC ′
1.1 (T ) = − A

T 2
+

DH

2
+

rpDM1

T 2
− sIdD

(
−M1 (M1 −M2)

T 2
− 1

2

)
=

D(H + sId)

2
− A−DM1(rp− sId(M2 −M1))

T 2

=
D(H + sId)

2
− λ1.1

T 2
,

ATC ′′
1.1 (T ) =

2λ1.1

T 3
.



EPQ WITH TRADE 739

and
2A− k1 + k3 = 2A−DM2

1 (H + sId)− 2DM1 (rp− sId(M2 −M1))

= 2 {A−DM1 (rp− sId(M2 −M1))} −DM2
1 (H + sId)

= 2λ1.1 −DM2
1 (H + sId)

2A− k2 + k3 = 2A−DM2
2 (H + sId)− 2DM1 (rp− sId(M2 −M1))

= 2 {A−DM2 (rp− sId(M2 −M1))} −DM2
2 (H + sId)

= 2λ1.1 −DM2
2 (H + sId).

(1) Since λ1.1 > 0 and T > 0 implies ATC ′′
1.1 (T ) > 0, the function ATC1.1(T ) is strictly

convex on {T > 0}. The stationary point T1.1 of ATC1.1(T ) can be obtained from the
following computation

ATC ′
1.1(T ) = 0 ⇒ D(H + sId)

2
− λ1.1

T 2
= 0

⇒ T =

√
2λ1.1

D(H + sId)
.

(2) If λ1.1 = 0, then ATC ′
1.1(T ) =

D(H + sId)

2
> 0 which implies that the function

ATC1.1(T ) is strictly increasing.

(3) Since λ1.1 < 0 and T > 0 implies ATC ′
1.1 (T ) > 0 and ATC ′′

1.1 (T ) < 0, the function
ATC1.1(T ) is strictly increasing and concave on {T > 0}.

(4) k3 > 2A ⇒ 2A− k3 < 0 ⇒ 2A− 2DM1∆ < 0 ⇒ λ1.1 < 0.

(5) k3 < 2A ⇒ 2A− k3 > 0 ⇒ 2A− 2DM1∆ > 0 ⇒ λ1.1 > 0.

(6) 2A ∈ (k3, k1 + k3) implies 2A > k3, hence λ1.1 > 0. On the other hand,

2A ∈ (k3, k1 + k3) ⇒ 2A < k1 + k3 ⇒ 2λ1.1 −DM2
1 (H + sId) < 0

⇒ T1.1 =

√
2λ1.1

D(H + sId)
< M1.

(7) 2A ≥ k1 + k3 implies 2A > k3, hence λ1.1 > 0.

2A ≥ k1 + k3 ⇒ 2λ1.1 −DM2
1 (H + sId) ≥ 0 ⇒ T1.1 =

√
2λ1.1

D(H + sId)
≥ M1.

(8) 2A ∈ (k3, k2 + k3) implies 2A > k3, hence λ1.1 > 0. On the other hand,

2A ∈ (k3, k2 + k3) ⇒ 2A < k2 + k3 ⇒ 2λ1.1 −DM2
2 (H + sId) < 0

⇒ T1.1 =

√
2λ1.1

D(H + sId)
< M2.
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(9) 2A ≥ k2 + k3 implies 2A > k3, hence λ1.1 > 0. On the other hand,

2A ≥ k2 + k3 ⇒ 2λ1.1 −DM2
2 (H + sId) ≥ 0 ⇒ T1.1 =

√
2λ1.1

D(H + sId)
≥ M2.

(10) (a) Suppose 2A < k1 + k3. Then we need to consider three cases: 2A < k3,
2A = k3, and 2A ∈ (k3, k1 + k3).

(i) 2A < k3 ⇒ λ1.1 < 0 ⇒ ATC1.1(T ) is strictly increasing ⇒ ATC1.1(M1) =
min

T∈[M1,M2]
ATC1.1(T ).

(ii) 2A = k3 ⇒ λ1.1 = 0 ⇒ ATC1.1(T ) is strictly increasing ⇒ ATC1.1(M1) =
min

T∈[M1,M2]
ATC1.1(T ).

(ii) 2A ∈ (k3, k1 + k3) ⇒ λ1.1 > 0 ⇒ ATC1.1(T ) is strictly convex. Moreover,
2A ∈ (k3, k1 + k3) implies λ1.1 > 0 and T1.1 < M1. Hence, ATC1.1(M1) =

min
T∈[M1,M2]

ATC1.1(T ).

Therefore, if 2A < k1 + k3, then ATC1.1(M1) = min
T∈[M1,M2]

ATC1.1(T ).

(b) Suppose 2A ∈ [k1 + k3, k2 + k3). Then λ1.1 > 0 and T1.1 ∈ [M1,M2]. More-
over, λ1.1 > 0 implies ATC1.1(T ) is strictly convex. Hence, ATC1.1(T1.1) =

min
T∈[M1,M2]

ATC1.1(T ),

(c) Suppose 2A ≥ k2+k3. Then λ1.1 > 0 and T1.1 ≥ M2. Moreover, λ1.1 > 0 implies
ATC1.1(T ) is strictly convex. Hence, ATC1.1(M2) = min

T∈[M1,M2]
ATC1.1(T ),

A.2 The proof of Theorem 3.2

Proof. We have

ATC1.3 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T

+
pIc(1− ρ)

(
DT 2 − PM2

2

)
2T

ATC ′
1.3 (T ) = − A

T 2
+

DH

2
+

rpDM1

T 2
+

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T 2

+pIc(1− ρ)
(

D
2 +

PM2
2

2T

)
=

D(1− ρ)(h+ pIc)

2
−2{A−DM1(rp−sId(M2−M1))}−M2

2 (pIc(1−ρ)P+sIdD)
2T 2

=
D(1− ρ)(h+ pIc)

2
− λ1.3

2T 2

ATC ′′
1.3 (T ) =

λ1.3

T 3
.
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and

2A− k2 − k3 − k5 = 2A− k3 −DM2
2 (H + sId)−

(
P 2

D2 − 1
)
DM2

2 (H + pIc)

= 2A− k3 −DM2
2 (sId − pIc)−

(
P 2

D2

)
DM2

2 (H + pIc)

= 2A− k3 −M2
2 (pIc(1− ρ)P + sDId − pIc(1− ρ)P − pDIc)

−
(

P 2

D2

)
DM2

2 (H + pIc)

= 2A− k3 −M2
2 (pIc(1− ρ)P + sDId − pIcP )

−
(

P 2

D2

)
DM2

2 (H + pIc)

= 2A− k3 −M2
2 (pIc(1− ρ)P + sDId) +M2

2 pIcP

−
(

P 2

D2

)
DM2

2 (H + pIc)

= λ1.3 −
(

P 2

D2

)
DM2

2

(
H + pIc − pIcD

P

)
= λ1.3 −

(
P 2

D2

)
DM2

2 (h(1− ρ) + (1− ρ)pIc)

= λ1.3 −
(

P 2

D2

)
DM2

2 (1− ρ) (h+ pIc) .

(1) Since λ1.3 > 0 and T > 0 implies ATC ′′
1.3 (T ) > 0, the function ATC1.3(T ) is strictly

convex on {T > 0}. The stationary point T1.3 of ATC1.3(T ) can be obtained from the
following computation

ATC ′
1.3(T ) = 0 ⇒ D(1− ρ)(h+ pIc)

2
− λ1.3

2T 2
= 0

⇒ T =

√
2λ1.3

D(1− ρ)(h+ pIc)
.

