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However, fluid models driven by queues with different vacation policies just begin re-
search, such as the fluid model driven by an M/M/1/N queue with multiple exponential
vacations in [4], the fluid model driven by an M/G/1 queue with multiple exponential va-
cations in [5] and the fluid model driven by the M/M/1 queue with working vacation and
vacation interruption in [10].

In this paper, we mainly study some indexes relating to fluids model driven by an M/M/c
queue with multiple vacations. Firstly, we discuss the drive system and obtain the station-
ary distribution of the drive system. Then, we introduce the Laplace transform (LT) and
Laplace-Stieltjes transform (LST) of distribution functions. The LST of the stationary dis-
tribution of the buffer content is given on the basis of the relationship between the LT and
the LST. Furthermore, we obtain the brief expressions of the mean of the buffer content, as
well as the probability of buffer being empty.

The rest of the paper is organized as follows. In Section 2, an M/M/c queue with multiple
vacations is presented and the steady-state distribution of queue length is derived under the
stationary condition. In Section 3, we establish the fluid model driven by an underlying
M/M/c vacation queue, and obtain the differential equations satisfied the stationary joint
distribution of the fluid flow model. Then we gain a simple structure of the LT of the
stationary distribution of the buffer content. Furthermore, we give the stationary probability
of empty buffer content and the mean of the buffer content in steady state based on the
relationship between the LT and the LST of the distribution. Conclusions are presented in
Sections 4.

2 Description of an M/M/c Queue with Multiple Vacations

In this system, the inter-arrival times and service times follow an exponential distribution
with parameters λ and µ, respectively. When there is no customer in the system after a
service completion, the server will take a vacation of a random length which follows an
exponential distribution with parameters θ. If there are customers in the system when a
vacation comes to an end, the servers enter the busy period; Otherwise, the servers take
another vacation.

This model is identified as the M/M/c queue with multiple vacations, abbreviated as the
M/M/c/MV queue.

We assume that interarrival times, service times and vocation times are all independent,
and the service discipline is First-Come, First-Served (FCFS).

Let L(t) be the number of customers in the system at time t, and J(t) = 0 or 1, decided
according to whether the system stays in a vacation period or a busy period at time t.
Namely,

J(t) =

{
0, the system stays in a vacation period at time t,
1, the system stays in a busy period at time t.

Then, the stochastic process {(L(t), J(t)), t ≥ 0} is a Quasi-Birth-and-Death (QBD) process
with the state spaces as follows:

Ω = {(0, 0)}
∪

{(k, j), k ≥ 1, j = 0, 1}.

Arranging the state spaces in lexicographic order, the infinitesimal generator Q for the
QBD process {(L(t), J(t)), t ≥ 0} can be expressed as a block tridiagonal matrix form, that
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is

Q =



A0 C0

B1 A1 C
B2 A2 C

. . .
. . .

. . .

Bc−1 Ac−1 C
B A C

. . .
. . .

. . .


,

where

A0 = −λ, B1 = (0, µ)T , C0 = (λ, 0),

Ak =

(
−(λ+ θ) θ

0 −(λ+ kµ)

)
, k = 1, 2, ..., c− 1,

Bk =

(
0 0
0 kµ

)
, k = 2, 3, ..., c− 1,

B =

(
0 0
0 cµ

)
, A =

(
−(λ+ θ) θ

0 −(λ+ cµ)

)
, C =

(
λ 0
0 λ

)
.

In order to get the expression of the stationary distribution of the process {(L(t), J(t)), t ≥
0}, it is necessary to obtain the minimal non-negative solution of the matrix equation
R2B + RA + C = 0. This solution R is called the rate matrix, which plays an impor-
tant role in the analysis of the QBD process.

Lemma 2.1. If ρc = λ/(cµ) < 1, the quadratic matrix equation R2B +RA +C = 0 has
the minimal non-negative solution as follows:

R =

 λ

λ+ θ
ρc

0 ρc

 . (2.1)

It is well known that the stationary distribution of {(L(t), J(t)), t ≥ 0} exists if and only
if the spectral radius SP (R) < 1 of the rate matrix R and the homogeneous linear equation
Z ×B[R] = 0 has a positive solution, where Z is a (2× c+1)-dimensional row vector, and

B[R] =



A0 C0

B1 A1 C
B2 A2 C

. . .
. . .

