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Abstract: In this paper, we introduce a kind of Hadamard-type well-posedness for vector equilibrium prob-
lems with set-valued mappings. By virtue of a scalarization function, we obtain some relationships between
solutions of vector equilibrium problems and a scalar optimization problem and also derive a scalarization
theorem of P.K. convergence for sequences of set-valued mappings. Based on these results, we establish a
sufficient condition of Hadamard-type well-posedness for vector equilibrium problem.
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Introduction

The concept of Hadamard well-posedness is inspired by the classical idea of Hadamard,
which goes back to the beginning of the last century. Hadamard well-posedness together
with Tykhonov well-posedness are two main types of concepts for well-posed optimization
problems. Recently, Tykhonov well-posedness has been studied and generalized in other
more complicated situations, such as scalar optimization problems, vector optimization
problems, nonlinear optimal control problems and so on, see [3, 6, 8, 9, 10, 11, 14] and
references therein. However, as much as we know, there are few papers which consider
Hadamard-type well-posedness for vector equilibrium problems. As we know, Hadamard
well-posedness requires existence and uniqueness of the optimal solution together with con-
tinuous dependence of solutions on the data in problems. Therefore, it is closely related
to the stability of vector optimization problems. In the present paper, we try to deal with
Hadamard-type well-posedness for a vector equilibrium problem and establish a sufficient
condition for it.

In this paper, we introduce a kind of Hadamard-type well-posedness for a vector equi-
librium problem with set-valued mappings. Following the idea of [12, Section 2], we try to
find out an appropriate scalarization function to characterize the vector equilibrium prob-
lem by a scalar optimization problem, and obtain some solution relationships between them.
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Meanwhile, taking advantage of the suitable scalarization function, we also establish a scalar-
ization theorem of Painlevé-Kuratowski convergence for sequences of set-valued mappings.
Based on the solution relationships and the scalarization theorem, we get a sufficient con-
dition for Hadamard-type well-posedness of a vector equilibrium problem is obtained. This
paper is organized as follows. In Section 2, we give some basic concepts and notations.
In Section 3, according to the method which has just mentioned, we establish a sufficient
condition for Hadamard-type well-posedness of a vector equilibrium problem. In Section 4,
we give a conclusion.

Preliminaries and Notations

In this section, we introduce some basic concepts and notations, which will be used in the
sequel. In addition, we introduce a kind of Hadamard-type well-posedness for a vector
equilibrium problem.

Throughout this paper, unless other specified, we assume that ¢ C R" is a pointed
closed convex cone, which has a nonempty interior denoted by intC. Let E,(n € N, Nis
an positive integer ) and E be nonempty subsets of R¥, FF: E x E — 28" he a set-valued
mapping.

Let F: E x E — 28" be a set-valued mapping with 0 € F(x,z) for every z € E. We
consider the following kind of vector equilibrium problem with set-valued mappings:

(VEP(F, E)): to find Z € E such that

F(z,y) cY \ (—intC), Vy € E.

i.e. to find € E such that

F(z,E) C Y\ (—intC), where F(z,E) = | ] F(z,y).
yeE

Definition 2.1. Let e € intC and € > 0. A point Z € F is called an (e, e)—solution of the
problem (VEP(F, E)), written as Z € (g,e) — S(F, E), if

F(z,E) N (—ce — intC) = 0.

In the sequel, we will suppose that all the (e, e)—solution sets of the vector equilibrium
problems, which are involved, are nonempty.
Now we recall the well-known definition of Painlevé-Kuratowski set convergence.

Definition 2.2. A sequence of nonempty subsets (D, )nen of R" converges to D in the
sense of Painlevé-Kuratowski (P.K. for short), written as D,, ais D, if

limsup D,, C D C liminf D,

where lim inf,, D,,, the inner limit, consists of all possible limit points of sequences (., )nen
with z, € D,,(n € N) and lim sup,, D,,, the outer limit, consists of all possible cluster points
of such sequences.

Based on the above definition, we introduce the following two definitions for sequences
of set-valued mappings in [4].
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Definition 2.3. A sequence of nonempty set-valued mappings H, : RF — 28" Painlevé-
Kuratowski (P.K. for short) converges to a set-valued mapping H : RF — Q]Rh, written as
H, %5 H, if epiH, 25 epiH, where epiH,, = {(z,2): z € Hy(z)+C} and epiH = {(z, 2) :
z € H(z) + C}.