(2) If λ1.3 = 0, then ATC ′
1.3(T ) =

D(1− ρ)(h+ pIc)

2
> 0 which implies that the function

ATC1.3(T ) is strictly increasing.

(3) Since λ1.3 < 0 and T > 0 implies ATC ′
1.3 (T ) > 0 and ATC ′′

1.3 (T ) < 0, the function
ATC1.3(T ) is strictly increasing and concave on {T > 0}.

(4) 2A < k2 + k3 + k5 and λ1.3 > 0 implies T1.3 < PM2

D since

2A < k2 + k3 + k5 ⇒ λ1.3 −
(
P 2

D2

)
DM2

2 (1− ρ) (h+ pIc) < 0 ⇒ T1.3 <
PM2

D
.

(5) 2A ≥ k2 + k3 + k5 implies λ1.3 > 0 and T1.3 ≥ PM2

D since

2A ≥ k2 + k3 + k5 ⇒ λ1.3 −
(
P 2

D2

)
DM2

2 (1− ρ) (h+ pIc) ≥ 0

⇒ λ1.3 ≥
(
P 2

D2

)
DM2

2 (1− ρ) (h+ pIc) > 0

and

2A ≥ k2 + k3 + k5 ⇒ λ1.3 −
(
P 2

D2

)
DM2

2 (1− ρ) (h+ pIc) ≥ 0 ⇒ T1.3 ≥ PM2

D
.
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(6) (a) Suppose 2A < k2+k3+k5 and λ1.3 < 0. Then ATC1.3(T ) is strictly increasing,
Hence ATC1.3

(
PM2

D

)
= min

T∈[PM2
D ,+∞)

ATC1.3(T ),

(b) Suppose 2A < k2 + k3 + k5 and λ1.3 = 0. Then ATC1.3(T ) is strictly increasing,
Hence ATC1.3

(
PM2

D

)
= min

T∈[
PM2
D ,+∞)

ATC1.3(T ),

(c) Suppose 2A < k2 + k3 + k5 and λ1.3 > 0. Then ATC1.3(T ) is strictly convex and
T1.3 < PM2

D . Hence ATC1.3

(
PM2

D

)
= min

T∈[
PM2
D ,+∞)

ATC1.3(T ),

(d) Suppose 2A ≥ k2 + k3 + k5. Then λ1.3 > 0, ATC1.3(T ) is strictly convex and
T1.3 ≥ PM2

D . Hence ATC1.3(T1.3) = min
T∈[

PM2
D ,+∞)

ATC1.3(T ) .

A.3 The proof of Theorem 3.3

Proof. We have

ATC1.4 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T

+pIcD(T−M2)
2

2T

ATC ′
1.4 (T ) = − A

T 2
+

DH

2
+

rpDM1

T 2
+

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T 2

+pIcD
(

1
2 − M2

2

2T 2

)
=

D(H + pIc)

2
− 2{A−DM1(rp− sId(M2 −M1))} −DM2

2 (sId − pIc)

2T 2

=
D(H + pIc)

2
− λ1.4

2T 2

ATC ′′
1.4 (T ) =

λ1.4

T 3
,

2A− k2 − k3 = 2A−DM2
2 (H + sId)− 2DM1∆

= 2A− 2DM1∆−DM2
2 (sId − pIc) +DM2

2 (sId − pIc)−DM2
2 (H + sId)

= λ1.4 −DM2
2 (H + pIc)

and

2A− k2 − k3 − k5 = λ1.4 −DM2
2 (H + pIc)−

(
P 2

D2
− 1

)
DM2

2 (H + pIc)

= λ1.4 −
P 2M2

2 (H + pIc)

D
.

(1) Since λ1.4 > 0 and T > 0 implies ATC ′′
1.4 (T ) > 0, the function ATC1.4(T ) is strictly

convex on {T > 0}. The stationary point T1.4 of ATC1.4(T ) can be obtained from the
following computation

ATC ′
1.4(T ) = 0 ⇒ D(H + pIc)

2
− λ1.4

2T 2
= 0

⇒ T =

√
2λ1.4

D(H + pIc)
.
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(2) If λ1.4 = 0, then ATC ′
1.4(T ) =

D(H + pIc)

2
> 0 which implies that the function

ATC1.4(T ) is strictly increasing.

(3) Since λ1.4 < 0 and T > 0 implies ATC ′
1.4 (T ) > 0 and ATC ′′

1.4 (T ) < 0, the function
ATC1.4(T ) is strictly increasing and concave on {T > 0}.

(4) 2A < k2 + k3 and λ1.4 > 0 implies T1.4 < M2 since

2A < k2 + k3 ⇒ λ1.4 −DM2
2 (H + pIc) < 0 ⇒ T1.4 < M2.

(5) 2A ≥ k2 + k3 implies λ1.4 > 0 and T1.4 ≥ M2 since

2A ≥ k2 + k3 ⇒ λ1.4 −DM2
2 (H + pIc) ≥ 0 ⇒ λ1.4 ≥ DM2

2 (H + pIc) > 0

and

2A ≥ k2 + k3 ⇒ λ1.4 −DM2
2 (H + pIc) ≥ 0 ⇒ T1.4 ≥ M2.

(6) 2A ∈ [k2 + k3, k2 + k3 + k5) implies λ1.4 > 0, T1.4 ≥ M2 and T1.4 < PM2

D because
2A ≥ k2 + k3 and

2A ∈ [k2 + k3, k2 + k3 + k5) ⇒ λ1.4 −
P 2M2

2 (H + pIc)

D
< 0 ⇒ T1.4 <

PM2

D
.

(7) 2A ≥ k2 + k3 + k5 implies λ1.4 > 0 and T1.4 ≥ PM2

D because 2A > k2 + k3 and

2A ≥ k2 + k3 + k5 ⇒ λ1.4 −
P 2M2

2 (H + pIc)

D
≥ 0 ⇒ T1.4 ≥ PM2

D
.

(8) (a) Suppose 2A < k2 + k3 and λ1.4 < 0. Then ATC1.4(T ) is strictly increasing.
Hence ATC1.4(M2) = min

T∈[M2,
PM2
D ]

ATC1.4(T ).

(b) Suppose 2A < k2 + k3 and λ1.4 = 0. Then ATC1.4(T ) is strictly increasing.
Hence ATC1.4(M2) = min

T∈[M2,
PM2
D ]

ATC1.4(T ).

(c) Suppose 2A < k2 + k3 and λ1.4 > 0. Then ATC1.4(T ) is strictly convex and
T1.4 ≤ M2. Hence ATC1.4(M2) = min

T∈[M2,
PM2
D ]

ATC1.4(T ).

(d) Suppose 2A ∈ [k2+k3, k2+k3+k5). Then λ1.4 > 0, ATC1.4(T ) is strictly convex
and T1.4 ∈

[
M2,

PM2

D

]
. Hence ATC1.4

(
T1.4

)
= min

T∈[M2,
PM2
D ]

ATC1.4(T ).

