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equilibrium problems with constraints. By using the concept of Fréchet differentiability of
mapping, Wei and Gong [35] obtained the Kuhn-Tucker optimality conditions for weakly
efficient solutions, Henig efficient solutions, superefficient solutions and globally efficient so-
lutions to the vector equilibrium problems with constraints. Ma and Gong [30] obtained
the first-order necessary and sufficient conditions for the weakly efficient solution, the Henig
efficient solution and the globally roper efficient solution to the vector equilibrium problems
with constraints. Recently, by virtue of the higher-order derivatives or epiderivatives, the
higher-order optimality conditions and duality have been established for set-valued opti-
mization problems(see [3,5,18,19,21–24,33]). Moreover, as far as we know, the second-order
optimality conditions of the solutions remain unstudied in generalized vector equilibrium
problems.

Motivated by the work reported in [5, 6, 21–24, 30, 33], we first recall second-order weak
composed contingent epiderivatives of set-valued maps and discuss some properties of the
derivative. Then, by virtue of the second-order weak composed contingent epiderivatives, we
establish necessary optimality conditions and sufficient optimality conditions for the weakly
efficient solution of generalized vector equilibrium problems with constraints.

The rest of the paper is organized as follows. In Section 2, we recall some notions.
In Section 3, we recall second-order weak composed contingent epiderivatives of set-valued
maps and discuss some properties of the derivative. In Section 4, we establish second-order
necessary and second-order sufficient optimality conditions for the weakly efficient solution
of generalized vector equilibrium problems with constraints. As interesting applications of
the results of Section 4, the optimality conditions for vector optimization problems with
constraints are obtained in Section 5.

2 Preliminaries and Notations

Throughout this paper, let X, Y and Z be three real normed spaces, Y ∗ and Z∗ be the
topological dual spaces of Y and Z, respectively. 0X , 0Y and 0Z denote the origins of X,Y
and Z, respectively. Let C ⊂ Y and D ⊂ Z be closed convex pointed cones in Y and Z,
respectively. Let C∗ be the dual cone of cone C, defined by C∗ := {y∗ ∈ Y ∗ : y∗(c) ≥
0, for all c ∈ C}. Let M be a nonempty subset in Y . The linear hull of M is defined by
line(M) := {ty|t ∈ R, y ∈ M}. The cone hull of M is defined by cone(M) := {ty|t ≥ 0, y ∈
M}. We denote by

WMinCM := {y ∈M : (M − y)
∩

(−intC) = ∅}

the set of all weakly C-minimal points of M .
Let E be a nonempty subset of X, G : E → 2Z be a set-valued map. The domain, the

graph and the epigraph of G are defined respectively by

dom(G) := {x ∈ E|G(x) ̸= ∅},
graph(G) := {(x, z) ∈ X × Z|x ∈ E, z ∈ G(x)},
epi(G) := {(x, z) ∈ X × Z|x ∈ E, z ∈ G(x) + C}.

Denote

G(E) =
∪
x∈E

G(x) and (G− z0)(x) = G(x)− {z0}.

Definition 2.1 (see [6]). A set-valued map W : X → 2Y is said to be
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(i) strictly positive homogeneous if

W (αx) = αW (x), ∀α > 0, ∀x ∈ X;

(ii) subadditive if
W (x1) +W (x2) ⊆W (x1 + x2) + C.

Definition 2.2 (see [8]). Let E ⊂ X be convex and G : E → 2Z be a set-valued map with
G(x) ̸= ∅, for all x ∈ E. G is said to be D-convex on E, if for any x1, x2 ∈ E and λ ∈ (0, 1),

λG(x1) + (1− λ)G(x2) ⊆ G(λx1 + (1− λ)x2) +D.

Let X be a normed space supplied with a distance d and K be a subset of X. We denote
by d(x,K) = infy∈Kd(x, y) the distance from x to K, where we set d(x, ∅) = +∞.

Definition 2.3. (see [3]) Let K be a nonempty subset of a X and x ∈ K,u ∈ X.

