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Abstract: A fluid queue is an input-output system where a continuous fluid enters and leaves a storage
device, called a buffer, according to a randomly varying rate influenced by an underling stochastic environ-
ment or background. This paper considers a fluid flow model driven by a multi-server M/M/c queue with
classical vacation. We obtain the sets of differential equations satisfied by the stationary joint distribution
of the buffer content, by which we gain the simple structure of the Laplace transform (LT) for the stationary
distribution of the buffer content. Furthermore, we give the probability of an empty buffer content and the
expected buffer content based on the relationship between the LT and the Laplace-Stieltjes transform (LST)
of the stationary distribution.
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Introduction

Owing to the application of fluid queueing models in the field of wireless communications,
transport, storage and computer systems, or others fields, the model has recently attracted
interest from probability researchers as a research subject.

As it is well known, the distribution function of any buffer content satisfies a set of
differential equations. Spectral analysis method has been the most traditional and commonly
used method to find the solution to these equations. Kulkarni [2] proposed using the spectral
method to deal with a fluid model driven by a Markov process with limited state.

As well as the spectral analysis method, Doorn and Scheinhardt [1] provided using or-
thogonal polynomials to express the stationary distribution of the buffer content, which
is driven by an infinite-state birth-death process. Ramaswami [9] advanced a matrix ana-
lytic method, Neuts [7] extended geometric solution method into multi-dimensional matrix
geometric solution method.

Lenin and Parthasarathy [3] studied the fluid model driven by an M/M/1/N queue,
while Parthasarathy et al. [8] and many other researchers learned from indicators of fluid
models driven by an M/M/1 queue with different methods.
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China (No0.11201408) and Natural Science Foundation of Hebei Province (No.A2013203148), and in part by
MEXT, Japan.
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However, fluid models driven by queues with different vacation policies just begin re-
search, such as the fluid model driven by an M/M/1/N queue with multiple exponential
vacations in [4], the fluid model driven by an M/G/1 queue with multiple exponential va-
cations in [5] and the fluid model driven by the M/M/1 queue with working vacation and
vacation interruption in [10].

In this paper, we mainly study some indexes relating to fluids model driven by an M/M/¢
queue with multiple vacations. Firstly, we discuss the drive system and obtain the station-
ary distribution of the drive system. Then, we introduce the Laplace transform (LT) and
Laplace-Stieltjes transform (LST) of distribution functions. The LST of the stationary dis-
tribution of the buffer content is given on the basis of the relationship between the LT and
the LST. Furthermore, we obtain the brief expressions of the mean of the buffer content, as
well as the probability of buffer being empty.

The rest of the paper is organized as follows. In Section 2, an M/M/c queue with multiple
vacations is presented and the steady-state distribution of queue length is derived under the
stationary condition. In Section 3, we establish the fluid model driven by an underlying
M/M/c vacation queue, and obtain the differential equations satisfied the stationary joint
distribution of the fluid flow model. Then we gain a simple structure of the LT of the
stationary distribution of the buffer content. Furthermore, we give the stationary probability
of empty buffer content and the mean of the buffer content in steady state based on the
relationship between the LT and the LST of the distribution. Conclusions are presented in
Sections 4.

Description of an M/M/c Queue with Multiple Vacations

In this system, the inter-arrival times and service times follow an exponential distribution
with parameters A and pu, respectively. When there is no customer in the system after a
service completion, the server will take a vacation of a random length which follows an
exponential distribution with parameters 6. If there are customers in the system when a
vacation comes to an end, the servers enter the busy period; Otherwise, the servers take
another vacation.

This model is identified as the M/M/c queue with multiple vacations, abbreviated as the
M/M/e¢/MV queue.

We assume that interarrival times, service times and vocation times are all independent,
and the service discipline is First-Come, First-Served (FCFS).

Let L(t) be the number of customers in the system at time ¢, and J(t) = 0 or 1, decided
according to whether the system stays in a vacation period or a busy period at time ¢.
Namely,

J(t) = 0, the system stays in a vacation period at time ¢,
"1 1, the system stays in a busy period at time ¢.

