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where M i = (M i
x,M

i
y,M

i
z), i = 1, 2, is the magnetization vector representing each spin

particle, M0 is the equilibrium, T i
1 and T i

2 are the longitudinal and transverse relaxation
rates, ω is the resonance offset and (ωx, ωy) represent the components of the control magnetic
field.

Assuming the spin 1/2 particles are in resonance, ω = 0, and the applied control field
only tuned in amplitude one has ωy = 0 and using appropriate normalizations the control
system is reduced to a four-dimensional system

dq

dt
= F (q) + uG(q), |u| ≤ 2π

where q = (q1, q2) represents the magnetization vector of the couple and each qi is described
by the dynamics (up to a time reparametrization)

dyi
dt

= −Γiyi − uxzi

dzi
dt

= γi(1− zi) + uxyi,

(1.2)

i = 1, 2, where |ux| ≤ 2π and the parameters Λi = (γi,Γi) are related to the relaxation
times and satisfy 2Γi ≥ γi so the Bloch ball |qi| ≤ 1 is invariant for the dynamics.

The various contrast problems in magnetic resonance imaging which differ mainly by the
boundary conditions are defined by a Mayer problem: given a transfer time T , minimize
a cost function c at a final time, minu(·) c(q(T )), subject to q̇ = F (q) + uG(q) and the
boundary conditions q(0) = ((0, 1), (0, 1)) (the equilibrium point of free motion) with the
final constraint g(q(T )) = 0.

For instance, in the contrast by saturation problem we have

• q1(T ) = 0 (saturation of the first spin)

• c(q(T )) = −|q2(T )|2, and |q2(T )| is the final contrast.

The candidates as minimizers are parameterized by the Maximum Principle [15].

Proposition 1.1 (Maximum Principle). Let u∗(·) be an optimal control whose associated
trajectory q∗(·) is optimal for the contrast problem. Denoting H(q, p, u) = ⟨p, F (q)+ uG(q)⟩
as the pseudo-Hamiltonian, there exists p∗(·) and a constant p∗0 such that for almost every
t ∈ [0, T ],

(1) dq∗

dt = ∂H
∂p (q

∗, p∗, u∗), dp∗

dt = −∂H
∂q (q

∗, p∗, u∗)

(2) H(q∗, p∗, u∗) = max|u|≤2π H(q∗, p∗, u) (maximization condition)

and additionally we have the following boundary conditions,

(3) g(q∗(T )) = 0

(4) p∗(T ) = p∗0
∂c
∂q (q

∗(T )) +
∑k

i=1 σi
∂gi
∂qi

(q∗(T )), σ = (σ1, . . . , σk), p∗0 ≤ 0 (transversality

condition)

Definition 1.2. Triples (q, p, u) which are solutions of the first two conditions of Proposition
1.1 are called extremals and if they satisfy the boundary conditions they are called BC-
extremals. An extremal subarc on [0, T ] is called regular if u(t) = 2π sgn⟨p(t), G(q(t))⟩ and
singular if ⟨p(t), G(q(t))⟩ = 0.
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We use the following notation. If X is a vector field, HX = ⟨p,X⟩ is the Hamiltonian
lift. The Lie bracket of two vector fields is computed by the convention [X1, X2](q) =
∂X1

∂q (q)X2(q) − ∂X2

∂q (q)X1(q) and the Poisson bracket of two Hamiltonians is {H1,H2} =

dH1(
−→
H 2). Singular extremals can be easily computed. Deriving HG(z(t)) = 0, z = (q, p),

one gets

HG = {HG, HF } = 0

{{HG,HF },HF }+ us{{HG,HF },HG} = 0.

Denoting Σ : HG = 0, Σ′ : HG = {HG,HF } = 0, S : {{HG,HF },HG} = 0, and
Hs = HF + usHG, one gets the following proposition.

Proposition 1.3. Outside S, the singular extremals are solutions of the Hamiltonian vector

field
−→
H s, restricted to the surface Σ′.

Most of the properties of the optimal solutions of the contrast problem are coded in the

pair (
−→
H s,Σ

′). In particular in the contrast problem, the four sets of parameters given below
are important in the classification.

Physical parameter relaxation times (in seconds) [9]

(1) P1: water: T1 = T2 = 2.5; cerebrospinal fluid: T1 = 2, T2 = 0.3.

