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Meanwhile, taking advantage of the suitable scalarization function, we also establish a scalar-
ization theorem of Painlevé-Kuratowski convergence for sequences of set-valued mappings.
Based on the solution relationships and the scalarization theorem, we get a sufficient con-
dition for Hadamard-type well-posedness of a vector equilibrium problem is obtained. This
paper is organized as follows. In Section 2, we give some basic concepts and notations.
In Section 3, according to the method which has just mentioned, we establish a sufficient
condition for Hadamard-type well-posedness of a vector equilibrium problem. In Section 4,
we give a conclusion.

2 Preliminaries and Notations

In this section, we introduce some basic concepts and notations, which will be used in the
sequel. In addition, we introduce a kind of Hadamard-type well-posedness for a vector
equilibrium problem.

Throughout this paper, unless other specified, we assume that C ⊂ Rh is a pointed
closed convex cone, which has a nonempty interior denoted by intC. Let En(n ∈ N ,N is

an positive integer ) and E be nonempty subsets of Rk, F : E × E → 2R
h

be a set-valued
mapping.

Let F : E × E → 2R
h

be a set-valued mapping with 0 ∈ F (x, x) for every x ∈ E. We
consider the following kind of vector equilibrium problem with set-valued mappings:

(VEP(F,E)): to find x̄ ∈ E such that

F (x̄, y) ⊂ Y \ (−intC), ∀ y ∈ E.

i.e. to find x̄ ∈ E such that

F (x̄, E) ⊂ Y \ (−intC), where F (x̄, E) =
∪
y∈E

F (x̄, y).

Definition 2.1. Let e ∈ intC and ε ≥ 0. A point x̄ ∈ E is called an (ε, e)−solution of the
problem (VEP(F,E)), written as x̄ ∈ (ε, e)− S(F,E), if

F (x̄, E) ∩ (−εe− intC) = ∅.

In the sequel, we will suppose that all the (ε, e)−solution sets of the vector equilibrium
problems, which are involved, are nonempty.

Now we recall the well-known definition of Painlevé-Kuratowski set convergence.

Definition 2.2. A sequence of nonempty subsets (Dn)n∈N of Rh converges to D in the

sense of Painlevé-Kuratowski (P.K. for short), written as Dn
P.K.−→ D, if

lim sup
n

Dn ⊂ D ⊂ lim inf
n

Dn,

where lim infn Dn, the inner limit, consists of all possible limit points of sequences (xn)n∈N
with xn ∈ Dn(n ∈ N ) and lim supn Dn, the outer limit, consists of all possible cluster points
of such sequences.

Based on the above definition, we introduce the following two definitions for sequences
of set-valued mappings in [4].
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Definition 2.3. A sequence of nonempty set-valued mappings Hn : Rk → 2R
h

Painlevé-

Kuratowski (P.K. for short) converges to a set-valued mapping H : Rk → 2R
h

, written as

Hn
P.K.−→ H, if epiHn

P.K.−→ epiH, where epiHn = {(x, z) : z ∈ Hn(x)+C} and epiH = {(x, z) :
z ∈ H(x) + C}.

Definition 2.4 ([13]). Let {Hn : En → 2R
h

, n = 1, 2, . . .} be a sequence of nonempty
set-valued mappings and denote by {(En,Hn) : n = 1, 2, . . .} the corresponding sequence

of (domain, mapping) pairs representing the perturbing problems. Let H : E → 2R
h

be a

set-valued mapping. We say (En,Hn) P.K. converges to (E,H) if Hn
P.K.−→ H, where

Hn(x) =

{
Hn(x), if x ∈ En,
{+∞}, if x ∈ Rk\En;

H(x) =

{
H(x), if x ∈ E,
{+∞}, if x ∈ Rk\E.

Now based on the above definition, we introduce a kind of Hadamard-type well-posedness
for vector equilibrium problems with set-valued mapping.

For convenience, we shall denote the set-valued mappings Gn : En → 2R
h

and G : E →
2R

h

by Gn(x) = Fn(x,En) = ∪y∈EnFn(x, y) and G(x) = F (x,E) = ∪y∈EF (x, y). We
suppose that 0 ∈ F (x, x) for every x ∈ E and 0 ∈ Fn(x, x) for every x ∈ En, where n ∈ N .

Definition 2.5. Let (En, Gn)
P.K.−→ (E,G). The vector equilibrium problem (VEP(F,E)) is

called to be Hadamard-type well-posed with respect to (En, Fn)n∈N , if there exists ε0 > 0
such that

lim sup
n

[(ε, e)− S(Fn, En) ] ⊂ (ε, e)− S(F,E), ∀ ε ∈ [0, ε0].

3 Hadamard-type Well-posedness for Vector Equilibrium Problem

In this section, firstly, we use the following nonlinear scalarization function to characterize
the problem (VEP(F,E)) by a scalar optimization problem and establish some solution
relationships between them.