(e) Suppose 2A ≥ k2 + k3 + k5. Then λ1.4 > 0, ATC1.4(T ) is strictly convex and
T1.4 ≥ PM2

D . Hence ATC1.4

(
PM2

D

)
= min

T∈[M2,
PM2
D ]

ATC1.4(T ).
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A.4 The proof of Theorem 3.4

Proof. We have

ATC2.1 (T ) =
A

T
+

DTH

2
+ pD (1− r)− sIdD

(
M1 −

1

2
T

)
ATC ′

2.1 (T ) = − A

T 2
+

DH

2
+

sIdD

2

ATC ′′
2.1 (T ) =

2A

T 3

ATC2.4 (T ) =
A

T
+

DTH

2
+ pD − sIdD

(
M2 −

1

2
T

)
ATC ′

2.4 (T ) = − A

T 2
+

DH

2
+

sIdD

2

ATC ′′
2.4 (T ) =

2A

T 3

(1) Since ATC ′′
2.1(T ) > 0 and ATC ′′

2.4(T ) > 0 for all T > 0, both of ATC2.1(T ) and

ATC2.4(T ) are strictly convex. Since ATC ′
2.1 (T ) = − A

T 2
+
DH

2
+
sIdD

2
= ATC ′

2.4 (T ),

both of their stationary points are T2.1.

(2) T2.1 < M1 holds because

2A < k1 ⇒ 2A < DM2
1 (H + sId) ⇒

2A

D(H + sId)
< M2

1 ⇒ T2.1 < M1.

(3) T2.1 ≥ M1 holds because

2A ≥ k1 ⇒ 2A ≥ DM2
1 (H + sId) ⇒

2A

D(H + sId)
≥ M2

1 ⇒ T2.1 ≥ M1.

(4) Suppose 2A < k1. Then T2.1 < M1. Hence ATC2.1

(
T2.1

)
= min

T∈(0,M1]
ATC2.1(T ).

Suppose 2A ≥ k1. Then T2.1 ≥ M1. Hence ATC2.1 (M1) = min
T∈(0,M1]

ATC2.1(T ).

(5) T2.4 < M2 holds because

2A < k2 ⇒ 2A < DM2
2 (H + sId) ⇒

2A

D(H + sId)
< M2

2 ⇒ T2.4 < M2.

(6) T2.4 ≥ M2 holds because

2A ≥ k2 ⇒ 2A ≥ DM2
2 (H + sId) ⇒

2A

D(H + sId)
≥ M2

2 ⇒ T2.4 ≥ M2.

(7) Suppose 2A < k2. Then T2.4 < M2. Hence ATC2.4

(
T2.4

)
= min

T∈(0,M2]
ATC2.4(T ).

Suppose 2A ≥ k2. Then T2.4 ≥ M2. Hence ATC2.4 (M2) = min
T∈(0,M2]

ATC2.4(T ).
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A.5 The proof of Theorem 3.5

Proof. We have

ATC2.2 (T ) =
A

T
+

DTH

2
+ pD (1− r)− sIdDM2

1

2T
+

p (1− r) IcD (T −M1)
2

2T

ATC ′
2.2 (T ) = − A

T 2
+

DH

2
+

sIdDM2
1

2T 2
+

p (1− r) IcD

2
− p (1− r) IcDM2

1

2T 2

=
D(H + pIc(1− r))

2
− 2A−DM2

1 (sId − pIc(1− r))

2T 2

=
D(H + pIc(1− r))

2
− λ2.2

2T 2

ATC ′′
2.2 (T ) =

λ2.2

T 3
,

2A− k1 = 2A−DM2
1 (H + sId)

= 2A−DM2
1 (sId − pIc(1− r)) +DM2

1 (sId − pIc(1− r))−DM2
1 (H + sId)

= 2A−DM2
1 (sId − pIc(1− r))−DM2

1 (H + pIc(1− r))
= λ2.2 −DM2

1 (H + pIc(1− r))

and

2A− k1 − k4 = λ2.2 −DM2
1 (H + pIc(1− r))−

(
P 2

D2 − 1
)
DM2

1 (H + pIc(1− r))

= λ2.2 − P 2

D2DM2
1 (H + pIc(1− r)).

(1) Since λ2.2 > 0 and T > 0 implies ATC ′′
2.2 (T ) > 0, the function ATC2.2(T ) is strictly

convex on {T > 0}. The stationary point T2.2 of ATC2.2(T ) can be obtained from the
following computation

ATC ′
2.2(T ) = 0 ⇒ D(H + pIc(1− r)

2
− λ2.2

2T 2
= 0

⇒ T =

√
λ2.2

D(H + pIc(1− r))
.

(2) If λ2.2 = 0, then ATC ′
2.2(T ) =

D(H + pIc(1− r))

2
> 0 which implies that the function

ATC2.2(T ) is strictly increasing.

(3) Since λ2.2 < 0 and T > 0 implies ATC ′
2.2 (T ) > 0 and ATC ′′

2.2 (T ) < 0, the function
ATC2.2(T ) is strictly increasing and concave on {T > 0}.

(4) 2A < k1 and λ2.2 > 0 implies T2.2 < M1 since

2A < k1 ⇒ λ2.2 −DM2
1 (H + pIc(1− r)) < 0 ⇒ T2.2 < M1.

(5) 2A ≥ k1 implies λ2.2 > 0 and T2.2 ≥ M1 since

2A ≥ k1 ⇒ λ2.2 −DM2
1 (H + pIc(1− r)) ≥ 0 ⇒ λ2.2 ≥ DM2

1 (H + pIc(1− r)) > 0.

and
2A ≥ k1 ⇒ λ2.2 −DM2

1 (H + pIc(1− r)) ≥ 0 ⇒ T2.2 ≥ M1.
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(6) 2A ∈ [k1, k1 + k4) implies λ2.2 > 0, T2.2 ≥ M1 and T2.2 < PM1

D because 2A ≥ k1 and

2A ∈ [k1, k1 + k4) ⇒ λ2.2 −
P 2

D2
DM2

1 (H + pIc(1− r)) < 0 ⇒ T2.2 <
PM1

D
.

(7) 2A ≥ k1 + k4 implies λ2.2 > 0 and T2.2 ≥ PM1

D since 2A > k1 and

2A ≥ k1 + k4 ⇒ λ2.2 −
P 2

D2
DM2

1 (H + pIc(1− r)) ≥ 0 ⇒ T2.2 ≥ PM1

D
.

(8) Suppose 2A < k1 and λ2.2 < 0. Then ATC2.2(T ) is strictly increasing. Hence
ATC2.2(M1) = min

T∈[M1,
PM1
D ]

ATC2.2(T ).

Suppose 2A < k1 and λ2.2 = 0. Then ATC2.2(T ) is strictly increasing. Hence
ATC2.2(M1) = min

T∈[M1,
PM1
D ]

ATC2.2(T ).

Suppose 2A < k1 and λ2.2 > 0. Then ATC2.2(T ) is strictly convex and T2.2 < M1.
Hence ATC2.2(M1) = min

T∈[M1,
PM1
D ]

ATC2.2(T ).

Suppose 2A ∈ [k1, k1 + k4). Then λ2.2 > 0, ATC2.2(T ) is strictly convex and
T2.2 ∈

[
M1,

PM1

D

]
. Hence ATC2.2(T2.2) = min

T∈[M1,
PM1
D ]

ATC2.2(T ).