(2) P2: deoxygenated blood: T1 = 1.35, T2 = 0.05; oxygenated blood: T1 = 1.35, T2 = 0.2.

(3) P3: gray cerebral matter: T1 = 0.92, T2 = 0.1; white cerebral matter: T1 = 0.780,
T2 = 0.09.

(4) P4: water: T1 = T2 = 2.5; fat tissue: T1 = 0.2, T2 = 0.1.

The aim of this article is to present a brief analysis of the relations between the relaxation

parameters and the classification of (
−→
H s,Σ

′). The adapted concept is the one of feedback
classification.

2 Singular trajectories and the feedback classification pairs

2.1 Feedback classification

First of all, we need some standard concepts from geometric invariant theory [7, 14].

Definition 2.1. Let E and F be two R-vector spaces and let G be a group acting linearly
on E and F . A homomorphism χ : G → R \ {0} is called a character. A semi-invariant of
weight χ is a map λ : E → R such that for all g ∈ G and all x ∈ E, λ(g.x) = χ(g)λ(x); it is
an invariant if χ = 1. A map λ : E → F is a semi-covariant of weight χ if for all g ∈ G and
for all x ∈ E, λ(g.x) = χ(g)g.λ(x); it is called a covariant if χ = 1.

Next, we introduce the feedback group, reducing our presentation to the single-input
case. We denote by C the set {F,G} of such (smooth) systems on the state space V ∼= Rn.

Definition 2.2. Let (F,G), (F ′, G′) be two elements in C. They are called feedback equiv-
alent if there exists a smooth diffeomorphism φ of Rn and a feedback u = α(q) + β(q)v,
where α and β are smooth, β invertible such that
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(i) F ′ = φ ∗ F + φ ∗ (Gα)

(ii) G′ = φ ∗ (Gβ)

where φ ∗ Z is the vector field image defined by φ ∗ Z = ∂φ−1

∂q (Z ◦ φ).

Definition 2.3. Let (F,G) ∈ C and λ1 be the map which associates the constrained Hamil-

tonian vector field (
−→
H s,Σ

′) (see the introduction for the definition). We define the action

of (φ, α, β) ∈ G on (
−→
H s,Σ

′) to be the action of the sympletic change of coordinates (on
Hamiltonian vector fields and surfaces)

−→φ : q = φ(Q), p = P
∂φ−1

∂Q
,

in particular the feedback acts trivially.

Our classification relies on the general theorem.

Theorem 2.4 (see [2]). The mapping λ1 is a covariant.

In order to analyze our classification in the contrast problem, we shall restrict ourselves
to a subset of singular trajectories.

2.2 Exceptional trajectories and the feedback classification

Definition 2.5. A singular extremal (q, p) is called exceptional if HF = ⟨p, F (q)⟩ = 0.

According to the Maximum Principle they are associated to an optimal control problem
where the transfer time T is free.

Application

In the contrast problem, the state space V ∼= R4. Using the additional constraint HF = 0,
in the exceptional case the singular control is given by the feedback

ue
s = −D′(q)

D(q)

where

D = det(F,G, [G,F ], [[G,F ], G])

D′ = det(F,G, [G,F ], [[G,F ], F ])

which leads us to introduce the vector field Xe defined by

dq

dt
= F − D′

D
G

which can be desingularized using the reparameterization ds = dt/D(q(t)) and this gives
the smooth vector field

Xe
r = DF −D′G.

This leads to the following reduced action of the feedback group.
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Notation

Let φ be a diffeomorphism of V . Then φ acts on the mapping f : V → R according to
φ.f = f ◦ φ and on vector fields as φ.X = φ ∗X (image of X by φ).

According to this action, we have the following lemma.

Lemma 2.6. We have that

• DF+αG,βG = β4DF,G

• D′F+αG,βG = β3(D′F,G + αDF,G)

• Dφ∗F,φ∗G(q) = det
(

∂φ
∂q

−1
)
DF,G(φ(q))

• D′φ∗F,φ∗G(q) = det
(

∂φ
∂q

−1
)
D′F,G(φ(q)).

From this, we deduce the following proposition, where the weights are associated to β

and det
(

∂φ−1

∂q

)
.

Proposition 2.7. We have the following.