Definition 3.1 ([2]). , the nonlinear scalarization function ξe(.) : Rh → R is defined by:

ξe(y) = inf{t ∈ R : y ∈ te− C}, y ∈ Rh.

The nonlinear scalarization function ξe(.) has the following salient properties.

Lemma 3.2 ([7]). For a fixed e ∈ intC and any t ∈ R, we have

(i) ξe(y) < t ⇔ y ∈ te− intC,

(ii) ξe(y) ≤ t ⇔ y ∈ te− C,

(iii) ξe(te) = t,

(iv) ξe(y) is a continuous convex function on Rh and strictly monotone.

Now we consider the following scalar optimization problem induced by (VEP(F,E)),

(Ωx, ξe(.)) : min
y∈Ωx

ξe(y)

where x ∈ E.
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Definition 3.3. Let x̄ ∈ E. A point ȳ ∈ Ωx̄ is called an ε-approximate solution for the
problem (Ωx̄, ξe(.)), written as ȳ ∈ ε− Inf(Ωx̄, ξe(.)), if

ξe(ȳ)− ε ≤ ξe(y), ∀y ∈ Ωx̄.

(VEP(F,E)) and (Ωx, ξe(.)) have the following solution relationships.

Proposition 3.4. Let x0 ∈ E. x0 ∈ (ε, e)− S(F,E) if and only if 0 ∈ ε− Inf(Ωx0 , ξe(.)).

Proof.

x0 ∈ (ε, e)− S(F,E)
⇔ F (x0, E) ∩ (−εe− intC) = ∅
⇔ (F (x0, E) + C) ∩ (−εe− intC) = ∅
⇔ ∀y ∈ F (x0, E) + C, y ̸∈ −εe− intC
⇔ ∀y ∈ F (x0, E) + C, ξe(y) ≥ −ε
⇔ 0 ∈ ε− Inf(Ωx0 , ξe(.))

Secondly, by virtue of the nonlinear scalarization function, we also establish an important
scalarization theorem of P.K. convergence for sequences of set-valued mappings.

Theorem 3.5. Suppose that

(i) En, E ⊂ Rk be nonempty subsets with En
P.K.−→ E,

(ii) Fn : En × En → 2R
h

and F : E × E → 2R
h

be set-valued mappings,

(iii) (En, Gn)
P.K.−→ (E,G),

(iv) qn ∈ En, q ∈ E with qn → q.

Then, Iqn
P.K.−→ Iq, where scalar functions Iqn , Iq : Rh → R are defined as follows:

Iqn(y) =

{
ξe(y), if y ∈ Fn(qn, En) + C,
+∞, if y ∈ Rh\(Fn(qn, En) + C),

(3.1)

Iq(y) =

{
ξe(y), if y ∈ F (q, E) + C,
+∞, if y ∈ Rh\(F (q, E) + C).

(3.2)

Proof. Assume that Mn = epiIqn and M = epiIq. Firstly, we show that M ⊂ lim infn Mn.
For arbitrary (y, t) ∈ M , we have that

y ∈ F (q, E) + C, (3.3)

and

Iq(y) ≤ t. (3.4)

By (3.3), we have (q, y) ∈ epiG. Since (En, Gn)
P.K.−→ (E,G), there exists a sequence (qn, yn) ∈

epiGn(n ∈ N) such that (qn, yn) → (q, y). It follows that yn ∈ Fn(qn, En) + C. According
to (3.4), we obtain that y ∈ te−C. Then, there exists k ∈ C such that y = te−k. Together
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with yn → y, we get yn → te − k. Let ln = yn + k. It implies that ln → te. Let the
value of the non-linear scalarization function ξe on ln be ξe(ln) = tn. By Lemma 3.2(iii),
(iv) and ln → te, we obtain that tn → t. Moreover, from the definition of ξe(·), we have
ln ∈ tne − C, that is, yn + k ∈ tne − C and it deduces that yn ∈ tne − C. Together with
yn ∈ Fn(qn, En)+C, we have Iqn(yn) ≤ tn. In addition, (yn, tn) ∈ Mn and (yn, tn) → (y, t).
Therefore, we get M ⊂ lim infn Mn.

Secondly, we verify that lim supn Mn ⊂ M . For arbitrary (y, t) ∈ lim supn Mn, there
exists a sequence (yn, tn) ∈ Mn with subsequence (ynk

, tnk
) → (y, t). Since (ynk

, tnk
) ∈ Mnk

,
we have that

ynk
∈ Fnk

(qnk
, Enk

) + C, (3.5)

and

ξe(ynk
) ≤ tnk

. (3.6)

By (3.5), we obtain that (qnk
, ynk

) ∈ epiGnk
. Since (En, Gn)

P.K.−→ (E,G) and (qnk
, ynk

) →
(q, y), we have (q, y) ∈ epiG. It implies that

y ∈ F (q, E) + C. (3.7)

According to Lemma 3.2(ii) and (3.6), we have ynk
∈ tnk

e − C, i.e., ynk
− tnk

e ∈ −C.
Together with (ynk

, tnk
) → (y, t) and C is closed, we get that y− te ∈ −C,which means that

ξe(y) ≤ t. (3.8)

By (3.7) and (3.8), we get that (y, t) ∈ M , which implies that lim supn Mn ⊂ M .