Suppose 2A ≥ k1 + k4. Then λ2.2 > 0, ATC2.2(T ) is strictly convex and T2.2 ≥
PM1

D . Hence ATC2.2(
PM1

D ) = min
T∈[M1,

PM1
D ]

ATC2.2(T ).

A.6 The proof of Theorem 3.6

Proof. We have

ATC2.3(T ) =
A

T
+

DTH

2
+ p(1− r)D +

pIc(1− r)(1− ρ)
(
DT 2 − PM2

1

)
2T

− sIdDM2
1

2T
.

ATC ′
2.3(T ) =

−A

T 2
+

DH

2
+

pIc(1− r)(1− ρ)D

2
+

pIc(1− r)(1− ρ)PM2
1

2T 2
+

sIdDM2
1

2T 2

=
D(H + pIc(1− r)(1− ρ))

2
− 2A−M2

1 (pIc(1− r)(1− ρ)P + sIdD)

2T 2

=
D(H + pIc(1− r)(1− ρ))

2
− λ2.3

2T 2

ATC ′′
2.3(T ) =

λ2.3

T 3
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and

2A− k1 − k4 = 2A−DM2
1 (H + sId)−

(
P 2

D2
− 1

)
DM2

1 (H + pIc(1− r))

= 2A− P 2

D2
DM2

1 (H + pIc(1− r))−DM2
1 (sId − pIc(1− r))

= 2A−DM2
1 sId −

P 2

D2
DM2

1 (H + pIc(1− r)) +DM2
1 pIc(1− r)

= λ2.3 +M2
1 pIc(1− r)(1− ρ)P − P 2

D2
DM2

1 (H + pIc(1− r))

+DM2
1 pIc(1− r)

= λ2.3 −
P 2

D2
DM2

1H +M2
1 pIc(1− r)(1− ρ)P − P 2

D2
DM2

1 pIc(1− r)

+DM2
1 pIc(1− r)

= λ2.3 −
P 2

D2
DM2

1H −DM2
1 pIc(1− r)

(
−(1− ρ)

P

D
+

P 2

D2
− 1

)
= λ2.3 −

P 2

D2
DM2

1H − P 2

D2
DM2

1 pIc(1− r)
(
−(1− ρ)ρ+ 1− ρ2

)
= λ2.3 −

P 2

D2
DM2

1H − P 2

D2
DM2

1 pIc(1− r) (1− ρ) .

(1) Since λ2.3 > 0 and T > 0 implies ATC ′′
2.3 (T ) > 0, the function ATC2.3(T ) is strictly

convex on {T > 0}. The stationary point T2.3 of ATC2.3(T ) can be obtained from the
following computation

ATC ′
2.3(T ) = 0 ⇒ D(H + pIc(1− r)(1− ρ))

2
− λ2.3

2T 2
= 0

⇒ T =

√
λ2.3

D(H + pIc(1− r)(1− ρ))
.

(2) If λ2.3 = 0, then ATC ′
2.3(T ) =

D(H + pIc(1− r)(1− ρ))

2
> 0 which implies that the

function ATC2.3(T ) is strictly increasing.

(3) Since λ2.3 < 0 and T > 0 implies ATC ′
2.3 (T ) > 0 and ATC ′′

2.3 (T ) < 0, the function
ATC2.3(T ) is strictly increasing and concave on {T > 0}.

(4) 2A < k1 + k4 and λ2.3 > 0 imply T2.3 <
PM1

D
, since

2A < k1 + k4 ⇒ λ2.3 −
P 2

D2
DM2

1H − P 2

D2
DM2

1 pIc(1− r) (1− ρ) < 0 ⇒ T2.3 <
PM1

D
.

(5) 2A ≥ k1 + k4 implies λ2.3 > 0 and T2.3 ≥ PM1

D
, since

2A ≥ k1 + k4 ⇒ λ2.3 −
P 2

D2
DM2

1H − P 2

D2
DM2

1 pIc(1− r) (1− ρ) ≥ 0

⇒ λ2.3 ≥ P 2

D2
DM2

1H − P 2

D2
DM2

1 pIc(1− r) (1− ρ) > 0
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and

2A ≥ k1 + k4 ⇒ λ2.3 −
P 2

D2
DM2

1H − P 2

D2
DM2

1 pIc(1− r) (1− ρ) ≥ 0 ⇒ T2.3 ≥ PM1

D
.

(6) Suppose 2A < k1 + k4 and λ2.3 < 0. Then ATC2.3(T ) is strictly increasing.
Hence ATC2.3

(
PM1

D

)
= min

T∈[PM1
D ,∞)

ATC2.3(T ),

Suppose 2A < k1+k4 and λ2.3 = 0. Then ATC2.3(T ) is strictly increasing. Hence
ATC2.3

(
PM1

D

)
= min

T∈[PM1
D ,∞)

ATC2.3(T ).

Suppose 2A < k1 + k4 and λ2.3 > 0. Then ATC2.3(T ) is strictly convex and
T2.3 < PM1

D . Hence ATC2.3

(
PM1

D

)
= min

T∈[PM1
D ,∞)

ATC2.3(T ).

Suppose 2A ≥ k1 + k4. Then λ2.3 > 0, ATC2.3(T ) is strictly convex and T2.3 ≥
PM1

D . Hence ATC2.3

(
T2.3

)
= min

T∈[PM1
D ,∞)

ATC2.3(T ).

A.7 The proof of Theorem 3.7

Proof. We have

ATC2.5 (T ) =
A

T
+

DTH

2
+ pD − sIdDM2

2

2T
+

pIcD (T −M2)
2

2T

ATC ′
2.5 (T ) = − A

T 2
+

DH

2
+

sIdDM2
2

2T 2
+

pIcD

2
− pIcDM2

2

2T 2

=
D(H + pIc)

2
− 2A−DM2

2 (sId − pIc)

2T 2

=
D(H + pIc)

2
− λ2.5

2T 2

ATC ′′
2.5 (T ) =

λ2.5

T 3
,

2A− k2 = 2A−DM2
2 (H + sId)

= 2A−DM2
2 (sId − pIc)−DM2

2 (H + pIc)
= λ2.5 −DM2

2 (H + pIc).

and

2A− k2 − k5 = λ2.5 −DM2
2 (H + pIc)−

(
P 2

D2
− 1

)
DM2

2 (H + pIc)

= λ2.5 −
P 2

D2
DM2

2 (H + pIc).

(1) Since λ2.5 > 0 and T > 0 implies ATC ′′
2.5 (T ) > 0, the function ATC2.5(T ) is strictly

convex on {T > 0}. The stationary point T2.5 of ATC2.5(T ) can be obtained from the
following computation

ATC ′
2.5(T ) = 0 ⇒ D(H + pIc)

2
− λ2.5

2T 2
= 0

⇒ T =

√
λ2.5

D(H + pIc)
.
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(2) If λ2.5 = 0, then ATC ′
2.5(T ) =

D(H + pIc)

2
> 0 which implies that the function

ATC2.5(T ) is strictly increasing.

(3) Since λ2.5 < 0 and T > 0 implies ATC ′
2.5 (T ) > 0 and ATC ′′

2.5 (T ) < 0, the function
ATC2.5(T ) is strictly increasing and concave on {T > 0}.