(i) The contingent cone of K at x is

T (K,x) := {v ∈ X|∃tn ↓ 0, ∃vn → v, such that x+ tnvn ∈ K, ∀n ∈ N}.

(ii) The second contingent set of K at x in the direction u is

T 2(K,x, u) := {v ∈ X|∃tn ↓ 0, ∃vn → v, such that x+ tnu+
1

2
t2nvn ∈ K, ∀n ∈ N}.

Proposition 2.4 (see [3]). Let K ⊆ X and x ∈ K. Then T (K,x) is a closed cone.

Proposition 2.5 (see [20]). Let K ⊆ X be a convex set, x ∈ K and u ∈ T (K,x). Then

T (T (K,x), u) = clcone(cone(K − x)− u)

and
T 2(K,x, u) ⊆ T (T (K,x), u).

Definition 2.6 (See [17]). Let Y be a topological linear space and be partially ordered by
a convex cone C ⊂ Y with apex at the origin.

(i) A sequence {yn} ⊆ Y is said to be C-decreasing iff ∀i, j ∈ N, i ≤ j implies yj ≤C yi.

(ii) A subset D ⊂ Y is said to be C-lower bounded iff there exists a y ∈ Y such that
D ⊂ {y}+ C.

(iii) The cone C is called Daniell iff every C-decreasing and C-lower bounded sequence in
Y converges to its infimum.

(iv) The weak domination property is said to hold for a subsetM of Y iff M ⊂WMinCM
+intC

∪
{0Y }.

Let E be a nonempty subset ofX, F : E×E → 2Y be a set-valued bifunction, F (x1, x2) ̸=
∅, for all x1, x2 ∈ E. We suppose that 0Y ∈ F (x, x), for all x ∈ E.

Let x0 ∈ E be given. Fx0 : E → 2Y is the set-valued map defined by

graph(Fx0) := {(x, y) ∈ E × Y : y ∈ F (x0, x)}.
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The set

epi(Fx0) := {(x, y) ∈ E × Y : y ∈ F (x0, x) + C}.

is called the epigraph of Fx0 . Denote

Fx0(E) := F (x0, E) = {y ∈ F (x0, x) : x ∈ E}.

In this paper, we consider the generalized vector equilibrium problem with constraints
(GVEP): find x0 ∈ K such that

F (x0, x) ∩ (−A0) = ∅, for all x ∈ K,

where A0 := A \ {0Y }, A is a convex cone in Y and K := {x ∈ E : G(x) ∩ (−D) ̸= ∅}.

Definition 2.7. Let intC ̸= ∅. A vector x0 ∈ K is called a weakly efficient solution of
(GVEP) if

F (x0,K) ∩ (−intC) = ∅.

3 Second-Order Weak Composed Contingent Epiderivatives

In this section, we recall second-order weak composed contingent epiderivatives of set-valued
maps, and then investigate some of their properties.

We first recall two definitions in [24, 34]. Let H be a set-valued map from E to Y ,
(x0, y0) ∈ graph(H), (u, v) ∈ X × Y . Let N be the set of natural numbers

Definition 3.1 (see [24]). The generalized second-order composed contingent epiderivative
D′′

gH(x0, y0, u, v) of H at (x0, y0) in the directive (u, v) is the set-valued map from X to Y
defined by

D′′
gH(x0, y0, u, v)(x) :=MinC{y ∈ Y |(x, y) ∈ T (T (epi(H), (x0, y0)), (u, v))}.

Definition 3.2 (see [34]). Let (x0, y0) ∈ graph(H), (u, v) ∈ X×Y . The second-order weak
composed contingent epiderivative D′′

wH(x0, y0, u, v) of H at (x0, y0) in the directive (u, v)
is the set-valued map from X to Y defined by

D′′
wH(x0, y0, u, v)(x) :=WMinC{y ∈ Y |(x, y) ∈ T (T (epi(H), (x0, y0)), (u, v))}.

Now we discuss some crucial propositions of the second-order composed contingent epi-
derivatives.