. . .

B
c−1

A
c−1

C
B RB + A


.

It is easy to conclude that the M/M/c/MV system is stable if and only if the system
workload ρc < 1. If ρc < 1, let

πkj = lim
t→+∞

P{L(t) = k, J(t) = j}, (k, j) ∈ Ω,

then {πkj , k ≥ 0, j = 0, 1} is the stationary distribution of the process {(L(t), J(t)), t ≥ 0}.
Denoted by

πk = (πk0, πk1), k ≥ 1, Π = (π00,π1,π2, ...).

Then we have
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Theorem 2.2. If ρc < 1, the stationary distributions of {(L(t), J(t)), t ≥ 0} are as follows:

πk0 = H
( λ

λ+ θ

)k

, k ≥ 0,

πk1 =


H

{
1

k!

(λ
µ

)k

+
k−1∑
i=1

i!

k!

(λ
µ

)k−i[( λ

λ+ θ

)c

+
θ

λ

c∑
v=i+1

( λ

λ+ θ

)v]}
, 1 ≤ k ≤ c,

πc 0

k−c∑
v=1

( λ

λ+ θ

)k−c−v

ρc
v + πc1ρc

k−c, k > c

where the constant H = π00 can be determined by the normalization condition:

∞∑
k=0

πk0 +
∞∑
k=1

πk1 = 1.

Proof. Since Π is a solution of matrix equation Z ×B[R] = 0, we can obtain the linear
equations as following:

−λπ00 + µπ11 = 0,
θπ10 − (λ+ µ)π11 + 2µπ21 = 0,
λπk−1,0 − (λ+ θ)πk0 = 0, 1 ≤ k ≤ c,
λπk−1,1 + θπk0 − (λ+ kµ)πk1 + (k + 1)µπk+1,1 = 0, 2 ≤ k ≤ c− 1,
λπc−1,1 + (λ+ θ)πc0 − cµπc1 = 0.

(2.2)

Denoted by π00 = H, from the third expression in Eq. (2.2), we can obtain

πk0 = H(
λ

λ+ θ
)k, 0 ≤ k ≤ c. (2.3)

Especially, we have

πc0 = H(
λ

λ+ θ
)c.

On the basis of the forth and fifth expressions in Eq. (2.2), we can get

kµπk1 = λπk−1,1 + λπc0 + θ
c∑

v=k

πv0, 2 ≤ k ≤ c.

Using the first expression in Eq. (2.2) and Eq. (2.3), after computing iteratively, we get

πk1 = H

{
1

k!

(λ
µ

)k

+
k−1∑
i=1

i!

k!

(λ
µ

)k−i[( λ

λ+ θ

)c

+
θ

λ

c∑
v=i+1

( λ

λ+ θ

)v]}
, 1 ≤ k ≤ c,

where we assume that the empty sum is equal to zero.
On the other hand, using geometric-matrix method (refer to [7]), we can get

πk = πcR
k−c = (πc0, πc1)R

k−c, k ≥ c.

From Eq. (2.1), we know that

Rk =

 ( λ

λ+ θ

)k k∑
v=1

( λ

λ+ θ

)k−v

ρc
v

0 ρc
k

 , k ≥ 1,

then the expression of πk(k ≥ c) is obtained. Finally, the constant H can be determined by
the normalization condition

∑+∞
k=0 πk0 +

∑+∞
k=1 πk1 = 1.
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3 Analysis for the Fluid Model

Let X(t) be the content of the buffer at time t, which is a non-negative random variable.
Assume that the net input rate of fluid (the input rate minus the output rate) to the buffer
is the function of the process {(X(t), L(t), J(t)), t ≥ 0}:

η[X(t), L(t), J(t)] =
dX(t)

dt
=


0, (L(t), J(t)) = (0, 0), X(t) = 0,

σ, (L(t), J(t)) = (0, 0), X(t) > 0,

σ0, (L(t), J(t)) = (k, 0), k ≥ 1,

σ1, (L(t), J(t)) = (k, 1), k ≥ 1,

where σ < 0, σ1 > σ0 > 0. Now, the fluid model driven by the M/M/c queue with multiple
vacations is a three-dimensional Markov process with state space Ω′ = [0,+∞)× Ω. Let

d = σπ00 + σ0

∞∑
k=1

πk0 + σ1

∞∑
k=1

πk1,

then d is called the average drift of the fluid model. It is not difficult to prove that the
fluid model is stable if and only if d < 0 and ρc < 1 when the buffer capacity is infinite (see
Kulkarni [2]).

Let Fk0(t, x) = P{L(t) = k, J(t) = 0, X(t) ≤ x}, k ≥ 0 and Fk1(t, x) = P{L(t) =
k, J(t) = 1, X(t) ≤ x}, k ≥ 1, which are called the instantaneous joint probability distri-
bution functions of the three-dimensional Markov process. If the process achieves balance,
{(X(t), L(t), J(t)), t ≥ 0} converges to the random vector (X,L, J), where X is the sta-
tionary distribution of the buffer content. The joint distribution of (X,L, J) is denoted
by

Fk0(x) = lim
t→∞

Fk0(t, x), Fk1(x) = lim
t→∞

Fk1(t, x).

Then, the buffer content in steady state has a distribution function:

F (x) = P{X ≤ x} = F00(x) +
∞∑
k=1

Fk0(x) +
∞∑
k=1

Fk1(x), x ≥ 0.

Denoted by
F (x) = (F00(x),F 1(x),F 2(x), ...),

where F k(x) = (Fk0(x), Fk1(x)), k ≥ 1.
Using the standard methods (see [6] or [8]), we can prove that F (x) satisfies the matrix

differential equation as follows:
d

dx
F (x)Λ = F (x)Q (3.1)

and the following boundary condition:

F (0) = (a, 0, 0, 0, ...), (3.2)

where Λ = diag(σ,Σ,Σ, ...), Σ = diag(σ0, σ1). The probability a = F00(0) = P{X = 0, L =
0, J = 0} is called the stationary probability of the empty buffer content, which will be
determined in the following analysis.

In order to solve the differential Eq. (3.1), we have to get help from the LT of the joint
distribution:

F̂kj(s) =

∫ ∞

0

e−sxFkj(x)dx, s > 0, (k, j) ∈ Ω.
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Denoted by

F̂ k(s) = (F̂k0(s), F̂k1(s)), k ≥ 1, F̂ (s) = (F̂00(s), F̂ 1(s), ...).

Taking the LT on both sides of Eq. (3.1) and using Eq. (3.2), we can found that F̂ (s)
satisfies the equation as in the following structure:

F̂ (s)(Q− sΛ) = −F (0)Λ = (−aσ, 0, 0, 0, ...). (3.3)

Next we introduce a crucial quadratic equation, whose roots play an important role in
the following analysis.

Lemma 3.1. If ρc < 1, for any s ≥ 0, cµz2 − (λ + cµ + sσ1)z + λ = 0 has two real roots
γ0(s) and γ1(s), where

γ0(s)(γ1(s)) =
(λ+ cµ+ sσ1)− (+)

√
(λ+ cµ+ sσ1)2 − 4cλµ

2cµ
.

It is easy to verify 0 < γ0(s) < 1, γ1(s) > 1, and

γ0(0) =
λ

cµ
= ρc, γ1(0) = 1.

Lemma 3.2. If ρc < 1, the quadratic matrix equation (R(s))2B +R(s)(A− sΣ) +C = 0
has the minimal non-negative solution as follows:

R(s) =

 λ

λ+ θ + sσ0

θγ0(s)

λ+ θ + sσ0 − cµγ0(s)

0 γ0(s)

 .