• λ2 : (F,G) → Xe is a covariant.

• λ3 : (F,G) → D is a semi-covariant.

• λ4 : (F,G) → D = D′ is a semi-covariant.

• λ5 : (F,G) → Xe
r = DF −D′G is a semi-covariant.

Application and geometric interpretation

The action of diffeomorphisms on Xe can be used to classify the set of systems (F,G). In
the contrast problem we can construct a set of invariants related to the problem and in
particular relate the properties of the optimal solution to the experimental parameters. The
geometric interpretation of the invariants in connection with the above covariants is the
following.

• Invariants can be found in the dynamical properties of the dynamical system Xe:
equilibrium points, periodic solutions, stability analysis, and integrability properties
of the set of solutions.

• The surface D = 0 encodes the set of points where the singular control explodes and
is preceded by the saturation of the constraint |u| ≤ 2π, while the surface D = D′ = 0
encodes the set of points where the singular control can cross the set D = 0. This
describes the main singularities of Xe

r , but the analysis is intricate since it is related
to the classification of the behavior of solutions near non-isolated singularities, see
[16, 17] for such recent studies.

3 Classification results

We shall make a short description of the classification in relation with the experimental
parameters.
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3.1 Preliminary results

The physical relaxation parameters T i
1, T

i
2 corresponding to the spin signatures of the sub-

stances are given in the introduction. The introduction of the parameters Λ = (Λ1,Λ2) in
relation with the control bound in the experiments is

γi =
2π

ωmaxT i
1

, Γi =
2π

ωmaxT i
2

where ωmax = 32.3 Hz is taken in the experiments [11].
We shall identify the set of parameters in Λ up to a scalar, taking the projective space P3 :

Λ/R and only rational invariants will be obtained. They are related to the one-dimensional
foliation Xe

r obtained by reparameterizing the singular trajectories and the quartic surface
D = 0.

Both Xe
r and D can be compactified by standard techniques, that is,

• the polynomial vector field Xe
r in R4 is extended to R5 using the Poincaré vector

field compactification: Xe
r → PXe

r = HXe
r

∂
∂q + 0 ∂

∂q0
, where HXe

r is the quadratic

homogeneous vector field such that HXe
r = Xe

r for q0 = 1;

• similarly the quartic D in R4 can be replaced by the homogeneous quartic in dimension
five: D → HD, defined by HD|q0=1

= D.

Clearly even the classification of D is a complicated problem.
To extract the invariants we shall use mainly two physical invariants of the problem

which are described below.

• The point O1 = ((0, 1), (0, 1)). Each point (0, 1) corresponds to the north pole of the
Bloch ball of each spin and (0, 1) is the globally attractive, stable equilibrium point of
the uncontrolled Bloch equation. In the imaging process the experiment is repeated
many times, letting the system relax to the equilibrium point before restarting the
next trial.

• The point O2 = ((0, 0), (0, 0)). The point (0, 0) of each spin corresponds to the center
of the Bloch ball and in image processing it corresponds to the saturation of the spin,
giving the color black in imaging.

We have the following straightforward but important result.

Proposition 3.1. Both points O1 and O2 are equilibrium points of Xe
r and moreover the

zi-axes are line solutions along which the singular control is zero, connecting the singularities
O2 → O1.

This gives the first (topological) information about the flow.
Next we introduce the following, see [12].

3.2 Quadratic differential equations

Consider a quadratic differential equation in Rn,

dxi

dt
=

n∑
j,k=1

aijkxjxk, i = 1, . . . , n

in which aijk = aikj , written as ẋ = Q(x). Such an equation is identified to a (1, 2) tensor
whose linear classification is analyzed by introducing the following.
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Definition 3.2. Let (ei) be the canonical basis of Rn and endow Rn with the multipli-
cation defined by ej .ek =

∑n
i=1 a

i
jkei. The associated commutative algebra (in general

non-associative) is denoted by A.

The relation with Lie brackets is given by the following lemma.

Lemma 3.3. Let v1, v2 ∈ Rn. Then [Q, v1](v2) = [v2, [v1, Q]] = 2v1.v2.

Clearly two quadratic differential equations are (linearly) isomorphic if and only if their
associated algebras are isomorphic and the classification relies on the following.