Proposition 3.3. Let (x0, y0) ∈ graph(H), (u, v) ∈ T (epi(H), (x0, y0)) with v ∈ C and E
be convex. If H is C-convex on E and the set P (x − x0 − u) := {y ∈ Y : (x − x0 − u, y) ∈
T (T (epi(F ), (x0, y0)), (u, v)) fulfills the weak domination property for all x ∈ E, then,

H(x)− {y0}+ C ⊂ D
′′

wH(x0, y0, u, v)(x− x0 − u) + C, ∀x ∈ E.

Proof. It follows from Proposition 2.5 that

T (T (epi(H), (x0, y0)), (u, v)) = clcone(cone(epi(H)− {(x0, y0)})− {(u, v)}). (3.1)

Since for every c ∈ C, x ∈ E and y ∈ H(x), one has

(x−x0−u, y−y0+c) = (x−x0−u, y+c+v−y0−v) ∈ {x}×(H(x)+C)−{(x0, y0)}−{(u, v)},
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it follows from (3.1) that

(x− x0 − u, y − y0 + c) ∈ T (T (epi(H), (x0, y0)), (u, v)).

Thus, by the weak domination property of P (x−x0−u) and the definition of the second-order
weak composed contingent epiderivatives, we have

y − y0 + c ∈ D
′′

wH(x0, y0, u, v)(x− x0 − u) + C,

and then,

H(x)− {y0}+ C ⊂ D
′′

wH(x0, y0, u, v)(x− x0 − u) + C, ∀x ∈ E.

The proof is complete.

Remark 3.1. If we use generalized second-order composed contingent epiderivatives in-
stead of second-order weak composed contingent epiderivatives in Proposition 3.3, then
corresponding result may not hold. The following example shows the case.

Example 3.4. Let C = R2
+, H : R→ 2R

2

be a set-valued map with

H(x) = {y ∈ R2|y1 ≥ x2, y2 ≥ x2}, x ∈ R.

Take (x0, y0) = (0, (1, 0)) ∈ graph(H) and (u, v) = (0, (1, 0)). By directly calculating, we
have

T (T (epi(H), (x0, y0)), (u, v)) = {(x, y) ∈ R×R2|x ∈ R, y1 ∈ R, y2 ≥ 0}.
We have checked that the assumptions of Proposition 3.3 are satisfied and

H(x)− {y0}+ C ⊂ D
′′

wH(x0, y0, u, v)(x− x0 − u) + C, ∀x ∈ E.

However, for all x ∈ E, D
′′

gH(x0, y0, u, v)(x− x0 − u) = ∅. Thus,

H(x)− {y0}+ C ̸⊂ D
′′

gH(x0, y0, u, v)(x− x0 − u) + C, ∀x ∈ E.

From the proof of Proposition 3.3, we can obtain the following result.

Proposition 3.5. (see [34]) Let (x0, y0) ∈ graph(H), (u, v) ∈ T (epi(H), (x0, y0)) with
v ∈ −C and E be convex. If H is C-convex on E and the set P (x − x0 − u) := {y ∈ Y :
(x − x0 − u, y) ∈ T (T (epi(F ), (x0, y0)), (u, v)) fulfills the weak domination property for all
x ∈ E, then,

H(x)− {y0} − {v} ⊂ D
′′

wH(x0, y0, u, v)(x− x0 − u) + C, ∀x ∈ E.

Proposition 3.6 (see [34]). Let (x0, y0) ∈ graph(H), (u, v) ∈ T (epi(H), (x0, y0)), M =
dom[D

′′

wH(x0, y0, u, v)]. Then

(i) D
′′

wH(x0, y0, u, v) is strictly positive homogeneous on M .

Moreover, if H is C-convex on convex set E and P (x) := {y ∈ Y : (x, y) ∈ T (T (epi(H),
(x0, y0)), (u, v)) fulfills the weak domination property for all x ∈M , then

(ii) D
′′

wH(x0, y0, u, v) is subadditive on M .