Defined a series of functions by
ϕ0(s) = 1,

ϕk(s) =
λ− cµγ0(s)

λ
+

(c− k)µ

λ
ϕk−1(s) +

sσ1

λ

k−1∑
v=0

ϕv(s), 1 ≤ k ≤ c− 1,
(3.4)

and by

φ0(s) = 0,

φ1(s) =
(λ+ θ + sσ0)θ

λ(λ+ θ + sσ0 − cµγ0(s))
,

φk(s) =
λ+ (c− k)µ+ sσ1

λ
φk−1(s)−

(c− k + 1)µ

λ
φk−2(s) +

θ

λ

(λ+ θ + sσ0

λ

)k−1

,

2 ≤ k ≤ c− 1.
(3.5)

The matrix Eq. (3.3) can be rewritten as

−(λ+ sσ)F̂00(s) + µF̂11(s) = −aσ,

θF̂10(s)− (λ+ µ+ sσ1)F̂11(s) + 2µF̂21(s) = 0,

λF̂k−1,0(s)− (λ+ θ + sσ0)F̂k0(s) = 0, 1 ≤ k ≤ c− 1,

λF̂k−1,1(s) + θF̂k0(s)− (λ+ kµ+ sσ1)F̂k1(s) + (k + 1)µF̂k+1,1(s) = 0, 2 ≤ k ≤ c− 1,

F̂ k−1(s)C + F̂ k(s)(A− sΣ) + F̂ k+1(s)B = 0, k ≥ c.
(3.6)
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Using Eq. (3.4) and Eq. (3.5), we get the following Theorem 3.3.

Theorem 3.3. If d < 0 and ρc < 1, F̂k0(s) and F̂k1(s) can be expressed as
F̂k0(s) =

(λ+ θ + sσ0

λ

)c−1−k

K0(s), 0 ≤ k ≤ c− 1,

F̂k1(s) = K1(s)ϕc−1−k(s)−K0(s)φc−1−k(s), 1 ≤ k ≤ c− 1,

F̂ k(s) = (K0(s),K1(s))(R(s))k−c+1, k ≥ c,

(3.7)

where (K0(s),K1(s)) = F̂ c−1(s) = (F̂c−1,0(s), F̂c−1,1(s)), and

K0(s) =
aσλc−1

[
2µϕc−3(s)− (λ+ µ+ sσ1)ϕc−2(s)

]
H(s)

,

K1(s) =
aσ

[
2µλc−1φc−3(s)− (λ+ µ+ sσ1)λ

c−1ϕc−2(s)φc−2(s)− λθ(λ+ θ + sσ0)
c−2ϕc−2(s)

]
ϕc−2(s)H(s)

,

H(s) =λµθ(λ+ θ + sσ0)
c−2ϕc−2(s) + 2µ(λ+ sσ)(λ+ θ + sσ0)

c−1ϕc−3(s)− 2µ2λc−1φc−3(s)

+ 2µ2λc−1ϕc−3(s)φc−2(s)− (λ+ µ+ sσ1)(λ+ sσ)(λ+ θ + sσ0)
c−1ϕc−2(s).

Proof. If d < 0 and ρc < 1, the 3-dimensional Markov process {(X(t), L(t), J(t)), t ≥ 0}
has unique stationary probability distribution {Fkj(x), (k, j) ∈ Ω}. Therefore, there exists

unique solution to Eq. (3.6). On the other hand, we can verify that F̂kj(s), (k, j) ∈ Ω in Eq.
(3.7) is satisfied with Eq. (3.6).

Denoted by F̂ c−1(s) = (K0(s),K1(s)). If k ≥ c, substituting the third expression of Eq.
(3.7) into the fifth line of Eq. (3.6), using lemma 3.2 we obtain

F̂k−1(s)C + F̂k(s)(A− sΣ) + F̂k+1(s)B

=(K0(s),K1(s))(R(s))k−cC + (K0(s),K1(s))(R(s))k−c+1(A− sΣ)

+ (K0(s),K1(s))(R(s))k−c+2B

=(K0(s),K1(s))(R(s))k−c[C +R(s)(A− sΣ) + (R(s))2B]

=0.