(4) 2A ≤ k2 and λ2.5 > 0 implies T2.5 ≤ M2 since

2A ≤ k2 ⇒ λ2.5 −DM2
2 (H + pIc) ≤ 0 ⇒ T2.5 ≤ M2.

(5) 2A > k2 implies λ2.5 > 0 and T2.5 > M2 since

2A > k2 ⇒ λ2.5 −DM2
2 (H + pIc) > 0 ⇒ λ2.5 > DM2

2 (H + pIc)

and

2A > k2 ⇒ λ2.5 −DM2
2 (H + pIc) > 0 ⇒ T2.5 > M2.

(6) 2A ∈ (k2, k2 + k5) implies λ2.5 > 0, T2.5 > M2 and T2.5 < PM2

D because 2A > k2 and

2A ∈ (k2, k2 + k5) ⇒ λ2.5 −
P 2

D2
DM2

2 (H + pIc) < 0 ⇒ T2.5 <
PM2

D
.

(7) 2A ≥ k2 + k5 implies λ2.5 > 0, T2.5 > M2 and T2.5 ≥ PM2

D since because 2A > k2 and

2A ≥ k2 + k5 ⇒ λ2.5 −
P 2

D2
DM2

2 (H + pIc) ≥ 0 ⇒ T2.5 ≥ PM2

D
.

(8) Suppose 2A ≤ k2 and λ2.5 < 0. Then ATC2.5(T ) is strictly increasing. Hence
ATC2.5(M2) = min

T∈[M2,
PM2
D ]

ATC2.5(T ).

Suppose 2A ≤ k2 and λ2.5 = 0. Then ATC2.5(T ) is strictly increasing. Hence
ATC2.5(M2) = min

T∈[M2,
PM2
D ]

ATC2.5(T ),

Suppose 2A ≤ k2 and λ2.5 > 0. Then ATC2.5(T ) is strictly convex and T2.5 < M2.
Hence ATC2.5(M2) = min

T∈[M2,
PM2
D ]

ATC2.5(T ),

Suppose 2A ∈ (k2, k2 + k5). Then λ2.5 > 0, ATC2.5(T ) is strictly convex, T2.5 >
M2 and T2.5 < PM2

D . Hence ATC2.5(T2.5) = min
T∈[M2,

PM2
D ]

ATC2.5(T ),

Suppose 2A ≥ k2 + k5. Then λ2.5 > 0, ATC2.5(T ) is strictly convex, T2.5 > PM2

D .

Hence, ATC2.5(
PM2

D ) = min
T∈[M2,

PM2
D ]

ATC2.5(T ).
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A.8 The proof of Theorem 3.8

Proof. We have

ATC2.6(T ) =
A

T
+

DTH

2
+ pD +

pIc(1− ρ)
(
DT 2 − PM2

2

)
2T

− sIdDM2
2

2T
.

ATC ′
2.6(T ) =

−A

T 2
+

DH

2
+

pIc(1− ρ)D

2
+

pIc(1− ρ)PM2
2

2T 2
+

sIdDM2
2

2T 2

=
D(H + pIc(1− ρ))

2
− 2A−M2

2 (pIc(1− ρ)P + sIdD)

2T 2

=
D(H + pIc(1− ρ))

2
− λ2.6

2T 2

ATC ′′
2.6(T ) =

λ2.6

T 3
.

and

2A− k2 − k5 = 2A−DM2
2 (H + sId)−

(
P 2

D2
− 1

)
DM2

2 (H + pIc)

= 2A− P 2

D2
DM2

2 (H + pIc)−DM2
2 (sId − pIc)

= 2A−DM2
2 sId −

P 2

D2
DM2

2 (H + pIc) +DM2
2 pIc)

= λ2.6 +M2
2 pIc(1− ρ)P − P 2

D2
DM2

2 (H + pIc) +DM2
2 pIc

= λ2.6 −
P 2

D2
DM2

2H +M2
2 pIc(1− ρ)P − P 2

D2
DM2

2 pIc +DM2
2 pIc

= λ2.6 −
P 2

D2
DM2

2H −DM2
2 pIc

(
−(1− ρ)

P

D
+

P 2

D2
− 1

)
= λ2.6 −

P 2

D2
DM2

2H − P 2

D2
DM2

2 pIc
(
−(1− ρ)ρ+ 1− ρ2

)
= λ2.6 −

P 2

D2
DM2

2H − P 2

D2
DM2

2 pIc (1− ρ)

= λ2.6 −
P 2

D2
DM2

2 (H + pIc (1− ρ)).

(1) Since λ2.6 > 0 and T > 0 implies ATC ′′
2.6 (T ) > 0, the function ATC2.6(T ) is strictly

convex on {T > 0}. The stationary point T2.6 of ATC2.6(T ) can be obtained from the
following computation

ATC ′
2.6(T ) = 0 ⇒ D(H + pIc(1− ρ))

2
− λ2.6

2T 2
= 0

⇒ T =

√
λ2.6

D(H + pIc(1− ρ))
.

(2) If λ2.6 = 0, then ATC ′
2.6(T ) =

D(H + pIc(1− ρ))

2
> 0 which implies that the function

ATC2.6(T ) is strictly increasing.

(3) Since λ2.6 < 0 and T > 0 implies ATC ′
2.6 (T ) > 0 and ATC ′′

2.6 (T ) < 0, the function
ATC2.6(T ) is strictly increasing and concave on {T > 0}.
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(4) 2A < k2 + k5 and λ2.6 > 0 imply T2.6 <
PM2

D
, since

2A < k2 + k5 ⇒ λ2.6 −
P 2

D2
DM2

2 (H + pIc (1− ρ)) < 0

⇒ T2.6 =

√
λ2.6

D(H + pIc(1− ρ))
<

PM2

D
.

(5) 2A ≥ k2 + k5, implies λ2.6 > 0 and T2.6 ≥ PM2

D
, since

2A ≥ k2 + k5 ⇒ λ2.6 −
P 2

D2
DM2

2 (H + pIc (1− ρ)) ≥ 0

⇒ λ2.6 ≥ P 2

D2
DM2

2 (H + pIc (1− ρ)) > 0.

and

2A ≥ k2 + k5 ⇒ λ2.6 −
P 2

D2
DM2

2 (H + pIc (1− ρ)) ≥ 0

⇒ T2.6 =

√
λ2.6

D(H + pIc(1− ρ))
≥ PM2

D
.

(6) (a) Suppose 2A < k2 + k5 and λ2.6 < 0. Then ATC2.6(T ) is strictly increasing.
Hence ATC2.6

(
PM2

D

)
= min

T∈[PM2
D ,∞)

ATC2.6(T ).

(b) Suppose 2A < k2 + k5 and λ2.6 = 0. Then ATC2.6(T ) is strictly increasing.
Hence ATC2.6

(
PM2

D

)
= min

T∈[PM2
D ,∞)

ATC2.6(T ),

(c) Suppose 2A < k2 + k5 and λ2.6 > 0. Then ATC2.6(T ) is strictly convex and

T2.6 <
PM2

D
. Hence ATC2.6

(
PM2

D

)
= min

T∈[PM2
D ,∞)

ATC2.6(T ),

(d) Suppose 2A ≥ k2 + k5. Then λ2.6 > 0, ATC2.6(T ) is strictly convex and T2.6 ≥
PM2

D
,

Hence, ATC2.6(T2.6) = min
T∈[PM2

D ,∞)
ATC2.6(T ).