Definition 2.4 ([13]). Let {H, : E, — 2"y = 1,2,...} be a sequence of nonempty
set-valued mappings and denote by {(E,, H,) : n = 1,2,...} the corresponding sequence
of (domain, mapping) pairs representing the perturbing problems. Let H : E — 2R he a
set-valued mapping. We say (E,,, H,) P.K. converges to (E, H) if H,, PR, where

() = H,(x), if z€E,,
%) = {+o0}, ifx € RF\E,;

|

=,y _ | H(z), if z€k,
H(z) _{ {+oc}, ifx € RF\E.

Now based on the above definition, we introduce a kind of Hadamard-type well-posedness
for vector equilibrium problems with set-valued mapping.

For convenience, we shall denote the set-valued mappings G,, : E,, — 2" and G : E —
28" by Gn(x) = Fu(z,Ep) = Uyer, Fu(z,y) and G(z) = F(2,E) = UyepF(z,y). We
suppose that 0 € F(z,x) for every z € E and 0 € F,(z,x) for every z € E,,, where n € N.

Definition 2.5. Let (E,,G,) 2K (E,G). The vector equilibrium problem (VEP(F, E)) is
called to be Hadamard-type well-posed with respect to (Fy, Fp,)nen, if there exists g > 0
such that

limsup|(e,e) — S(F,, En) | C (e,e) — S(F,E), Ve € [0,e0].

n

Hadamard-type Well-posedness for Vector Equilibrium Problem

In this section, firstly, we use the following nonlinear scalarization function to characterize
the problem (VEP(F,FE)) by a scalar optimization problem and establish some solution
relationships between them.

Definition 3.1 ([2]). , the nonlinear scalarization function &.(.) : R* — R is defined by:
((y)=inf{t e R: ycte—C}, y € R
The nonlinear scalarization function &.(.) has the following salient properties.
Lemma 3.2 ([7]). For a fized e € intC' and any t € R, we have
(i) &e(y) <ty cte—intC,
(if) €e(
(iii) &e(te) =1t,
(iv) &e(
Now we consider the following scalar optimization problem induced by (VEP(F, E)),
(Qa,€c(-)) = min &(y)

y) <tsyete—C,

y) is a continuous convex function on R" and strictly monotone.

where x € E.
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Definition 3.3. Let z € E. A point § € Q; is called an e-approximate solution for the
problem (2z,&.(.)), written as § € ¢ — Inf(Qz,&(.)), if

€e(y) —e < &(y), VyeQa
(VEP(F, E)) and (Q,&(.)) have the following solution relationships.
Proposition 3.4. Let xg € E. xg € (g,e) — S(F, E) if and only if 0 € € — Inf(Qy,, &()).
Proof.

zo € (e,e) = S(E, E)

& F(zo,E) N (—ee —intC) = 0

& (F(zg, E)+C)N (—ee —intC) =
& Vy € F(xg, E)+C, y & —ce — intC
& Vy € F(xo, E) +C, &(y) > —¢
<0 €e—Inf(Qy,,&(.))

O

Secondly, by virtue of the nonlinear scalarization function, we also establish an important
scalarization theorem of P.K. convergence for sequences of set-valued mappings.

Theorem 3.5. Suppose that
i) E,,E C R* be nonempty subsets with E, lﬂi FE
(i) En, pty ;
(ii) F, : B, x B, — " gnd F: E x E — 28" be set-valued mappings,
(i) (En,Gn) °55 (B, G),
(iv) qn € E,,q € E with g, — q.

Then, I, BE 1,, where scalar functions I, , 1, R" — R are defined as follows:

&), if Y€ Fulgn Ea)+ C,
Lo, () _{ +oZ, if yyeRh(\](Fn(qn,EnHC), (3.1)
[ &), if yeF(E)+C,
L) ‘{ Yoo, if yERN(P(g,E)+O) (3:2)

Proof. Assume that M, = epil,, and M = epil,. Firstly, we show that M C liminf,, M,.
For arbitrary (y,t) € M, we have that

y€ F(q,E)+C, (3.3)
and

I(y) <t (3.4)

By (3.3), we have (q,y) € epiG. Since (E,,G,) BE (E, G), there exists a sequence (gn, yn) €
epiG,(n € N) such that (gn,yn) — (¢,v). It follows that y,, € F,,(qn, En) + C. According

to (3.4), we obtain that y € te — C'. Then, there exists k € C such that y = te — k. Together
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with y, — vy, we get y, — te — k. Let [, = y, + k. It implies that [,, — te. Let the
value of the non-linear scalarization function &, on I, be &.(I,) = t,. By Lemma 3.2(iii),
(iv) and [,, — te, we obtain that ¢, — t. Moreover, from the definition of &.(-), we have
ln € the — C, that is, y, + k € t,e — C and it deduces that y,, € t,e — C. Together with
Yn € Fr(Gn, Er) +C, we have I, (yn) < t,. In addition, (yn,t,) € M, and (Yn, tn) = (y,t).
Therefore, we get M C liminf,, M,.