Then, the stochastic process {(L(t), J(t)),t > 0} is a Quasi-Birth-and-Death (QBD) process
with the state spaces as follows:

Q= {(0,0)}U{(k‘,j), k>1,j=0, 1}

Arranging the state spaces in lexicographic order, the infinitesimal generator Q for the
QBD process {(L(t), J(t)),t > 0} can be expressed as a block tridiagonal matrix form, that
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is

A(J C(J
B, A, C
B, A, C
Q = 9
B._., A_, C
B A C
where
AO = _)\7 B, = (O7M)T7 CO = ()\70)7
(=240 0 _ _
Ak_( ) vk ) F=L2e—l
0 O
Bk_<()ku>’ k=23, c—1,

2o (30) A (0 ) e-(30)

In order to get the expression of the stationary distribution of the process {(L(t), J(t)),t >
0}, it is necessary to obtain the minimal non-negative solution of the matrix equation
R’B + RA + C = 0. This solution R is called the rate matrix, which plays an impor-
tant role in the analysis of the QBD process.

Lemma 2.1. If p. = \/(cu) < 1, the quadratic matriz equation R*’B + RA + C = 0 has
the minimal non-negative solution as follows:

A
R=| x+0 ™ |. (2.1)
0 Pe

It is well known that the stationary distribution of {(L(¢), J(t)),¢ > 0} exists if and only
if the spectral radius SP(R) < 1 of the rate matrix R and the homogeneous linear equation
Z x B[R] = 0 has a positive solution, where Z is a (2 x ¢+ 1)-dimensional row vector, and

AO CO
B, A, C
B, A, C
B[R] =
B, A c

" B RB+A
It is easy to conclude that the M/M/c/MV system is stable if and only if the system
workload p. < 1. If p. < 1, let
Tkj = lim P{L(t):kvj(t):j}7 (k,j)EQ,

t——+oo

then {m;,k > 0,7 = 0,1} is the stationary distribution of the process {(L(t), J(t)),t > 0}.
Denoted by
7Tk=(7rk0,7rk1), k>1, H=(7T00,71'1,71'2,...).

Then we have
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Theorem 2.2. If p. < 1, the stationary distributions of {(L(t), J(t)),t > 0} are as follows:

Mo = H(%w)k, k>0,

k=141 —i c c v
[ G T2 5 5 D sk

TRl = e

Te0 Z (7)\ )k_c_vpcv + Wclpck_c, k>c
=1 A+6

where the constant H = myg can be determined by the normalization condition:

00 00
Zﬂ'ko +Z7Tk1 =1.
k=0 k=1

Proof. Since II is a solution of matrix equation Z x B[R] = 0, we can obtain the linear
equations as following:
—Amoo + pmir = 0,
Om10 — (A4 p)mi1 + 2pume; = 0,
ATp—1,0 — A+ 0)mp =0, 1<Ek<eg, (2.2)
/\7rk—1,1 + 97Tk0 - ()\ + k,u)wkl + (k’ + 1)‘LL’/Tk+1,1 = 0, 2 § k § Cc— 1,
)\'/chl,l + ()\ + 9)’/TC0 — CUTc1 = 0.
Denoted by w9 = H, from the third expression in Eq. (2.2), we can obtain

A

m)k, 0<k S C. (23)

TEo — H(
Especially, we have
A e
A6
On the basis of the forth and fifth expressions in Eq. (2.2), we can get

7TC():H(

kumpr = Amp_1,1 + Ameo + 92%0, 2<k<ec
v=k

Using the first expression in Eq. (2.2) and Eq. (2.3), after computing iteratively, we get
1Ak SRl AR A e S A\
=i {50 50 () 5 2 ()] rskse

i+1

where we assume that the empty sum is equal to zero.
On the other hand, using geometric-matrix method (refer to [7]), we can get

m,=mw. R = (7o, ﬁcl)Rk_c, k> c.
From Eq. (2.1), we know that
A VK AR
R = (A+9) U;(AH)) P ), k>,
0 per

then the expression of 7, (k > ¢) is obtained. Finally, the constant H can be determined by
the normalization condition ZZ;)B Ko + Z:iol T = 1. O
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Analysis for the Fluid Model

Let X(t) be the content of the buffer at time ¢, which is a non-negative random variable.
Assume that the net input rate of fluid (the input rate minus the output rate) to the buffer
is the function of the process {(X(¢), L(¢), J(t)),t > 0}:

0, (L(t)"]<t)) = (0,0), X(t> =0,

_ dX (t) _ o, (L(t),J(t)) = (0,0), X(¢t) >0,
X LOTON= =37 =4 00 (. 00) = (k,0), k> 1,
o (L0, T(0) = (k 1), k> 1,

where 0 < 0, 01 > 0¢ > 0. Now, the fluid model driven by the M/M/c¢ queue with multiple
vacations is a three-dimensional Markov process with state space Q' = [0, +00) x Q. Let

o0 o0
d = omgo + 09 E ko + 01 E Tk,
k=1 k=1

then d is called the average drift of the fluid model. It is not difficult to prove that the
fluid model is stable if and only if d < 0 and p. < 1 when the buffer capacity is infinite (see
Kulkarni [2]).

Let Fyo(t,x) = P{L(t) = k,J(t) = 0,X(t) < 2}, k > 0 and Fj(¢t,x) = P{L(t) =
k,J(t) =1,X(t) <z}, k > 1, which are called the instantaneous joint probability distri-
bution functions of the three-dimensional Markov process. If the process achieves balance,
{(X(t), L(t), J(t)),t > 0} converges to the random vector (X, L, J), where X is the sta-
tionary distribution of the buffer content. The joint distribution of (X, L,J) is denoted
by

Fro(x) = fli{f}o Fro(t,x), Fri(x) = flggo Fri(t, x).

Then, the buffer content in steady state has a distribution function:
F(z) = P{X <a} = Foo(2) + Y_Fro(x) + Y Fa(z), z>0.
k=1 k=1

Denoted by
F(Z‘) = (Foo(x), Fl(.ﬁ),Fg(I)7 ),
where Fy(x) = (Fro(x), Fx1(x)), k > 1.
Using the standard methods (see [6] or [8]), we can prove that F'(x) satisfies the matrix
differential equation as follows:

d
%F(:v)A =F(2)Q (3.1)

and the following boundary condition:
F(0) = (a,0,0,0,...), (3.2)

where A = diag(0,%, X, ...), 3 = diag(op, 01). The probability a = Fyo(0) = P{X =0,L =
0,J = 0} is called the stationary probability of the empty buffer content, which will be
determined in the following analysis.

In order to solve the differential Eq. (3.1), we have to get help from the LT of the joint
distribution:

Fri(s) = /0 e Fyi(x)dx, s>0, (k,j)e.
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Denoted by
Fi(s) = (Fpo(s), Fra(s)), k> 1, F(s) = (Fyo(s), Fi(s),...).

Taking the LT on both sides of Eq. (3.1) and using Eq. (3.2), we can found that F(s)
satisfies the equation as in the following structure:

F(s)(Q — sA) = —F(0)A = (—ao,0,0,0,...). (3.3)

Next we introduce a crucial quadratic equation, whose roots play an important role in
the following analysis.

Lemma 3.1. If p. < 1, for any s > 0, cuz?> — (A + cpu+ s01)z + A = 0 has two real roots
Yo(s) and v1(s), where

(A +ep+s01) — (+)V/ (A + e+ 501)2 — dedp

T0(8) (1 (s)) = o
It is easy to verify 0 < yo(s) < 1,71(s) > 1, and
A
0) =— = pg, 0) =1.
00) = 2 = pes (0

Lemma 3.2. If p. < 1, the quadratic matriz equation (R(s))?B + R(s)(A —sX)+C =0
has the minimal non-negative solution as follows:

A 6y0(s)
R(s) = A+0+s00 A+0+ sog— cuyo(s)
0 Yo(s)
Defined a series of functions by
QSO(S) = 1a
A —cuy(s)  (c—k)u 501 e (3.4)
(o) =3+ dl) T dule) skt
and by
900(5) =0,
(S) . ()\+9+80'0)9
P18 = A+ 0 + so0 — cuyo(s))’
A (c—k)p+ soy (c—k+1)p 0 A+ 6+ sog\ k-1
oils) = DI 5T oy 15) - ETEE D ()4 § (AEEE220)
2<k<c-—1.
(3.5)

The matrix Eq. (3.3) can be rewritten as

— (A + s0)Foo(s) + pFi1(s) = —ao,

0F10(s) — (N + p + s01)F11(s) + 2uFs1(s) = 0,
)\Fk—Lo(S) —(A+6+ SUO)Fko(s) =0, 1<k<c—1,