From the third line of Eq. (3.6), we know that

F̂k0(s) =
(λ+ θ + sσ0

λ

)c−1−k

K0(s), 0 ≤ k ≤ c− 1.

Noting that Eq. (3.4) and Eq. (3.5), substituting the second expression of Eq. (3.7) into
the fourth line of Eq. (3.6), we obtain

λF̂k−1,1(s) + θF̂k0(s)− (λ+ kµ+ sσ1)F̂k1(s) + (k + 1)µF̂k+1,1(s)

=λ
[
K1(s)ϕc−k(s)−K0(s)φc−k(s)

]
+ θ

(λ+ θ + sσ0

λ

)c−1−k
K0(s)

− (λ+ kµ+ sσ1)
[
K1(s)ϕc−k−1(s)−K0(s)φc−k−1(s)

]
+ (k + 1)µ

[
K1(s)ϕc−k−2(s)−K0(s)φc−k−2(s)

]
=K1(s)

[
λϕc−k(s)− (λ+ kµ+ sσ1)ϕc−k−1(s) + (k + 1)µϕc−k−2(s)

]
−K0(s)

[
λφc−k(s)− θ

(λ+ θ + sσ0

λ

)c−1−k− (λ+ kµ+ sσ1)φc−k−1(s) + (k + 1)µφc−k−2(s)
]

=0.
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Furthermore, the expressions of K0(s) and K1(s) can be determined by the first two
expressions of Eq. (3.6), then theorem 3.3 is proved.

Theorem 3.4. If d < 0 and ρc < 1, the stable buffer content X has the LST as

F ∗(s) =
aσ

σ1

{
1 +

λ(σ1 − σ0) + (θ + sσ0)(σ1 − σ)

(θ + sσ0)
× s

H(s)

×(λ+ θ + sσ0)
c−1

[
2µϕc−3(s)− (λ+ µ+ sσ1)ϕc−2(s)

]}
.

Proof. Taking sum on both sides of the forth line of Eq. (3.6) from 2 to c-1, we have

θ
c−1∑
k=2

F̂k0(s)− sσ1

c−1∑
k=2

F̂k1(s) + λF̂11(s)− λF̂c−1,1(s)− 2µF̂21(s) + cµF̂c1(s) = 0. (3.8)

Summing up Eq. (11) and the second line of Eq. (3.6), we obtain

sσ1

c−1∑
k=1

F̂k1(s) = θ
c−1∑
k=1

F̂k0(s)− µF̂11(s)−λF̂c−1,1(s) + cµF̂c1(s).

Using Eq. (3.7) and the first line of Eq. (3.6), then we have

c−1∑
k=1

F̂k1(s) =
θ

sσ1

c−1∑
k=0

F̂k0(s)−
λ+ θ + sσ

sσ1
F̂00(s) +

aσ

sσ1
+

cµγ0(s)− λ

sσ1
K1(s)

+
cµθγ0(s)

sσ1(λ+ θ + sσ0 − cµγ0(s))
K0(s).

Similarly, from the third expression in Eq. (3.6), we get

c−1∑
k=0

F̂k0(s) =
λ+ θ + sσ0

θ + sσ0
F̂00(s)−

λ

λ+ θ + sσ0
K0(s).

Hence, the LT of the stationary distribution F (x) of the buffer content can be given by

F̂ (s) =

∫ +∞

0

e−sxF (x)dx

=
c−1∑
k=0

F̂k0(s) +
c−1∑
k=1

F̂k1(s) +
∞∑
k=c

F̂ k(s)e

=

[
λ(σ1 − σ0) + (θ + sσ0)(σ1 − σ)

σ1(θ + sσ0)

(λ+ θ + sσ0

λ

)c−1

− λ(θ + sσ1)

sσ1(θ + sσ0)

]
K0(s)

+
cµθγ0(s)

sσ1(λ+ θ + sσ0 − cµγ0(s))
K0(s) +

aσ

sσ1
+

cµγ0(s)− λ

sσ1
K1(s)

+(K0(s),K1(s))R(s)(I −R(s))−1e,

where e = (1, 1)T .
For the spectral radius

SP [R(s)] = max

(
γ0(s),

λ

λ+ θ + sσ0

)
< 1,
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so I −R(s) is invertible, and

(I −R(s))−1 =


λ+ θ + sσ0

θ + sσ0

θγ0(s)(λ+ θ + sσ0)

(λ+ θ + sσ0 − cµγ0(s))(θ + sσ0) (1− γ0(s))

0
1

1− γ0(s)

 .