Secondly, we verify that limsup,, M,, C M. For arbitrary (y,t¢) € limsup,, M,,, there
exists a sequence (yn, tn) € M, with subsequence (yn, ,tn,) — (y,1t). Since (Yn,,tn,) € My, ,
we have that

ynk € Fnk (an ) Enk) + Cv (35)
and

fe(ynk) < tn,- (36)

By (3.5), we obtain that (¢n,,¥n,) € epiGy,. Since (E,,G,) BE (E,G) and (qn, s Yn,) —

(¢,y), we have (q,y) € epiG. It implies that
y € F(q, E)+C. (3.7)

According to Lemma 3.2(i7) and (3.6), we have y,, € t,. e — C, ie., yn, — tn,e € —C.
Together with (yn, ,tn,) — (y,t) and C is closed, we get that y — te € —C,which means that

Eely) <t. (3.8)
By (3.7) and (3.8), we get that (y,¢) € M, which implies that limsup,, M,, C M. O

By the above definitions of scalar function I, , I, : R" — R, we consider the following
two scalar optimization problems (R", I, ) and (R",I,):

(Rha I,): ;Iel]g}l I, (y),

and

(R, L) min I,(y).

Then, we give the following definition of e-approximate solution for them:.

Definition 3.6. A point § € R" is called an e-approximate solution for the problem
(R",1,.), written as § € ¢ — Inf(R" 1, ), if
I, () —e <1, (y), Vye R™.

A point § € R" is called an e-approximate solution for the problem (R",I,), written as
y € e — Inf(R", 1), if
I,(5) —e < I(y), VyeR"

Obviously, we have
0€e—TInf(Qy,,&() & 0€e—Inf(R", I,,,),
0 €& —1Inf (Fo, (2n,, En,) + C,&() & 0 € e — Inf(R", I, ).

According to [1, Proposition 1.14] and [1, Theorem 1.39], g, : X — R (n € N) P.K.
converges to g : X — R if and only if g, : X — R (n € N) variationally converges to
g: X — R, where X is a first countable space. As we all know, Hausdorff topological linear
space is first countable. Then from [3, Chap 4, Theorem 5], we have the following lemma.
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Lemma 3.7. Assume that g, :S — R, g:S — R and g, LS g, where n € N'. Then there
exists eg > 0 such that

lim sup[e — Inf (S, g,)] C € — Inf (S, g),

n
for all 0 < e < &g.

Finally, we apply the above results to obtain sufficient condition for Hadamard-type
well-posedness of vector equilibrium problem with set-valued mappings.

Theorem 3.8. Suppose that
(i) E.,E C RF be nonempty subsets with E,, P p,
(ii) F, : B, x B, — R und F: E x E — 28" be set-valued mappings,

(it)) (B, G) =5 (E,G).
Then (VEP(F, E)) is Hadamard-type well-posed with respect to (E,, Fy)nen -

Proof. We need to prove that there exists £g > 0 such that

limsupl(e, e) — S(Fy, Ey) | C (g,e) — S(F, E),

n

for all 0 < e < gg. Let & € limsup,[(e,e) — S(F,, E,) |. Then, there exists a sequence
Zn € (g,€) — S(Fy, Ey) with subsequence x,, € (e,e) — S(F,,, En,) such that z,, — 7.
Since E,, UiS E, we have T € E. From Proposition 3.4, we have 0 € e —Inf (F,,, (zp,, Fn, )+
C,&.(.)). Obviously, 0 € ¢ — Inf (Rh,lxnk(.)). Thus, 0 € limsup,, [¢ — Inf (Rh,Ixnk ())]-

According to conditions (i), (ii) and (iii), by Theorem 3.5, we have I, 2K I.. Then by
lemma 3.7, there exists €9 > 0 such that

lim sup[e — Inf (RhJa:nk ()] C e —1Inf (R, I,(.)),

ng
for all 0 < e < gg. It follows that 0 € ¢ — Inf (R", I;(.)), i.e., 0 € e — Inf (Q4, Iz(.)). By
Proposition 3.4 and Z € E, we obtain T € (¢,e) — S(F, E). O

Conclusion

This paper considered a kind of Hadamard-type well-posedness for a vector equilibrium
problem with set-valued mappings, which based on the concepts of Painlevé-Kuratowski
convergence of sets. By virtue of the suitable scalarization function, we established the
sufficient condition for Hadamard-type well-posedness of the vector equilibrium problem.
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