Ay 11(8) + 0Fro(s) — (A + kp + 501) Fra(s) + (k + DpFri11(s) =0, 2<k<ec—1,

Fi 1(s)C+ Fip(s)(A—sX)+ Fiy1(s)B=0, k>c.
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Using Eq. (3.4) and Eq. (3.5), we get the following Theorem 3.3.
Theorem 3.3. If d <0 and p. < 1, Fko(s) and Fkl(s) can be expressed as
- A+ 0+ so
bt - (452
Fra(s) = Ki(8)¢e—1-k(5) — Ko(8)pe—1-k(s), 1<k<ec—1, (3.7)

c—1—k
) Ko(s), 0<k<c-—1,

1(8) = (Fee1,0(8), Fe1,1(8)), and

aoA" |2p603(s) — (A + 1+ 501) .- (5)
B H(s) ’
ac [QMAC_lcpc,g(s) — A+ 450X P a(8)pe_a(8) — AN+ 0 + 500)¢ 2de_2(s)
Pe—2(s)H(s) 7
H(s) =X\ + 0 4 500) 2 pe_2(5) + 2\ + 56) (X + 0 + 500)° Lde_3(5) — 2> X oe_3(s)
4+ 20N e 3(8)pe_a(s) — (N4 p + 501) (A + 50) (A + 0 4 500) L he_a(s).

Proof. It d < 0 and p. < 1, the 3-dimensional Markov process {(X(¢), L(t), J(t)),t > 0}
has unique stationary probability distribution {Fy;(z), (k,j) € Q}. Therefore, there exists
unique solution to Eq. (3.6). On the other hand, we can verify that F;(s), (k,j) € Q in Eq.

(3.7) is satisfied with Eq. (3.6).
Denoted by F._1(s) = (Ko(s), K1(s)). If k > ¢, substituting the third expression of Eq.
(3.7) into the fifth line of Eq. (3.6), using lemma 3.2 we obtain
Fr1(s)C + Fi(s)(A — s2) + Fj1(s)B
=(Ko(s), K1(5))(R(s))"*°C + (Ko(s), K1(s))(R(s))* " (A — %)
+ (Ko(s), K1(s))(R(s))*“**B
=(Ko(s), K1(5))(R(5))"~°[C + R(s)(A ~ sZ) + (R(s))* B]
=0.

Fi(s) = (Ko(s), Ku(s)(R(s)* M, k>,
where (Ko(s), Ki(s)) = F._

](0(8)

Kl(S) =

From the third line of Eq. (3.6), we know that

. A+ 0+ so
Faty = (V0o

Noting that Eq. (3.4) and Eq. (3.5), substituting the second expression of Eq. (3.7) into
the fourth line of Eq. (3.6), we obtain

/\Fk_m(s) + GFko(s) — (A +ku+ sal)ﬁkl(s) + (k+ 1),u}%k+1,1(s)
A ()0 1(5) — K)o i(s)] +0(2FEEIT0) g

— A+ kp+ s01) [K1(8)pe—i—1(5) — Ko(s)pe——1(s)]
+ (k + 1)p[K1(5)de—r—2(5) — Ko(s)pe—k—2(s)]
K () [Mei() — A+ kit 501)6e () + (k + Db (s)]
— Kofs) oe-s(s) — o(FELEL
=0.

c—1—k
) Ko(s), 0<k<c—1.

)T O b+ 500) poir () + (k + I)U@c—k—Q(S)}
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Furthermore, the expressions of Ky(s) and K;(s) can be determined by the first two

expressions of Eq. (3.6), then theorem 3.3 is proved.

Theorem 3.4. If d < 0 and p. < 1, the stable buffer content X has the LST as

F*(s) =

S

ﬂ{l L Mor = a0) + (6 + 500) (01 = 0)

o1 (6‘+ 80'0)

KA+ 0 + 500)°L [2ude_3(s) — (A + 11 + 501)Ge_a(5)] }

Proof. Taking sum on both sides of the forth line of Eq. (3.6) from 2 to ¢-1, we have

H(s)

0> Fro(s) = so1 > Fra(s) + AF1i(s) = AFe_11(s) — 20F1 () + cpuFra (s)

Summing up Eq. (11) and the second line of Eq. (3.6), we obtain

c—1

507 Z Fra(s) =0 Fro(s) — pFh1(s)=AFe 11(s) + cpFea(s).

k=1

Using Eq. (3.7) and the first line of Eq. (3.6), then we have

=1 . A+0+s0 - aoc  cpuyo(s) —
i1 = — B ey _—
2:: S01 Z kO S01 00( ) S01 + S01
0
Cl 70(5) K (8)
s01(A 4+ 0 + sog — cuyo(s))
Similarly, from the third expression in Eq. (3.6), we get
A+ 6+ sog - A
F = ——F —— K, .
Z kO 9+800 00(8) >\+9+SUO O(S)

A

=0.