A.9 The proof of Theorem 3.9

Proof.

a) Since

ATC2.1 (T ) =
A

T
+

DTH

2
+ pD (1− r)− sIdD

(
M1 −

1

2
T

)
ATC2.4 (T ) =

A

T
+

DTH

2
+ pD − sIdD

(
M2 −

1

2
T

)
,
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we obtain

ATC2.1 (T )−ATC2.4 (T ) = −rpD − sIdD

(
M1 −

1

2
T

)
+ sIdD

(
M2 −

1

2
T

)
= −D (rp− sId (M2 −M1)) .

Hence, combining it with D > 0, we obtain ATC2.1(T ) < ATC2.4(T ) ⇔ ∆ > 0
ATC2.1(T ) = ATC2.4(T ) ⇔ ∆ = 0
ATC2.1(T ) > ATC2.4(T ) ⇔ ∆ < 0

b) Since

ATC1.1 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T

−sIdD
(M1(M1−M2)−T( 1

2T−M2))
T

ATC2.4 (T ) =
A

T
+

DTH

2
+ pD (1− r)− sIdD

(
M2 −

1

2
T

)
,

we obtain

ATC1.1 (T )−ATC2.4 (T ) = − rpDM1

T − sIdD(M1(M1−M2))
T

= −DM1(rp−sId(M2−M1))
T .

Hence, combining it with
DM1

T
> 0, we obtain ATC1.1(T ) < ATC2.3(T ) ⇔ ∆ > 0

ATC1.1(T ) = ATC2.3(T ) ⇔ ∆ = 0
ATC1.1(T ) > ATC2.3(T ) ⇔ ∆ < 0

.

c) Since

ATC1.3 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
− sIdD

(
M1 (M1 −M2) +

1
2M

2
2

)
T

+pIc(1− ρ)
DT 2 − PM2

2

2T

ATC1.4 (T ) =
A

T
+

DTH

2
+

pD (T − rM1)

T
−

sIdD
(
M1 (M1 −M2) +

1
2M

2
2

)
T

+
pIcD (T −M2)

2

2T

ATC2.5 (T ) =
A

T
+

DTH

2
+ pD − sIdDM2

2

2T
+

pIcD (T −M2)
2

2T

ATC2.6 (T ) =
A

T
+

DTH

2
+ pD − sIdDM2

2

2T
+

pIcD (T −M2)
2

2T
,

we obtain

ATC1.4 (T )−ATC2.5 (T ) = −rpDM1

T
− sIdD (M1 (M1 −M2))

T

=
−DM1 (rp− sId (M2 −M1))

T
.
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and

ATC1.3 (T )−ATC2.6 (T ) = −rpDM1

T
− sIdD (M1 (M1 −M2))

T

=
−DM1 (rp− sId (M2 −M1))

T
.

Hence, combining it with
DM1

T
> 0, we obtain ATC1.4(T ) < ATC2.5(T ) ⇔ ∆ > 0

ATC1.4(T ) = ATC2.5(T ) ⇔ ∆ = 0
ATC1.4(T ) > ATC2.5(T ) ⇔ ∆ < 0

and  ATC1.3(T ) < ATC2.6(T ) ⇔ ∆ > 0
ATC1.3(T ) = ATC2.6(T ) ⇔ ∆ = 0
ATC1.3(T ) > ATC2.6(T ) ⇔ ∆ < 0

A.10 The proof of Theorem 3.10

Proof. In order to compare the valuesATC1.1(T
∗
1.1), ATC1.3(T

∗
1.3), ATC1.4(T

∗
1.4), ATC2.1(T

∗
2.1),

ATC2.2(T
∗
2.2), ATC2.3(T

∗
2.3), we compute the following values

ATC1.1(M1) =
A

M1
+

DM1H

2
+

pD(M1 − rM1)

M1

− sIdD(M1(M1−M2)−M1(
1
2M1−M2))

M1

=
A

M1
+

DM1H

2
+ pD(1− r)− sIdD(M1 −M2 −

1

2
M1 +M2)

=
A

M1
+

DM1H

2
+ pD(1− r)− sIdDM1

2

ATC2.1(M1) =
A

M1
+

DM1H

2
+ pD(1− r)− sIdD(M1 −

1

2
M1)

=
A

M1
+

DM1H

2
+ pD(1− r)− sIdDM1

2

ATC2.2(M1) =
A

M1
+

DM1H

2
+ pD(1− r)− sIdDM2

1

2M1
+

p(1− r)IcD(M1 −M1)
2

2M1

=
A

M1
+

DM1H

2
+ pD(1− r)− sIdDM1

2
.

Hence we obtain the following equalities:

ATC1.1(M1) = ATC2.1(M1) = ATC2.2(M1). (4.1)

Then we computing the values

ATC1.1(M2) =
A

M2
+

DM2H

2
+

pD(M2 − rM1)

M2

− sIdD(M1(M1−M2)−M2(
1
2M2−M2))

M2

=
A

M2
+

DM2H

2
+

pD(M2 − rM1)

M2
−

sIdD(M1(M1 −M2) +
1
2M

2
2 )

M2

ATC1.4(M2) =
A

M2
+

DM2H

2
+

pD(M2 − rM1)

M2
−

sIdD(M1(M1 −M2) +
1
2M

2
2 )

M2
.
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We also obtain the equalities:

ATC1.1(M2) = ATC1.4(M2). (4.2)

and we computing the values

ATC1.3(
PM2

D ) =
A

PM2

D

+
DPM2

D H

2
+

pD(PM2

D − rM1)
PM2

D

−
sIdD(M1(M1 −M2) +

1
2M

2
2 )

PM2

D

+
pIc(1− ρ)(D(PM2

D )2 − PM2
2 )

2PM2

D

ATC1.4(
PM2

D ) =
A

PM2

D

+
DPM2

D H

2
+

pD(PM2

D − rM1)
PM2

D

−
sIdD(M1(M1 −M2) +

1
2M

2
2 )

PM2

D

pIcD(PM2

D −M2)
2

2PM2

D

and

(1− ρ)
(
D

P 2M2
2

D2 − PM2
2

)
= (1− ρ)

(
P 2M2

2

D − PM2
2

)
= (P −D)

(
PM2

2

D −M2
2

)
=

(
P 2M2

2

D − PM2
2 − PM2

2 +DM2
2

)
= D

(
P 2M2

2

D2 − 2PM2
2

D +M2
2

)
= D

(
PM2

D −M2

)2
.