By the above definitions of scalar function Iqn , Iq : Rh → R, we consider the following
two scalar optimization problems (Rh, Iqn) and (Rh, Iq):

(Rh, Iqn) : min
y∈Rh

Iqn(y),

and
(Rh, Iq) : min

y∈Rh
Iq(y).

Then, we give the following definition of ε-approximate solution for them.

Definition 3.6. A point ȳ ∈ Rh is called an ε-approximate solution for the problem
(Rh, Iqn), written as ȳ ∈ ε− Inf(Rh, Iqn), if

Iqn(ȳ)− ε ≤ Iqn(y), ∀y ∈ Rh.

A point ȳ ∈ Rh is called an ε-approximate solution for the problem (Rh, Iq), written as
ȳ ∈ ε− Inf(Rh, Iq), if

Iq(ȳ)− ε ≤ Iq(y), ∀y ∈ Rh.

Obviously, we have

0 ∈ ε− Inf(Ωx0 , ξe(.)) ⇔ 0 ∈ ε− Inf(Rh, Ix0),

0 ∈ ε− Inf (Fnk
(xnk

, Enk
) + C, ξe(.)) ⇔ 0 ∈ ε− Inf(Rh, Ixnk

).

According to [1, Proposition 1.14] and [1, Theorem 1.39], gn : X → R (n ∈ N ) P.K.
converges to g : X → R if and only if gn : X → R (n ∈ N ) variationally converges to
g : X → R, where X is a first countable space. As we all know, Hausdorff topological linear
space is first countable. Then from [3, Chap 4, Theorem 5], we have the following lemma.
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Lemma 3.7. Assume that gn : S → R, g : S → R and gn
P.K.−→ g, where n ∈ N . Then there

exists ε0 > 0 such that

lim sup
n

[ε− Inf (S, gn)] ⊂ ε− Inf (S, g),

for all 0 ≤ ε ≤ ε0.

Finally, we apply the above results to obtain sufficient condition for Hadamard-type
well-posedness of vector equilibrium problem with set-valued mappings.

Theorem 3.8. Suppose that

(i) En, E ⊂ Rk be nonempty subsets with En
P.K.−→ E,

(ii) Fn : En × En → 2R
h

and F : E × E → 2R
h

be set-valued mappings,

(iii) (En, Gn)
P.K.−→ (E,G).

Then (V EP (F,E)) is Hadamard-type well-posed with respect to (En, Fn)n∈N .

Proof. We need to prove that there exists ε0 > 0 such that

lim sup
n

[(ε, e)− S(Fn, En) ] ⊂ (ε, e)− S(F,E),

for all 0 ≤ ε ≤ ε0. Let x̄ ∈ lim supn[(ε, e) − S(Fn, En) ]. Then, there exists a sequence
xn ∈ (ε, e) − S(Fn, En) with subsequence xnk

∈ (ε, e) − S(Fnk
, Enk

) such that xnk
→ x̄.

Since En
P.K.−→ E, we have x̄ ∈ E. From Proposition 3.4, we have 0 ∈ ε−Inf (Fnk

(xnk
, Enk

)+
C, ξe(.)). Obviously, 0 ∈ ε − Inf (Rh, Ixnk

(.)). Thus, 0 ∈ lim supnk
[ε − Inf (Rh, Ixnk

(.))].

According to conditions (i), (ii) and (iii), by Theorem 3.5, we have Ixnk

P.K.−→ Ix̄. Then by
lemma 3.7, there exists ε0 > 0 such that

lim sup
nk

[ε− Inf (Rh, Ixnk
(.))] ⊂ ε− Inf (Rh, Ix̄(.)),

for all 0 ≤ ε ≤ ε0. It follows that 0 ∈ ε − Inf (Rh, Ix̄(.)), i.e., 0 ∈ ε − Inf (Ωx̄, Ix̄(.)). By
Proposition 3.4 and x̄ ∈ E, we obtain x̄ ∈ (ε, e)− S(F,E).

4 Conclusion

This paper considered a kind of Hadamard-type well-posedness for a vector equilibrium
problem with set-valued mappings, which based on the concepts of Painlevé-Kuratowski
convergence of sets. By virtue of the suitable scalarization function, we established the
sufficient condition for Hadamard-type well-posedness of the vector equilibrium problem.
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