Kl(S)

O

(3.8)

Hence, the LT of the stationary distribution F'(x) of the buffer content can be given by

F(s) = /0 o e 5 F(z)dx

- Y i <>+Z§Fm<s>+§m<s>e

k=c

~
Il

)\(0 + 80'1)

- [ o1(0 + soq) A
cubyo(s) ac cpuyo(s) —
K, 49, S0 T A
+301 A+ 0+ sog — cuyo(s)) o(s) + 501 + soq

+(Ko(s), K1 (s))R(s)(I — R(s)) e,

where e = (1,1)7.
For the spectral radius

SP[R(s)] = max <70(s), /\—|—0)\+sao) <1,

0
(01 —09) + (0 + s00) (01 — 0) (/\+9+sao)c—1 -

A

Ki(s)

so1(0 + sog)

Ko(s)
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so I — R(s) is invertible, and

A+ 0+ s09 070(8) (A + 0 + s00)
doreyio | 0T OO o0 —emo(s) +so0) (1 =70()
1
0 ey

After calculating, we have

- _ao | AMo1—o00)+ (0 +s09)(01 —0) (A+ 0+ 509\ !
Fls) = 501 + o1(0 + so9) ( A ) Ko(s).

Next, we define the LST of the stationary joint distribution for the fluid model and the
stationary distribution of the buffer content as

Fii(s) = [ em2dFy(x),  (k,j) €9,

F*(s) = f0+°o e STdF(x).

It is easy to prove
FEjy(s) = —a+ sFoo(s),

Fi(s) = sFy(s), k> 1.

Substituting the expression of ij(s) into the above expressions and after calculation and
arrangement, we can obtain the LST of the stationary distribution of the buffer content as

. _ ao Ao1 —0g) + (0 + sop) (o1 — o) s
Fs) = o1 {1 + (0 + s00) H(s) (3.9)
XA+ 0+ 500) 7 [2p¢c—3(5) = (A + p + 501)de—2(s)]
Then theorem 3.4 is proved. [

With the normalization condition lin%) F*(s) = 1 and Hopital’s rule, we can acquire the
5—

expression of the probability a as

o1 0H'(0)
o 0H'(0) + [A(o1 — 00) + 0(01 — 0)| (A + )1 [2pucpe—5(0) — (A + 1) pe—2(0)]

Denoted by

Aoy — o0) + (0 4 sog) (o1 — o)
(0 + soo)

fls) = ,
g(s) = %,
h(S) = ()\ + 0 + 80'())0_1 [2M¢073(8) - ()\ + M + SO’1)¢C,2(S)] .

Now, taking the derivatives on both sides of Eq. (3.9) with respect to s, then let s — 0,
we get the mean of the buffer content:

ao

E(X) = == (f'(0)g(0)h(0) + [(0)g'(0)(0) + F(0)g(0)1'(0)),

g1
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where
Mor —o0) + 0(01 — o)

62 ’

f(0) = 1 7 7
90 = oy
h(0) = (A +0)" ' [2u¢e—3(0) — (A + p)e—2(0)],
£1(0) = ool(o1 = 00)(1 = ) = AMa1 = 00)]
(0)
(0)

W)= (c—1)(A+0)00[2udc—3(0) — (A + p)de—2(0)]
HA+0)° 206, _5(0) — (A + 1)¢r_5(0) — o1e—2(0)].

Conclusions

In this paper, we discussed the fluid model driven by an M/M/c multiple vocations queue,
where the input rate and output rate are determined by the drive system. That is the
queue length of the M/M/c multiple vacations queue. Using a QBD process and a matrix-
geometric solution method, the steady state distribution of the queue length was derived.
Furthermore, we obtained the main expressions for the LST of the stationary distribution,
the probability of empty buffer content and the mean of the buffer content.
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