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g(y) := 1
m

m∑
i=1

log(1 + exp(−yi)). Each special case has wide applications in the real life such

as the compressed sensing [19], the feature selection in the data classification [9], the data
mining [11], geophysics [2] and so on. Typically, the scales of these weighted l1-regularized
convex optimization problems are very large and the objective functions are not differen-
tiable everywhere due to the regularization function. Moreover, the optimal solutions are
possibly not unique because the matrix A may not have the full column rank. Thus the
Newton-type methods such as the interior point method cannot be applied directly.

In the past, the coordinate descent (CD) method is verified to be one of the feasible
methods for the large scale optimization problems [5, 13, 18, 22]. In the CD method,
the objective function is minimized with respect to only one variable while all the others
are fixed at each iteration. The idea of this method is very simple and the storage of
calculations is little. In some special cases, it can be implemented in parallel. Luo and
Tseng [22] proved its global and linear convergence for a smooth problem, that is, τi = 0
for all i. Note that the problem (1.1) can be reformulated as a smooth problem (see the
problem (2.6) in Section 2). However, the reformulated problem has twice variables. In 2001,
Tseng [13] showed the global convergence of a block coordinate descent (BCD) method for
minimizing a nondifferentiable function with certain separability. But the exact minimizers
of the subproblem must be found on each iteration in [13, 22]. It is possible for the l1-l2
problem, while usually it is hard for the general l1-regularized convex problem.

To get around this difficulty, some variants of the CD method, such as the inexact block
coordinate descent method [17], the coordinate gradient descent (CGD) method [14] and the
coordinate proximal point method [21] have been proposed. The CGD method is executed
with one step of the gradient method for the subproblem, while the method [21] exploits
the proximal point method to find an approximate solution. Thus they are regarded as the
inexact CD methods. Bonettini [17] proposed an inexact version of the CD method. He
gave some appropriate conditions about the inexactness of the solution for the subproblem,
and has shown that the proposed method with these conditions has global convergence.
However, he only focused on a smooth optimization problem, i.e., τi = 0, for all i, and did
not show the rate of convergence of the method.

In this paper, we present an inexact CD method with another inexactness description for
the subproblem solutions. It is an extension of the results of Luo and Tseng [22]. Roughly
speaking, we extend in the following three aspects:

• The smooth convex problem is extended to that with the l1-regularized function.

• On each iteration step, we accept an inexact solution of the subproblem instead of the
exact solution.

• The linear convergence rate is proved for the nonsmooth problem.

In this paper, under the same basic assumptions as in [22], we show that the proposed ICD
method is not only globally convergent but also with at least R-linear convergence rate under
the almost cycle rule (see its definition in Section 3).

This paper is organized as follows. In Section 2, we derive optimality conditions for the
problem (1.1) and also define ε-optimality conditions which are related to an inexact solution.
In Section 3, we present a framework of the ICD method and make some assumptions for
the “inexact solutions”. The global convergence and linear convergence rate are established
in Section 4. In section 5, we report some numerical experiments for the proposed ICD



AN INEXACT CD METHOD FOR l1-REGULARIZED OPTIMIZATION 569

method and show the comparison with the CGD method. Finally, we conclude this paper
in Section 6.

Throughout this paper, we use the following notations. For a differentiable function h,
∇h denotes the gradient of h and ∇2h denotes the Hessian matrix of h. ∇ih denotes the
ith coordinate of the gradient vector ∇h. If h is convex and nondifferentiable, ∂h denotes
the subdifferential of h. For any real number x, |x| denotes the absolute value of x, and ⌊x⌋
denotes the largest integer not greater than x. For a given vector x ∈ Rn, we denote by xi
the ith coordinate of x. We denote the 2-norm of x by ∥x∥. For any matrix A, AT denotes
the transpose of A and Aj denotes the jth column. For the function F : Rn → R and a
vector x ∈ Rn, we sometimes use the notation F (x1, . . . , xn) instead of F (x).

2 Preliminaries

Throughout the paper, we make the following basic assumptions for the problem (1.1).

Assumption 2.1. For the problem (1.1), we assume that

(a) Aj is a nonzero vector for all j ∈ {1, 2, . . . , n}.

(b) li < 0 < ui for all i ∈ {1, 2, . . . , n}.

(c) The set of the optimal solutions, denoted by X∗, is nonempty.

(d) The effective domain of g, denoted by dom g, is nonempty and open.

(e) g is twice continuously differentiable on dom g.

(f) ∇2g(Ax∗) is positive definite for every optimal solution x∗ ∈ X∗.