Proposition 3.4. (1) E is a subalgebra of A if and only if E is an invariant vector space
for the solutions of ẋ = Q(x) and one can define the restriction of the equation to E.

(2) A subalgebra I of A is an ideal if and only if ẋ = Q(x) can be projected on the quotient
A/I.

Ray solutions

One-dimensional subalgebras are called ray solutions of ẋ = Q(x). They correspond to lines
Rv such that Q(v) = λv for some λ ∈ R. Geometrically they correspond to

• lines of non-isolated equilibrium points of ẋ = Q(x) if λ = 0, and

• true ray solutions if λ ̸= 0 and Rv is a solution on which the dynamics are reduced to
ẏ1 = y21 .

Blowing-up of the equation

To analyze a quadratic differential equation ẋ = Q(x) we can introduce the differential
equation on the sphere Sn−1 defined by

v̇ = Q(v)− ⟨v,Q(v)⟩v

and the associated vector field will be denoted Qπ. Ray solutions are in correspondence with
equilibrium points of Qπ and eigenvalues and eigenspaces of the linearized system ẏ = Ay
of a singular point y0 of Qπ : A = ∂Qπ

∂y (y0) are obtained as follows.

Find linear coordinates (y0, y) ∈ R× Rn−1 such that ẋ = Q(x) takes the form

ẏ0 = λy20 + · · ·
ẏ = y0By + o(y)

where the ray is identified to Ry0.
Denoting σ(B) = {λ1, . . . , λn−1} as the spectrum of B, one can use a change of co-

ordinates to get B in Jordan normal form. The following straightforward computation is
crucial.

Using projective coordinates u1 = y1/y0, . . . , un−1 = yn−1/y0, the ray solution Ry0 cor-
responds to the singular point u1 = · · · = un−1 = 0 of Qπ, giving the following proposition.

Proposition 3.5. The eigenvalues of A = ∂Qπ

∂y (y0) are given by σ(A) = {λ1−λ, . . . , λn−1−
λ} and for the classification problem only the ratio of two eigenvalues have invariant mean-
ing.

This allows us to define the following two blowing-ups.
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• Blowing-up at O1. This is a singular point of Xe
r whose linear part, A1q, is A1 =

∂Xe
r

∂q (O1) = 0 and whose quadratic part is the homogeneous quadratic vector field

H2(q) = h1(q)F (q)− h′
2(q)G

′(q)

where identifying O1 to zero we have

h1(q) = (Γ1 − Γ2)[γ2(2Γ1 − γ1)z2 − γ1(2Γ2 − γ2)z1]

h′
2(q) = (Γ1 − Γ2)[γ2(2Γ1 − γ1)(Γ2 − (γ1 − Γ1))y1z2

− γ1(2Γ2 − γ2)(Γ1 − (γ2 − Γ2))z1y2]

where G′ denotes the constant vector field − ∂
∂y1

− ∂
∂y2

, approximating G near O1.
Observe also that at O1 the quartic D is regular if Γ1 ̸= Γ2 and 2Γ1 − γ1 or 2Γ2 − γ2
is nonzero, and is approximated by the linear mapping h1.

• Blowing-up at O2. Similarly at the equilibrium O2 of Xe
r , we have a zero linear part

A2q, A2 =
∂Xe

r

∂q (O2) = 0, and whose quadratic part is the homogeneous quadratic
vector field

H̄2(q) = h̄2(q)F
′(q)− h̄′

1(q)G(q)

where O2 is zero and we have

h̄2 = γ2
2µ1y

2
1 − γ1γ2(µ1 + µ2)y1y2 + γ2

1µ2y
2
2

+ γ2
2η1z

2
1 − γ1γ2(η1 + η2)z1z2 + γ2

1η2z
2
2 ,

with ηi = 2Γi − γi and µi = 2γi − Γi, and ηi ≥ 0 and µi can be positive, negative, or
zero (it is zero in the case of fat tissue),

h̄′
1 = γ1γ

2
2(η2 − η1)y1 + γ2

1γ2(η1 − η2)y2

and

F ′(q) = γ1
∂

∂z1
+ γ2

∂

∂z2

is the constant vector field approximating F (q) while

G = −z1
∂

∂y1
+ y1

∂

∂z1
− z2

∂

∂y2
+ y2

∂

∂z2

is the (unmodified) control vector field.