(4.3)

We obtain the equalities:

ATC1.3

(
PM2

D

)
= ATC1.4

(
PM2

D

)
. (4.4)

After computing the values

ATC2.2

(
PM1

D

)
=

A
PM1

D

+
DPM1

D H

2
+ pD(1− r)− sIdDM2

1

2PM1

D

+
pIc(1−r)D(

PM1
D −M1)

2

2
PM1
D

ATC2.3

(
PM1

D

)
=

A
PM1

D

+
DPM1

D H

2
+ pD(1− r)− sIdDM2

1

2PM1

D

+
pIc(1−r)(1−ρ)(D(

PM1
D )2−PM2

1 )

2
PM1
D

and (4.3) we obtain

ATC2.2

(
PM1

D

)
= ATC2.3

(
PM1

D

)
. (4.5)

(a) 2A < k1 implies that 2A < k1 + k3, 2A < k2 + k3 + k5, 2A < k2 + k3, 2A < k1 + k4.
Hence

2A < k1 + k3 ⇒ T ∗
1.1 = M1 2A < k2 + k3 + k5 ⇒ T ∗

1.3 = PM2

D ,

2A < k2 + k3 ⇒ T ∗
1.4 = M2 2A < k1 ⇒ T ∗

2.1 = T2.1,

2A < k1 ⇒ T ∗
2.2 = M1 2A < k1 + k4 ⇒ T ∗

2.3 = PM1

D .
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By (4.2), ATC1.1(M2) = ATC1.4(M2). Hence we obtain

ATC1.1(M1) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1(M2)

= ATC1.4(M2)

which implies

ATC1.1(M1) < ATC1.4(M2). (4.6)

On the other hand, by (4.1), ATC2.1(M1) = ATC2.2(M1). Hence

ATC2.1

(
T2.1

)
= min

T∈(0,M1]
ATC2.1(T ) < ATC2.1(M1) = ATC2.2(M1)

which implies

ATC2.1

(
T2.1

)
< ATC1.1(M1). (4.7)

By (4.5) and T ∗
2.2 = M1, we obtain

ATC2.2(M1) = min
T∈[M1,

PM1
D ]

ATC2.2(T ) < ATC2.2(
PM1

D
) = ATC2.3(

PM1

D
).

By (4.4) and T ∗
1.4 = M2, we obtain

ATC1.4(M2) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4(
PM2

D
) = ATC1.3(

PM2

D
).

Hence
ATC∗ = ATC2.1(T2.1).

(b) k1 ≤ 2A < k1 + k3 implies that 2A < k2 + k3 + k5, 2A < k2 + k3, 2A ∈ [k1, k1 + k4),
2A < k1 + k4. Hence

2A < k1 + k3 ⇒ T ∗
1.1 = M1 2A < k2 + k3 + k5 ⇒ T ∗

1.3 =
PM2

D
2A < k2 + k3 ⇒ T ∗

1.4 = M2 2A ≥ k1 ⇒ T ∗
2.1 = M1

2A ∈ [k1, k1 + k4) ⇒ T ∗
2.2 = T2.2 2A < k1 + k4 ⇒ T ∗

2.3 =
PM1

D

By (4.1) and T ∗
2.2 = T2.2, we obtain

ATC2.2

(
T2.2

)
= min

T∈[M1,
PM1
D ]

ATC2.2(T ) < ATC2.2(M1) = ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.1 = M1, we obtain

ATC1.1 (M1) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1 (M2) = ATC1.4 (M2) .

By (4.4) and T ∗
1.4 = M2, we obtain

ATC1.4 (M2) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4

(
PM2

D

)
= ATC1.3

(
PM2

D

)
.
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By (4.5) and T ∗
2.2 = T2.2, we obtain

ATC2.2

(
T2.2

)
= min

T∈[M1,
PM1
D ]

ATC2.2(T ) < ATC2.2

(
PM1

D

)
= ATC2.3

(
PM1

D

)
.

Hence
ATC∗ = ATC2.2(T2.2).

(c) k1 + k3 ≤ 2A < min{k2 + k3, k1 + k4} implies that 2A ∈ [k1 + k3, k2 + k3), 2A <
k2 + k3 + k5, 2A ∈ [k1, k1 + k4). Hence

2A ∈ [k1 + k3, k2 + k3) ⇒ T ∗
1.1 = T1.1 2A < k2 + k3 + k5 ⇒ T ∗

1.3 =
PM2

D
2A < k2 + k3 ⇒ T ∗

1.4 = M2 2A ≥ k1 ⇒ T ∗
2.1 = M1

2A ∈ [k1, k1 + k4) ⇒ T ∗
2.2 = T2.2 2A < k1 + k4 ⇒ T ∗

2.3 =
PM1

D

By (4.1) and T ∗
1.1 = T1.1, we obtain

ATC1.1(T1.1) = min
T∈[M1.M2]

ATC1.1(T ) < ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.1 = T1.1, we obtain

ATC1.1(T1.1) = min
T∈[M1.M2]

ATC1.1(T ) < ATC1.1(M2) = ATC1.4(M2).

By (4.4) and T ∗
1.4 = M2, we obtain

ATC1.4 (M2) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4

(
PM2

D

)
= ATC1.3

(
PM2

D

)
.

By (4.5) and T ∗
2.2 = T2.2, we obtain

ATC2.2

(
T2.2

)
= min

T∈[M1,
PM1
D ]

ATC2.2(T ) < ATC2.2

(
PM1

D

)
= ATC2.3

(
PM1

D

)
.

Hence
ATC∗ = min{ATC1.1(T1.1), ATC2.2(T2.2)}.

(d) k1+ k4 ≤ 2A < k2+ k3 implies that 2A ∈ [k1+ k3, k2+ k3), 2A < k2+ k3+ k5. Hence

2A ∈ [k1 + k3, k2 + k3) ⇒ T ∗
1.1 = T1.1 2A < k2 + k3 + k5 ⇒ T ∗

1.3 =
PM2

D
2A < k2 + k3 ⇒ T ∗

1.4 = M2 2A ≥ k1 ⇒ T ∗
2.1 = M1

2A ≥ k1 + k4 ⇒ T ∗
2.2 =

PM1

D
2A ≥ k1 + k4 ⇒ T ∗

2.3 = T2.3

By (4.1) and T ∗
1.1 = T1.1, we obtain

ATC1.1(T1.1) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.1 = T1.1, we obtain

ATC1.1(T1.1) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1(M2) = ATC1.4(M2).
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By (4.4) and T ∗
1.4 = M2, we obtain

ATC1.4 (M2) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4

(
PM2

D

)
= ATC1.3

(
PM2

D

)
.

By (4.5) and T ∗
2.3 = T2.3, we obtain

ATC2.3

(
T2.3

)
= min

T∈[PM1
D ,∞)

ATC2.3(T ) < ATC2.3

(
PM1

D

)
= ATC2.2

(
PM1

D

)
.

Hence

ATC∗ = min{ATC1.1(T1.1), ATC2.3(T2.3)}.

(e) k2 + k3 ≤ 2A < k1 + k4 implies that 2A ∈ [k2 + k3, k2 + k3 + k5), 2A < k2 + k3 + k5,
2A ∈ [k1, k1 + k4). Hence

2A ≥ k2 + k3 ⇒ T ∗
1.1 = M2 2A < k2 + k3 + k5 ⇒ T ∗

1.3 =
PM2

D
2A ∈ [k2 + k3, k2 + k3 + k5) ⇒ T ∗

1.4 = T1.4 2A ≥ k1 ⇒ T ∗
2.1 = M1

2A ∈ [k1, k1 + k4) ⇒ T ∗
2.2 = T2.2 2A < k1 + k4 ⇒ T ∗

2.3 =
PM1

D

By (4.1) and T ∗
1.1 = M2, we obtain

ATC1.1(M2) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.4 = T1.4, we obtain

ATC1.4(T1.4) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4(M2) = ATC1.1(M2).

By (4.4) and T ∗
1.4 = T1.4, we obtain

ATC1.4(T1.4) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4

(
PM2

D

)
= ATC1.3

(
PM2

D

)
.