We make a few remarks on these assumptions. In Part (a), if Aj is zero, then x∗j
of the optimal solution x∗ can be easily determined. Thus we can remove xj from the
problem (1.1). Part (b) is just for simplification. If both li and ui are positive for some
i ∈ {1, 2, . . . , n}, we may replace xi, li and ui by x̄i +

li+ui

2 , li−ui

2 and ui−li
2 . Then the

problem (1.1) is reformulated into the case without l1-regularized term for the index i. If
g is strongly convex and twice differentiable on dom g, then Parts (e) and (f) are satisfied
automatically. For example, a quadratic function, an exponential function, and even some
complicate functions in the l1-regularized logistic regression problem satisfy (e) and (f).
Note that we do not assume the boundness of the optimal solution set X∗.

Next, we present some properties under Assumption 2.1 that are used in the subsequent
sections. From Assumption 2.1(e) and (f), there exists a sufficiently small closed neighbor-
hood B(Ax∗) of Ax∗ such that B(Ax∗) ⊆ dom g and ∇2g is positive definite in B(Ax∗).
Furthermore, it implies that g is strongly convex in B(Ax∗), i.e., there exists a scalar σ > 0
such that

g(y)− g(z)− ⟨∇g(z), y − z⟩ ≥ σ∥y − z∥2, ∀y, z ∈ B(Ax∗). (2.1)

2.1 Optimality conditions

The KKT conditions [15] for the problem (1.1) are described as follows.

∇if(x) + τi∂|xi| − µi + νi ∋ 0,

xi ≥ li, µi ≥ 0, µi(xi − li) = 0,

xi ≤ ui, νi ≥ 0, νi(ui − xi) = 0,

i = 1, . . . , n, (2.2)
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where ∂| · | is the subdifferential of the absolute value function. Since the problem (1.1) is
convex, x satisfying (2.2) is an optimal solution of the problem (1.1). The KKT conditions
(2.2) can be rewritten as follows.

Lemma 2.2. A vector x is an optimal solution of the problem (1.1) if and only if one of
the following statements holds for each i = 1, . . . , n.

(i) ∇if(x) ≥ τi and xi = li.

(ii) ∇if(x) = τi and li ≤ xi ≤ 0.

(iii) |∇if(x)| ≤ τi and xi = 0.

(iv) ∇if(x) = −τi and 0 ≤ xi ≤ ui.

(v) ∇if(x) ≤ −τi and xi = ui.

Next, we represent these conditions as a fixed point of some operator. To this end, we
first define a mapping Tτ : Rn → Rn as

Tτ (x)i := (|xi| − τi)+sgn(xi), (2.3)

where the scalar function (a)+ is defined by (a)+ := max(0, a), and sgn(a) is a sign function
defined as follows:

sgn(a) :=


−1 if a < 0,

0 if a = 0,

1 if a > 0.

It can be verified that Tτ is nonexpensive, i.e., ∥Tτ (y) − Tτ (z)∥ ≤ ∥y − z∥, for any y, z ∈
domF .

Let [x]+[l,u] denote the orthogonal projection of a vector x onto the box [l, u]. This projec-

tion is also nonexpensive and its ith coordinate can be written as [xi]
+
[li,ui]

:= mid{xi, li, ui},
where mid{xi, li, ui} is defined by mid{xi, li, ui} := max{li,min{ui, xi}}.

By using the mappings Tτ and [·]+[l,u], we define a mapping Pτ,l,u(x) : Rn → Rn by

Pτ,l,u(x) := [Tτ (x−∇f(x))]+[l,u]. (2.4)

Since [x]+[l,u] and Tτ are nonexpensive, we have that

∥Pτ,l,u(y)− Pτ,l,u(z)∥ ≤ ∥y − z −∇f(y) +∇f(z)∥, ∀y, z ∈ domF. (2.5)

Now, the optimal solutions can be described as a fixed point of the mapping Pτ,l,u.

Theorem 2.3. For the problem (1.1), a vector x belongs to the optimal solution set X∗ if
and only if x = Pτ,l,u(x), i.e., X

∗ = {x| x ∈ dom g, x = Pτ,l,u(x)}.

Proof. This theorem is a direct consequence of Theorem 2.9 that will be shown in Subsection
2.2.

Since the solution set X∗ is not necessarily bounded, the level set of F may be not
bounded. Nevertheless, as an extension of [22, Lemma 3.3], we can show the compactness
of the set Ω(ζ) := {t| t = Ax,F (x) ≤ ζ, x ∈ [l, u]}.