Observe that in the formulas corresponding to O1 and O2 the role of F and G are
exchanged, but this will not lead to a similar analysis: in particular F is a stable vector field
while G corresponds to a rotation. Also at O1, D is approximated by a linear form h1(q)
but at O2 the approximation is the quadratic form h̄2. In particular we have the following
lemma.

Lemma 3.6. The quartic form D is singular at O2 for every set of parameters.

The remainder of this article is devoted to the analysis of the two blowing-ups, in relation
with the classification problem.
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3.3 Analysis of the quadratic vector field H2(q)

First of all, we have the following lemma.

Lemma 3.7. Assume Γ1 − Γ2 ̸= 0 and ηi ̸= 0, then the set of singular points h1 = h′
2 = 0

is the union of two planes E1 and E2 given by

• E1 : z1 = z2 = 0

• E2 : (Γ1 − δ2)y2 = (Γ2 − δ1)y1, γ2η1z2 = γ1η2z1

with δi = γi − Γi.

At any point of E1, the eigenvalues of Hπ
2 are zero, Hπ

2 denoting the projection of H2

on the sphere S3, but the second set of equilibrium points is less degenerated. The analysis
is described next.

Denoting q = (y1, z1, y2, z2)
t, x = (x1, x2, x3, x4)

t is related by q = Px where P is the
transition matrix

P =


Γ1 − δ2 0 0 0

0 γ2η1 0 0
Γ2 − δ1 0 1 0

0 γ1η2 0 1


so that E2 is identified to x3 = x4 = 0, one gets the system

ẋ = h1(Px)(P−1FP )x− h′
2(Px)P−1G′

and computing

L1 =
∂P−1H2 ◦ P

∂x |x3=x4=0

which represents the linearized system at a point of E2, we have

L1 = (Γ1 − Γ2)


0 0 −γ1γ2η1η2x2 −η1γ2(γ1 − Γ2)x1

0 0 0 −γ1γ2η1x2

0 0 −γ1γ2η1η2(γ1 − γ2)x2 −η1γ2(δ1 − Γ2)(γ1 + Γ1 − γ2 − Γ2)x1

0 0 0 γ1γ2η1η2(γ1 − γ2)x2


and we have the following lemma.

Lemma 3.8. If γ1 ̸= γ2, at a point of E2 the eigenvalues of L1 are of the form (0, 0,−λ, λ)
with −λ = x2(Γ1 − Γ2)γ1γ2η1η2(γ2 − γ1) and the eigenspace associated to −λ is RG′, the
vector field G′ being tangent to h1 = 0.

Introducing the projective coordinates u1 = x1/x2, u3 = x3/x2, and u4 = x4/x2 to
represent the projection of the system on S3 and making the time reparameterization ds =
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x2dt we get the system

u̇1 = (Γ1 − Γ2)γ2η1u4

[
Γ1(Γ1 − δ2)− Γ2(Γ2 − δ1)

γ2 − γ1
u1 +

(Γ1 − Γ2)

γ2 − γ1
u3

]
+ (Γ1 − Γ2)γ1γ2η1u1u4

u̇3 = (Γ1 − Γ2)γ2η1

[
γ1η2(γ2 − γ1)u3 + u3u4

[
Γ2(Γ1 − δ2)− Γ1(Γ2 − δ1)

γ2 − γ1
+ (Γ2 − δ1) + γ1

]

+ u1u4

[
(Γ1 − δ2)(Γ2 − δ1)

(
Γ2 − Γ1 + γ2 − γ1

γ2 − γ1

)]]
u̇4 = (Γ1 − Γ2)γ2η1u4 [γ1η2(γ1 − γ2) + (γ1 − γ2)u4] .

The analysis of the system in those coordinates is intricate: the singularities are non-
isolated and the results in [16] cannot be used to find an invariant two-dimensional foliation.
We can observe that u4 can be integrated from the equations above.

Nevertheless the blood case, with γ1 = γ2, deserves a specific analysis, especially from
the integrability point of view.