Proposition 3.7 (see [34]). Let (x0, y0) ∈ graph(H), (u, v) ∈ T (epi(H), (x0, y0)), M =
dom[D

′′

wH(x0, y0, u, v)]. If H is C-convex on E, then D
′′

wH(x0, y0, u, v)(M)+C is a convex
cone.
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4 Second-Order Optimality Conditions

Throughout this section, let x0 ∈ K, y0 = 0Y ∈ Fx0(x0), intC ̸= ∅ and intD ̸= ∅. Firstly,
we recall a result in [19]. Let K ⊂ X and x0 ∈ K. The interior tangent cone of K at x0
defined as

IT (K,x0) := {u ∈ X|∃δ > 0 such that x0 + tu
′
∈ K, ∀t ∈ (0, δ], ∀u

′
∈ BX(u, δ)},

where BX(u, δ) stands for the closed ball centered at u ∈ X and of radius δ.

Lemma 4.1 (See [19]). If K ⊂ X is convex, x0 ∈ K and intK ̸= ∅, then

IT (intK, x0) = intcone(K − x0).

Theorem 4.2. Let (u, v, w) ∈ X × (−C) × (−D). If x0 is a weakly efficient solution of
(GVEP), then for any z0 ∈ G(x0)

∩
(−D),

D′′
w(Fx0 , G)(x0, y0, z0, u, v, w)(x)∩

[−cone(int(C ×D) + line{(v, w)}) \ {(0Y , 0Z)}] = ∅, (4.1)

for all x ∈ Ω := dom[D′′
w(Fx0 , G)(x0, y0, z0, u, v, w)].

Proof. Suppose that there exists an x ∈ Ω such that (4.1) does not hold, that is, there exists
a (y, z) ∈ Y × Z such that

(y, z) ∈ D′′
w(Fx0

, G)(x0, y0, z0, u, v, w)(x)

and
(y, z) ∈ −cone(int(C ×D) + line{(v, w)}) \ {(0Y , 0Z)}. (4.2)

Then, by the definition of second-order weak composed contingent epiderivatives, there exist
sequences λn → +∞ and (un, vn, wn) ∈ T (epi(Fx0 , G), (x0, y0, z0)) such that (un, vn, wn)
→ (u, v, w) and

λn((un, vn, wn)− (u, v, w)) → (x, y, z), as n→ +∞. (4.3)

It follows from (4.2) that there exist µ > 0, ν ∈ R, c ∈ intC and d ∈ intD such that

y = −µ(c+ νv), z = −µ(d+ νw). (4.4)

Let us consider two possible cases for ν.
Case 1: If ν ≤ 0, then, from (4.4), v ∈ −C, and w, z0 ∈ −D, we have y ∈ −intC and

z ∈ −intD. Thus, by (4.3), there exists N1 ∈ N such that

λn(vn − v) ∈ −intC, λn(wn − w) ∈ −intD, ∀n > N1.

Thus, it follows from v ∈ −C and w ∈ −D that

vn ∈ −intC, wn ∈ −intD, ∀n > N1. (4.5)

Since (un, vn, wn) ∈ T (epi(Fx0 , G), (x0, y0, z0)), for every n ∈ N , there exist a sequence
{λkn} with λkn → +∞ as k → +∞ and a sequence (xkn, y

k
n, z

k
n) ∈ epi(Fx0 , G), such that

(xkn, y
k
n, z

k
n) → (x0, y0, z0) and

λkn((x
k
n, y

k
n, z

k
n)− (x0, y0, z0)) → (un, vn, wn), as k → +∞. (4.6)
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It follows from (4.5) and (4.6) that there exists N1(n) ∈ N such that

λkn(y
k
n − y0) ∈ −intC, λkn(zkn − z0) ∈ −intD, ∀k > N1(n),∀n > N1,

which implies

ykn − y0 ∈ −intC, zkn − z0 ∈ −intD, ∀k > N1(n), ∀n > N1. (4.7)

Since (xkn, y
k
n, z

k
n) ∈ epi(Fx0 , G), there exist ȳkn ∈ Fx0(x

k
n), z̄

k
n ∈ G(xkn), c ∈ C and d ∈ D

such that ykn = ȳkn + c and zkn = z̄kn + d. Then, by (4.7), we have

ȳkn − y0 ∈ −intC, ∀k > N1(n), z̄
k
n ∈ −intD∀n > N1.