By (4.5) and T ∗
2.2 = T2.2, we obtain

ATC2.2

(
T2.2

)
= min

T∈[M1,
PM1
D ]

ATC2.2(T ) < ATC2.2

(
PM1

D

)
= ATC2.3

(
PM1

D

)
.

Hence

ATC∗ = min{ATC1.4(T1.4), ATC2.2(T2.2)}.

(f) k1 + k4 ≤ 2A < k1 + k3 implies that 2A < k2 + k3, 2A < k2 + k3 + k5. Hence

2A < k1 + k3 ⇒ T ∗
1.1 = M1 2A < k2 + k3 + k5 ⇒ T ∗

1.3 =
PM2

D
2A < k2 + k3 ⇒ T ∗

1.4 = M2 2A ≥ k1 ⇒ T ∗
2.1 = M1

2A ≥ k1 + k4 ⇒ T ∗
2.2 =

PM1

D
2A ≥ k1 + k4 ⇒ T ∗

2.3 = T2.3
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By (4.1) and T ∗
2.2 = PM1

D , we obtain

ATC2.2

(
PM1

D

)
= min

T∈[M1,
PM1
D ]

ATC2.2(T ) < ATC2.2(M1)

= ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.1 = M1, we obtain

ATC1.1(M1) = min
T∈[M1.M2]

ATC1.1(T ) < ATC1.1(M2) = ATC1.4(M2).

By (4.4) and T ∗
1.4 = M2, we obtain

ATC1.4 (M2) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4

(
PM2

D

)
= ATC1.3

(
PM2

D

)
.

By (4.5) and T ∗
2.3 = T2.3, we obtain

ATC2.3

(
T2.3

)
= min

T∈[PM1
D ,∞)

ATC2.3(T ) < ATC2.3

(
PM1

D

)
= ATC2.2

(
PM1

D

)
.

Hence
ATC∗ = ATC2.3(T2.3).

(g) max{k2 + k3, k1 + k4} ≤ 2A < k2 + k3 + k5 implies that 2A ∈ [k2 + k3, k2 + k3 + k5).
Hence

2A ≥ k2 + k3 ⇒ T ∗
1.1 = M2 2A < k2 + k3 + k5 ⇒ T ∗

1.3 =
PM2

D
2A ∈ [k2 + k3, k2 + k3 + k5) ⇒ T ∗

1.4 = T1.4 2A ≥ k1 ⇒ T ∗
2.1 = M1

2A ≥ k1 + k4 ⇒ T ∗
2.2 =

PM1

D
2A ≥ k1 + k4 ⇒ T ∗

2.3 = T2.3

By (4.1) and T ∗
1.1 = M2, we obtain

ATC1.1(M2) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.4 = T1.4, we obtain

ATC1.4(T1.4) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4(M2) = ATC1.1(M2).

By (4.4) and T ∗
1.4 = T1.4, we obtain

ATC1.4(T1.4) = min
T∈[M2,

PM2
D ]

ATC1.4(T ) < ATC1.4

(
PM2

D

)
= ATC1.3

(
PM2

D

)
.

By (4.5) and T ∗
2.3 = T2.3, we obtain

ATC2.3

(
T2.3

)
= min

T∈[M1,
PM1
D ]

ATC2.3(T ) < ATC2.3

(
PM1

D

)
= ATC2.2

(
PM1

D

)
.

Hence
ATC∗ = min{ATC1.4(T1.4), ATC2.3(T2.3)}.
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(h) k2 + k3 + k5 ≤ 2A implies that 2A ≥ k2 + k3, 2A ≥ k2 + k3 + k5, 2A ≥ k1 + k4. Hence

2A ≥ k2 + k3 ⇒ T ∗
1.1 = M2 2A ≥ k2 + k3 + k5 ⇒ T ∗

1.3 = T1.3

2A ≥ k2 + k3 + k5 ⇒ T ∗
1.4 =

PM2

D
2A ≥ k1 ⇒ T ∗

2.1 = M1

2A ≥ k1 + k4 ⇒ T ∗
2.2 =

PM1

D
2A ≥ k1 + k4 ⇒ T ∗

2.3 = T2.3

By (4.1) and T ∗
1.1 = M2, we obtain

ATC1.1(M2) = min
T∈[M1,M2]

ATC1.1(T ) < ATC1.1(M1) = ATC2.1(M1).

By (4.2) and T ∗
1.4 = PM2

D , we obtain

ATC1.4

(
PM2

D

)
= min

T∈[M2,
PM2
D ]

ATC1.4(T ) < ATC1.4(M2) = ATC1.1(M2).

By (4.4) and T ∗
1.3 = T1.3, we obtain

ATC1.3(T1.3) = min
T∈[PM2

D ,∞)
ATC1.3(T ) < ATC1.3

(
PM2

D

)
= ATC1.4

(
PM2

D

)
.

By (4.5) and T ∗
2.3 = T2.3, we obtain

ATC2.3

(
T2.3

)
= min

T∈[M1,
PM1
D ]

ATC2.3(T ) < ATC2.3

(
PM1

D

)
= ATC2.2

(
PM1

D

)
.

Hence
ATC∗ = min{ATC1.3(T1.3), ATC2.3(T2.3)}.

A.11 The proof of Theorem 3.11

Proof. As in [3], we define the values ∆1, ∆2, ∆3, ∆4 as follows

∆1 = −2A+
M2

1

D
[pIc(1− r)(P 2 −D2) + sIdD

2 + hP (P −D)]

∆2 = −2A+DM2
1 (H + SId)

∆3 = −2A+
M2

2

D
[pIc(P

2 −D2) + sIdD
2 + hP (P −D)]

∆4 = −2A+DM2
2 (H + SId).

Then

∆1 = −2A+ k1 + k4,∆2 = −2A+ k1,∆3 = −2A+ k2 + k5,∆4 = −2A+ k2.

(a) 2A ≤ k1 implies that ∆2 ≥ 0. Hence, by Theorem 1(A) of [3], we obtain

ATC∗ = ATC2.4(T2.4).
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(b) k1 < 2A ≤ min{k2, k1+k4} implies that ∆1 ≥ 0, ∆2 < 0, ∆4 ≥ 0. Hence, by Theorem
1(B) of [3], we obtain

ATC∗ = min{ATC2.3(T2.3), ATC2.4(T2.4)}.

(c) k1 + k4 < 2A ≤ k2 implies that ∆1 < 0, ∆4 ≥ 0. Hence, by Theorem 1(D) of [3], we
obtain

ATC∗ = min{ATC2.2(T2.2), ATC2.5(T2.5)}.

(d) k2 < 2A ≤ k1 + k4 implies that ∆1 ≥ 0, ∆2 < 0, ∆4 < 0. Hence, by Theorem 1(C) of
[3], we obtain

ATC∗ = min{ATC2.2(T2.2), ATC2.5(T2.5)}.

(e) max{k2, k1 + k4} < 2A < k2 + k5 implies that ∆1 < 0, ∆3 > 0 ∆4 < 0. Hence, by
Theorem 1(E) of [3], we obtain

ATC∗ = min{ATC2.3(T2.3), ATC2.5(T2.5)}.

(f) k2 + k5 ≤ 2A implies that ∆3 ≤ 0. Hence, by Theorem 1(F) of [3], we obtain

ATC∗ = min{ATC2.3(T2.3), ATC2.6(T2.6)}.
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