Special case: γ1 = γ2

In this case, we have λ = 0. The analysis is as follows. Denoting the transition matrix by
Q,

Q =


1 0 0 0
0 η1 0 0
1 0 1 0
0 η2 0 1


and in the x-coordinates q = Qx, introducing the projective coordinates u1 = x1/x2, u3 =
x3/x2, and u4 = x4/x2 and making the time reparameterization, we get

u̇1 = −γ1(Γ1 − Γ2)(Γ1 − δ2)η1η2u3 + (Γ1 − Γ2)γ1Γ2η1u1u4

u̇3 = (Γ1 − Γ2)γ1η1[(Γ1 − Γ2)u1u4 + (γ1 − Γ2)u3u4]

u̇4 = 0.

From the last equation u4 is a constant and the first two equations form a linear system
which can be easily solved, giving the following lemma.

Lemma 3.9. In the case γ1 = γ2 the dynamics of the quadratic approximation of the system
reduces to a linear system as follows. Introducing u4 = c and α = γ1(Γ1 − Γ2)η1, we have

u̇1 = α[Γ2cu1 − (Γ1 − δ2)η2u3]

u̇3 = α[(Γ1 − Γ2)cu1 + (γ1 − Γ2)cu3].

Physical application: Blood case

In this case, we have γ1 = γ2, and the numerical values of the linear system are(
u̇1

u̇3

)
=

(
0.00200c −0.00279
0.00601c −0.00171c

)(
u1

u3

)
(3.1)
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0 4.87 4.89c = −0.287

Figure 1: Classification of the flow of H2 (north pole) in the blood case, given in Lemma
3.10

and the eigenvalues are given by λ± = α ±
√
β where α = 0.000148c and β = (−16.7c +

3.44c2) · 10−6. Since z1, z2 belong to the translated Bloch ball it imposes constraints on
the constant c = z2

z1
η1 − η2, namely c ∈ [−0.287,+∞). We obtain a foliation of the phase

portraits by linear planes for the linear system above with respect to c, and the behavior is
completely described in the following lemma, and is illustrated in Figure 1.

Lemma 3.10. We conclude that:

(1) For c ∈ [−0.287, 0), λ+ and λ− have opposite sign. It is a saddle.

(2) For c ∈ (0, 4.87), the eigenvalues are complex with a positive real part. It is an unstable
focus.

(3) For c ∈ [4.87, 4.89), both eingenvalues are positive λ+ > λ− > 0. It is an unstable node.

(4) For c > 4.89, λ+ and λ− have opposite sign. It is a saddle.

More invariants are found along the zi-axis which are true ray solutions contained in
h1 ̸= 0. The analysis goes as follows.

Eigenvalues corresponding to the true ray solution z2-axis: y1 = y2 = z1 = 0

Let us introduce the coordinates x = (x1, x2, x3, x4) = (z2, y1, z1, y2) and the system becomes

ẋ1 = λx2
1 + · · ·

ẏ = x1Ay + · · ·

with y = (x2, x3, x4), λ = −γ2
2η1(Γ1 − Γ2) and

A = (Γ1 − Γ2)

γ2η1(Γ2 − γ1) 0 0
0 −γ1γ2η1 0

γ2η1(Γ2 − δ1) 0 −γ2Γ2η1


and the eigenvalues of A are

λ1 = γ2η1(Γ2 − γ1)(Γ1 − Γ2), λ2 = −γ1γ2η1(Γ1 − Γ2), λ3 = −γ2Γ2η1(Γ1 − Γ2).

Denoting σi = λi − λ, i = 1, 2, 3, and Ii = σi+1/σ1, i = 1, 2, we have

σ1 = γ2η1(γ2 + Γ2 − γ1)(Γ1 − Γ2), σ2 = γ2η1(γ2 − γ1)(Γ1 − Γ2), σ3 = γ2η1δ2(Γ1 − Γ2),
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and

I1 =
γ2 − γ1

γ2 + Γ2 − γ1
, I2 =

δ2
γ2 + Γ2 − γ1

.

One can check that the numerical values are different for the four sets of experimental
parameters, which gives the following classification theorem.

Theorem 3.11. (1) The eigenvalues of the linearized system correspond to the z2-axis true
ray solution projected on the sphere S3 are σ1, σ2, and σ3.

(2) I1 and I2 are two independent rational invariants.

(3) Computing along the z1 axis amounts to exchanging the indices in the computation, and
allows us to define four rational invariants and a choice of three of them separates the
generic orbits in the feedback classification problem.

Concerning the analysis of the integrability of the flow, we have the following partial
result.