So
Fx0(x

k
n)

∩
−intC ̸= ∅, xkn ∈ K, ∀k > N1(n), ∀n > N1,

which contradicts that x0 is a weakly efficient solution of (GVEP).
Case 2: If ν > 0, then, from (4.4), we get y = −µν( 1ν c+ v) and z = −µν( 1ν d+w). So it

follows from c ∈ intC and d ∈ intD that

y ∈ −intcone(C + {v}), z = −intcone(D + {w}). (4.8)

Then, by Lemma 4.1 and (4.8), we get that y ∈ IT (−intC, v) and z = IT (−intD,w).
Therefore, there exists δ > 0 such that

v + δy′ ∈ −intC, ∀y′ ∈ BY (y, δ). (4.9)

w + δz′ ∈ −intD, ∀z′ ∈ BZ(z, δ). (4.10)

For this δ, it follows from (4.3) that there exists N2 ∈ N such that δλn > 1 and

λn(vn − v) ∈ BY (y, δ), λn(wn − w) ∈ BZ(z, δ), ∀n > N2.

Then, by (4.9) and (4.10), we have

vn − (1− 1

δλn
)v ∈ −intC, wn − (1− 1

δλn
)w ∈ −intD, ∀n > N2.

Thus, from v ∈ −C, w, z0 ∈ −D and δλn > 1,∀n > N2, we have

vn ∈ −intC, wn ∈ −intD, ∀n > N2.

By the similar proof method of case 1, there exists N2(n) ∈ N such that

Fx0(x
k
n)

∩
−intC ̸= ∅, xkn ∈ K, ∀k > N2(n),∀n > N2,

which contradicts that x0 is a weakly efficient solution of (GVEP). Thus (4.1) holds and the
proof is complete.

Corollary 4.3. Let (u, v, w) ∈ X × (−C) × (−D). If x0 is a weakly efficient solution of
(GVEP), then for any z0 ∈ G(x0)

∩
(−D),

[D′′
w(Fx0 , G)(x0, y0, z0, u, v, w)(x) + {(v, w)}]

∩
−int(C ×D) = ∅,

for all x ∈ Ω := dom[D′′
w(Fx0 , G)(x0, y0, z0, u, v, w)].
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Now we give a Fritz John type necessary condition for the weakly efficient solution to
(GVEP).

Theorem 4.4. Let (u, v, w) ∈ X×(−C)×(−D) with (u, v, w) ∈ T (epi(Fx0 , G), (x0, y0, z0)),
z0 ∈ G(x0)

∩
(−D) and E ⊂ X be a nonempty convex set. Suppose that the following

conditions are satisfied:

(i) (Fx0 , G) is C ×D-convex on E.

(ii) x0 is a weakly efficient solution of (GVEP).

Then there exist ϕ ∈ C∗ and ψ ∈ D∗, not both zero functionals, such that

min(y,z)∈Aϕ(y) + ψ(z) = 0

and
ϕ(v) = ψ(w) = ψ(z0) = 0,

where A :=
∪

x∈ΩD
′′
w(Fx0 , G)(x0, y0, z0, u, v, w+z0)(x) and Ω := dom[D′′

w(Fx0 , G)(x0, y0, z0, u, v, w+
z0)].

Proof. Define M = A + {(v, w + z0)} + C ×D. By Proposition 3.7, we obtain that M is a
convex set. By Corollary 4.3, we get

M
∩

(−int(C ×D)) = ∅.

By the separation theorem of convex sets, there exist ϕ ∈ Y ∗ and ψ ∈ Z∗, not both zero
functionals, such that

ϕ(y) + ψ(z) ≥ ϕ(ȳ) + ψ(z̄), for all (y, z) ∈M, (ȳ, z̄) ∈ −int(C ×D). (4.11)

Since intC
∪
{0Y } and intD

∪
{0Z} are cones, by (4.11), we have

ϕ(ȳ) ≤ ψ(z̄), for all (ȳ, z̄) ∈ (−intC)× intD, (4.12)

and

ϕ(y) + ψ(z) ≥ 0, for all (y, z) ∈M. (4.13)

From (4.12), we can conclude that ψ is bounded below on intD. Then, ψ(z) ≥ 0, for all
z ∈ intD. Naturally ψ ∈ D∗.