After calculating, we have

F̂ (s) =
aσ

sσ1
+

λ(σ1 − σ0) + (θ + sσ0)(σ1 − σ)

σ1(θ + sσ0)

(λ+ θ + sσ0

λ

)c−1

K0(s).

Next, we define the LST of the stationary joint distribution for the fluid model and the
stationary distribution of the buffer content as

F ∗
kj(s) =

∫ +∞
0

e−sxdFkj(x), (k, j) ∈ Ω,

F ∗(s) =
∫ +∞
0

e−sxdF (x).

It is easy to prove
F ∗
00(s) = −a+ sF̂00(s),

F ∗
k(s) = sF̂ k(s), k ≥ 1.

Substituting the expression of F̂kj(s) into the above expressions and after calculation and
arrangement, we can obtain the LST of the stationary distribution of the buffer content as

F ∗(s) =
aσ

σ1

{
1 +

λ(σ1 − σ0) + (θ + sσ0)(σ1 − σ)

(θ + sσ0)
× s

H(s)

×(λ+ θ + sσ0)
c−1

[
2µϕc−3(s)− (λ+ µ+ sσ1)ϕc−2(s)

]}
.

(3.9)

Then theorem 3.4 is proved.

With the normalization condition lim
s→0

F ∗(s) = 1 and Hopital’s rule, we can acquire the

expression of the probability a as

a =
σ1

σ

θH ′(0)

θH ′(0) +
[
λ(σ1 − σ0) + θ(σ1 − σ)

]
(λ+ θ)c−1

[
2µϕc−3(0)− (λ+ µ)ϕc−2(0)

] .
Denoted by

f(s) =
λ(σ1 − σ0) + (θ + sσ0)(σ1 − σ)

(θ + sσ0)
,

g(s) =
s

H(s)
,

h(s) = (λ+ θ + sσ0)
c−1

[
2µϕc−3(s)− (λ+ µ+ sσ1)ϕc−2(s)

]
.

Now, taking the derivatives on both sides of Eq. (3.9) with respect to s, then let s → 0,
we get the mean of the buffer content:

E(X) = −aσ

σ1

(
f ′(0)g(0)h(0) + f(0)g′(0)h(0) + f(0)g(0)h′(0)

)
,
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where

f(0) =
λ(σ1 − σ0) + θ(σ1 − σ)

θ
,

g(0) =
1

H ′(0)
,

h(0) = (λ+ θ)c−1
[
2µϕc−3(0)− (λ+ µ)ϕc−2(0)

]
,

f ′(0) =
σ0[(σ1 − σ0)(1− θ)− λ(σ1 − σ0)]

θ2
,

g′(0) =
−H ′′(0)

2(H ′(0))2
,

h′(0) = (c− 1)(λ+ θ)c−2σ0

[
2µϕc−3(0)− (λ+ µ)ϕc−2(0)

]
+(λ+ θ)c−1

[
2µϕ′

c−3(0)− (λ+ µ)ϕ′
c−2(0)− σ1ϕc−2(0)

]
.

4 Conclusions

In this paper, we discussed the fluid model driven by an M/M/c multiple vocations queue,
where the input rate and output rate are determined by the drive system. That is the
queue length of the M/M/c multiple vacations queue. Using a QBD process and a matrix-
geometric solution method, the steady state distribution of the queue length was derived.
Furthermore, we obtained the main expressions for the LST of the stationary distribution,
the probability of empty buffer content and the mean of the buffer content.
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