Introducing the projective coordinates u1 = x2/x1, u2 = x3/x1, and u3 = x4/x1 and
making a time reparameterization, one gets the system

u̇1 = (Γ1 − Γ2)[γ2η1(Γ2 − γ1 + γ2)u1 + γ1η2(Γ1 − γ2)u1u2 − γ1η2(Γ1 − δ2)u2u3]

u̇2 = (Γ1 − Γ2)(γ2 − γ1)[γ2η1u2 − γ1η2u
2
2]

u̇3 = (Γ1 − Γ2)[γ2η1δ2u3 + γ2η1(Γ2 − δ1)u1 − γ1η2Γ1u2u3]

where the second equation is integrable. Hence the analysis in the general case amounts to
integrating a time-dependent, two-dimensional system.

Remark 3.1. In this case, the hyperbolic singularity is isolated and the Hartman-Grobman
theorem applies [8]. The singularity is unstable. More results about integrability can be
obtained using the work of Poincaré-Siegel [1].

3.4 Analysis of the quadratic vector field H̄2(q)

3.4.1 Reduction of h̄2

The only invariants are the index of h̄2 and next we compute the Gauss normal form. Let
us write h̄2 = q1(y) + q2(z), where

q1(y) = γ2µ1y
2
1 − γ1γ2(µ1 + µ2)y1y2 + γ2

1µ2y
2
2

q2(z) = γ2η1z
2
1 − γ1γ2(η1 + η2)z1z2 + γ2

1η2z
2
2 .

Introducing the linear forms

x1 = γ2y1 − γ1y2

x2 = µ1γ2y1 − µ2γ1y2

x3 = γ2z1 − γ1z2

x4 = η1γ2z1 − η2γ1z2,

(3.2)

Proposition 3.12. In the new coordinates, we have

(1) h̄′
1 = γ1γ2(η2 − η1)x1

(2) h̄2 = x1x2 + x3x4
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3.4.2 Analysis of the projection of the system on the sphere S3

We express H̄2(q) in the coordinates x = (x1, x2, x3, x4), q
′ = Px where q′ = (y1, y2, z1, z2)

and the transition matrix is defined by (3.2).
This implies that

F ′(x) = P−1F ′ = γ1γ2(η1 − η2)
∂

∂x4

and moreover G(x) = P−1APx where

P−1AP =


0 0 −1 0
0 0 µ1η2−µ2η1

η1−η2

µ2−µ1

η1−η2

1 0 0 0
µ1η2−µ2η1

µ1−µ2

η1−η2

µ1−µ2
0 0

 .

Lemma 3.13. We have the following,

(1) There are no ray solutions for H̄2(q).

(2) The singular lines are contained in the union of planes {x : x1 = 0 and (x3 = 0 or x4 =
0)}.

Proof. The singular points belong to h̄′
2 = h′

1 = 0. Solving in Gauss coordinates, one gets if
η1 − η2 ̸= 0 that x1 = 0 and either x2 = 0 or x3 = 0. We therefore have the following two
planes Ē1 : x1 = x2 = 0, Ē2 : x1 = x3 = 0.

Let Rζ be a ray, then there exists λ ̸= 0 such that H̄2(ζ) = λζ. This is written as

λζ1 = h̄′
1ζ2 (3.3)

λζ2 = γ1h̄2 − h̄′
1ζ1 (3.4)

λζ3 = h̄′
1ζ4 (3.5)

λζ4 = γ2h̄2 − h̄′
1ζ3 (3.6)

for some λ ∈ R \ {0}.
Assume ζ1 is nonzero, then h̄′

1 ̸= 0, ζ2 ̸= 0 and from (3.3) we deduce that

λ =
h̄′
1ζ2
ζ1

.