By the similar line of the proof for ψ ∈ D∗, we can obtain ϕ ∈ C∗.
It follows from Proposition 3.7 that (0Y , 0Z) ∈ A, and then, by (4.13), we have

ϕ(v) + ψ(w + z0) ≥ 0.

Since v ∈ −D,w, z0 ∈ −D, ϕ ∈ C∗ and ψ ∈ D∗,

ϕ(v) = ψ(w) = ψ(z0) = 0.

Combine with (4.13) and (0Y , 0Z) ∈ A, we can conclude that

min(y,z)∈Aϕ(y) + ψ(z) = 0.

The proof is complete.
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Now we give an example to illustrate Theorems 4.2 and 4.4.

Example 4.5. Suppose that X = Z = R, Y = R2, C = R2
+, D = R+, E = R. Let

F : E × E → 2Y be a set-valued bifunction with

F (x1, x2) = {(y1, y2) ∈ Y : y1 ∈ R, y2 ≥ x22 − x21}, ∀x1, x2 ∈ E,

and G : E → Z be a set-valued map with

G(x) = {z ∈ R : z ≥ 0}, x ∈ E.

We consider the generalized vector equilibrium problem with constraints (GV EP1): find
x0 ∈ K such that

F (x0, x) ∩ (−intC) = ∅, for all x ∈ K,

where K := {x ∈ E : G(x) ∩ (−D) ̸= ∅}.
Take (x0, y0) = (0, (0, 0)) ∈ graph(F ) and (x0, z0) = (0, 0) ∈ graph(G). Then Fx0

(x) =
{(y1, y2) ∈ Y : y1 ∈ R, y2 ≥ x2}, ∀x ∈ E, x0 is a weakly efficient solution of (GV EP1), and
(Fx0 , G) is C ×D-convex on E. By directly calculating, we have

T (epi(Fx0 , G), (x0, y0, z0)) = {(x, y, z) ∈ R×R2 ×R|x ∈ R, y1 ∈ R, y2 ≥ 0, z ≥ 0}.

Take (u, v, w) = (1, (−1, 0), 0) ∈ T (epi(Fx0 , G), (x0, y0, z0)). Then
B := cone(int(C ×D) + line{v, w}) \ {(0Y , 0Z)}

= {(y, z) ∈ R2 ×R|y1 ∈ R, y2 > 0, z > 0},

and
T (T (epi(Fx0 , G), (x0, y0, z0)), (u, v, w))

= {(x, y, z) ∈ R×R2 ×R|x ∈ R, y1 ∈ R, y2 ≥ 0, z ≥ 0}.

So
A = (R×R+)× {0}

∪
(R× {0})×R+ and A

∩
(−B) = ∅,

which shows that Theorem 4.2 holds here.
Take ϕ = (0, 1) ∈ C∗ and ψ = 1 ∈ D∗. Clearly,

inf{
∪

(y,z)∈A

ϕ(y) + ψ(z)} = 0 and ϕ(v) = ψ(w) = ψ(z0) = 0.

which shows that Theorem 4.4 holds here.

Theorem 4.6. Let z0 ∈ G(x0)
∩
(−D), (u, v, w) ∈ X × (−C) × (−D) with (u, v, w) ∈

T (epi(Fx0 , G), (x0, y0, z0)), and K ⊂ X be a nonempty convex set. Suppose that the following
conditions are satisfied:

(i) (Fx0 , G) is C ×D-convex on K.

(ii) The set G̃(x − x0 − u) := {y ∈ Y : (x − x0 − u, y) ∈ T (T (epi(F ), (x0, y0)), (u, v))}
fulfills the weak domination property for all x ∈ K.

(iii)
D′′

w(Fx0 , G)(x0, y0, z0, u, v, w)(x− x0 − u)∩
((−intC − {v})× (−D − {x0} − {w})) = ∅, ∀x ∈ K. (4.14)
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Then (x0, y0) is a weak minimizer of problem (GV EP ).

Proof. It follows from condition (4.14) that
(D′′

w(Fx0 , G)(x0, y0, z0, u, v, w)(x− x0 − u) + C ×D)
∩

((−intC − {v})× (−D − {x0} − {w})) = ∅, ∀x ∈ K.

And then, from Proposition 3.5, for all x ∈ K,

((Fx0 , G)(x)− {(y0, z0)} − {(v, w)})
∩

((−intC − {v})× (−D − {x0} − {w})) = ∅.

Since x ∈ K and y0 = 0Y ,

Fx0(K)
∩

(−intC) = ∅,

which implies that (x0, y0) is a weak minimizer of problem (GV EP ). The proof is complete.

Theorem 4.7. Let z0 ∈ G(x0)
∩
(−D), (u, v, w) ∈ X × C ×D with (u, v, w) ∈ T (epi(Fx0 ,

G), (x0, y0, z0)) and E ⊂ X be a nonempty convex set. Suppose that the following conditions
are satisfied:

(i) (Fx0 , G) is C ×D-convex on E.

(ii) There exist ϕ ∈ C∗ \ {0} and ψ ∈ D∗ such that

inf{
∪

(y,z)∈V

ϕ(y) + ψ(z)} = 0 and ψ(z0) = 0,

where V :=
∪

x∈∆D
′′
w(Fx0 , G)(x0, y0, z0, u, v, w)(x) and ∆ := dom[D′′

w(Fx0 , G)(x0, y0, z0,
u, v, w)].
Then x0 is a weakly efficient solution of (GVEP).

Proof. Assume that x0 is not a weakly efficient solution of (GVEP). Then there exist x′ ∈ K
and y′ ∈ F (x0, x

′) such that y′ ∈ −intC. Since x′ ∈ K, there exists z′ ∈ G(x′)
∩
(−D). By

Proposition 3.3, we have (y′ − y0, z
′ − z0) ∈ V +C ×D, and then, from assumption (ii), we

obtain

ϕ(y′ − y0) + ψ(z′ − z0) ≥ 0. (4.15)

Since y′ − y0 = y′ ∈ −intC, ϕ ∈ C∗ \ {0}, ϕ(y′ − y0) < 0. By z′ ∈ G(x′)
∩
(−D), ψ ∈ D∗

and ψ(z0) = 0, we get ψ(z′ − z0) ≤ 0, thus

ϕ(y′ − y0) + ψ(z′ − z0) < 0,

which contradicts (4.15). So x0 is a weakly efficient solution of (GVEP), and this completes
the proof.

5 Applications

In this section, we use the results of Section 4 to get the optimality conditions for weakly
efficient solutions to the set-valued vector optimization problems with constraints.
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Consider the set-valued vector optimization problems with constraints:

(SV OP )

{
min H(x),
s.t. G(x)

∩
(−D) ̸= ∅, x ∈ E,

i.e., to find all (x0, y
′
) ∈ K ×H(K) satisfying y

′ ∈ H(x0) and y
′ ∈ WMinCH(K), where

K := {x ∈ E|G(x)
∩
(−D) ̸= ∅}. x0 is said to be a weakly efficient solution of (SV OP ) and

(x0, y
′
) is said to be a weakly efficient element of (SV OP ).

Theorem 5.1. Let (u, v, w) ∈ X × (−C) × (−D). If (x0, y
′
) is a weakly efficient element

of (SV OP ). Then for any z0 ∈ G(x0)
∩
(−D),

D′′
w(H,G)(x0, y

′
, z0, u, v, w)(x)∩

−cone(int(C ×D) + line{(v, w)}) \ {(0Y , 0Z)} = ∅, (5.1)

for all x ∈ Ω := dom[D′′
w(H,G)(x0, y

′
, z0, u, v, w)].