Plugging back into (3.5) one gets with h̄′
1 ̸= 0 the relation

ζ1ζ4 = ζ2ζ3. (3.7)

Substituting λ into (3.4) and (3.6), we obtain

h̄′
1ζ2
ζ1

ζ2 = γ1h̄2 − h̄′
1ζ1

h̄′
1ζ2
ζ1

ζ4 = γ2h̄2 − h̄′
1ζ3

and this leads to the equations

h̄′
1ζ

2
2 = γ1h̄2ζ1 − h̄′

1ζ
2
1 (3.8)

h̄′
1ζ2ζ4 = γ2h̄2ζ1 − h̄′

1ζ3ζ1. (3.9)
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From (3.8) and since ζ2 ̸= 0, we can write h̄′
1ζ2 =

γ1h̄2ζ1−h̄′
1ζ

2
1

ζ2
and substitute in (3.9) to

obtain

γ1h̄2ζ1ζ4 − h̄′
1ζ

2
1ζ4 = γ2h̄2ζ1ζ2 − h̄′

1ζ3ζ1ζ2

which using relation (3.7) is equivalent to γ1ζ4 = γ2ζ2 since h̄2 = 0 would imply ζ22 = −ζ21 .
Both relations ζ1ζ4 = ζ2ζ3 and γ1ζ4 = γ2ζ2 imply that h̄′

1 = 0 which is a contradiction.
Assume now that ζ1 = 0. In that case we have from (3.3) that either h̄′

1 = 0 or ζ2 = 0. If

h̄′
1 = 0, it implies from (3.4) that λ = γ1h̄2

ζ2
. By plugging into (3.6) we obtain γ1ζ4h̄2 = γ2ζ2h̄2

which forces h̄2 to be zero (indeed, γ1ζ4 = γ2ζ2 and h̄′
1 = 0 imply h̄2 = 0) which provides a

contradiction. If ζ2 = 0, it again forces h̄2 = 0 and is a contradiction.

Theorem 3.14. The eigenvalues of the linearized system are given by:

(1) At Ē1 = {x1 = x2 = 0} the eigenvalues are given by {0, 0, λ,−λ) where λ = γ1γ2(η1 −
η2)x3.

(2) At Ē2 = {x1 = x3 = 0} the eigenvalues are zero.

Proof. We have

H̄2(x) = γ1γ2(η1 − η2)


−x1x3

(µ1η2−µ2η1)x1x3+(µ2−µ1)x1x4

η1−η2

x2
1

x1x2 + x3x4 +
(µ1η2−µ2η1)x

2
1+(η1−η2)x1x2

µ1−µ2


and

∂H̄2

∂x
=


−x3 0 −x1 0

(µ1η2−µ2η1)x3+(µ2−µ1)x4

η1−η2
0 µ1η2−µ2η1

η1−η2
x1

µ2−µ1

η1−η2
x1

2x1 0 0 0

x2 +
2(µ1η2−µ2η1)x1+(η1−η2)x2

µ1−µ2
x1 +

η1−η2

µ1−η2
x1 x4 x3

 ,

modulo the constant γ1γ2(η1 − η2). Then

∂H̄2

∂x
|x1=x2=0 = γ1γ2(η1 − η2)


−x3 0 0 0

(µ1η2−µ2η1)x3+(µ2−µ1)x4

η1−η2
0 0 0

0 0 0 0
0 0 x4 x3


which has eigenvalues {0, 0, γ1γ2(η1 − η2)x3,−γ1γ2(η1 − η2)x3}.

Also

∂H̄2

∂x
|x1=x3=0 = γ1γ2(η1 − η2)


0 0 0 0

µ2−µ1

η1−η2
x4 0 0 0

0 0 0 0
x2 +

η1−η2

µ1−µ2
x2 0 x4 0


which has eigenvalues {0, 0, 0, 0}.

Remark 3.2. Again [16] cannot be used to find an invariant integral, but the case Γ1−Γ2 =
γ2 − γ1 is integrable by quadratures.
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4 Conclusion

As a conclusion we present in Fig. 2 partial results about the phase portrait of the vector
field Xe

r . Those results are valid only for the quadratic approximation near the north pole
and the origin. A first step in the analysis of the equilibrium points of Xe

r is presented in
[3] where the authors analyze the difficult problem of parametrizing this set using Gröbner
basis. Also additional feedback invariants related to optimality properties of the singular
arcs are described in [3]. Connected work is ongoing on the analysis of the singular flow in
the bi-input case where both the amplitude and the phase of the radio-frequency field are
controlled.

O1O2

D = D

′
= 0

D = 0

D = D

′
= 0

D = 0

ray solutions

non-isolated

singularities

non-isolated

singularities

blowing-up at north poleblowing-up at origin

Figure 2: Partial phase portrait of the vector field Xe
r .
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