Proof. Let
F (x, y) = H(y)− h(x), ∀x, y ∈ E,

where h : X → Y is a vector-valued map with h(x) ∈ H(x) and h(x0) = y
′
.

Obviously, for any x ∈ E, 0Y ∈ F (x, x). Take y0 = 0Y . By Definition 3.2, we know that

D′′
w(Fx0 , G)(x0, y0, z0, u, v, w)(x) = D′′

w(H,G)(x0, y
′
, z0, u, v, w)(x). (5.2)

By assumptions, the conditions of Theorem 4.2 are satisfied. Combined with (5.2) and
(4.1), we can conclude that (5.1) holds. This completes the proof.

Remark 5.1. When G(x) ≡ Z, for any x ∈ E, Theorem 5.1 can conclude [24, Theorem
4.1] and [34, Theorem 4.1].

From Theorems 4.4 and 5.1, we can conclude that Theorem 5.2 holds.

Theorem 5.2. Let (u, v, w) ∈ X× (−C)× (−D) with (u, v, w) ∈ T (epi(H,G), (x0, y0, z0)),
z0 ∈ G(x0)

∩
(−D) and E ⊂ X be a nonempty convex set. Suppose that the following

conditions are satisfied:

(i) (H,G) is C ×D-convex on E.

(ii) (x0, y
′
) is a weakly efficient element of (SV OP ).

Then there exist ϕ ∈ C∗ and ψ ∈ D∗, not both zero functionals, such that

inf{
∪

(y,z)∈A′

ϕ(y) + ψ(z)} = 0

and
ϕ(v) = ψ(w) = ψ(z0) = 0,

where A′ :=
∪

x∈Ω′ D′′
w(H,G)(x0, y

′, z0, u, v, w)(x) and Ω′ := dom[D′′
w(H,G)(x0, y

′, z0, u,
v, w)].

From Theorem 4.6, we can conclude that the following Theorem 5.3 holds.
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Theorem 5.3. Let z0 ∈ G(x0)
∩
(−D), (u, v, w) ∈ X × (−C) × (−D) with (u, v, w) ∈

T (epi(H,G), (x0, y
′, z0)), and K ⊂ X be a nonempty convex set. Suppose that the following

conditions are satisfied:

(i) (H,G) is C ×D-convex on K.

(ii) The set {(y, z) ∈ Y × Z : (x − x0 − u, y, z) ∈ T (T (epi(H,G), (x0, y
′, z0)), (u, v, w))}

fulfills the weak domination property for all x ∈ K.

(iii) For all x ∈ K,

D′′
w(H,G)(x0, y

′, z0, u, v, w)(x− x0 − u)
∩

((−intC −{v})× (−D−{x0}− {w})) = ∅.

Then (x0, y
′) is a weak minimizer of problem (SV OP ).

Remark 5.2. When G(x) ≡ Z, for any x ∈ E, from Theorems 5.3, we can conclude [34,
Theorem 4.2].

From Theorem 4.7, we can conclude that the following Theorem holds.

Theorem 5.4. Let z0 ∈ G(x0)
∩
(−D), (u, v, w) ∈ X×C×D with (u, v, w) ∈ T (epi(H,G),

(x0, y
′, z0)), and E ⊂ X be a nonempty convex set. Suppose that the following conditions

are satisfied:

(i) (H,G) is C ×D-convex on E.

(ii) There exist ϕ ∈ C∗ \ {0} and ψ ∈ D∗ such that

inf{
∪

(y,z)∈V ′

ϕ(y) + ψ(z)} = 0 and ψ(z0) = 0,

where V ′ :=
∪

x∈∆′ D′′
w(H,G)(x0, y

′, z0, u, v, w)(x) and ∆′ := dom[D′′
w(H,G)(x0, y

′, z0, u,
v, w)].
Then (x0, y

′
) is a weakly efficient element of (SV OP ).
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[19] B. Jiménez and V. Novo, Second-order necessary conditions in set constrained differ-
entiable vector optimization, Math. Methods Oper. Res. 58 (2003) 299–317.
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