Lemma 2.4. For a given constant value ζ, the set Ω(ζ) is a compact subset of dom g.
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Proof. The l1-regularized convex problem (1.1) can be transformed into a smooth optimiza-
tion problem with box constraints:

minimize
x+, x−∈Rn

F̄ (x+, x−) := g(Ax+ −Ax−) + ⟨b, x+ − x−⟩+
n∑
i=1

τi(x
+
i + x−i )

subject to 0 ≤ x+i ≤ ui, i = 1, . . . , n,
0 ≤ x−i ≤ |li|, i = 1, . . . , n.

(2.6)

Note that if (x+, x−) is feasible for the problem (2.6), then x = x+ − x− is also feasible
for the problem (1.1) due to l ≤ x ≤ u.

Let Ω̄(ζ) be defined as follows.

Ω̄(ζ) := {Ax+ −Ax−| F̄ (x+, x−) ≤ ζ, x+ ∈ [0, u], x− ∈ [0, |l|]}
= {Ax| x = x+ − x−, F̄ (x+, x−) ≤ ζ, x+ ∈ [0, u], x− ∈ [0, |l|]},

where |l| = (|l1|, . . . , |ln|)T . Then Ω̄(ζ) is a compact set of dom g from Appendix in [22].
In the rest part, we only need to show Ω̄(ζ) = Ω(ζ). In fact, for every t ∈ Ω̄(ζ),

there exists (x, x+, x−) such that t = Ax, x = x+ − x−, F̄ (x+, x−) ≤ ζ, x+ ∈ [0, u], and
x− ∈ [0, |l|]. Then we have x ∈ [l, u] and ζ ≥ F̄ (x+, x−) ≥ F (x). It further implies
t ∈ Ω(ζ), i.e., Ω̄(ζ) ⊆ Ω(ζ). Conversely, for every t ∈ Ω(ζ), there exists a vector x such that
t = Ax,F (x) ≤ ζ, and x ∈ [l, u]. Let x+i := max{xi, 0} and x−i := max{−xi, 0} for each
i = 1, . . . , n. Then we have x+ ∈ [0, u], x− ∈ [0, |l|], x = x+ − x−, and F̄ (x+, x−) = F (x).
Therefore, we deduce that t ∈ Ω̄(ζ), which implies that Ω(ζ) ⊆ Ω̄(ζ). Consequently, the
relation Ω̄(ζ) = Ω(ζ) holds.

Next, we show that ∇g is Lipschitz continuous on some compact set including Ω(ζ). For
this purpose, we define a set Ω(ζ) + B(ϵ0) as Ω(ζ) + B(ϵ0) := {p+ v| p ∈ Ω(ζ), ∥v∥ ≤ ϵ0},
where ϵ0 is a positive constant. It is easy to see that the set Ω(ζ) +B(ϵ0) is compact.

Lemma 2.5. There exist constants L > 0 and ϵ0 > 0 such that Ω(ζ) + B(ϵ0) ⊆ dom g and
∥∇g(y)−∇g(z)∥ ≤ L∥y − z∥ for all y, z ∈ Ω(ζ) +B(ϵ0).

Proof. Since Ω(ζ) is closed from Lemma 2.4 and dom g is open, there exists a positive
constant ϵ0 such that Ω(ζ) + B(ϵ0) ⊆ dom g. Furthermore, since g is twice continuously
differentiable on dom g, and Ω(ζ) + B(ϵ0) is compact, ∇2g(x) is bounded in Ω(ζ) + B(ϵ0),
that is, there exists a constant L > 0 such that ∥∇2g(x)∥ ≤ L for all x ∈ Ω(ζ) + B(ϵ0).
Then, this lemma holds from the mean value theorem.

Similar to [23, Lemma 2.1], we can prove the following invariant property of the optimal
solution set X∗. For simplicity, we omit the proof here.

Lemma 2.6. For any x∗, y∗ ∈ X∗, we have Ax∗ = Ay∗.

2.2 ε-optimality conditions

In this subsection, we give a definition of the relaxed optimality conditions, and show a
relation between the conditions and the mapping Pτ,l,u.

Definition 2.7. We say that the ε-optimality conditions for the problem (1.1) hold at x if
one of the following statements holds for each i.

(i) ∇if(x)− τi ≥ −ε and |xi − li| ≤ ε.
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(ii) |∇if(x)− τi| ≤ ε and li − ε ≤ xi ≤ ε.

(iii) |∇if(x)| ≤ τi + ε and |xi| ≤ ε.

(iv) |∇if(x) + τi| ≤ ε and −ε ≤ xi ≤ ui + ε.

(v) ∇if(x) + τi ≤ ε and |xi − ui| ≤ ε.

Definition 2.8. We say that x is an ε-approximate solution of the problem (1.1) if the
ε-optimality conditions hold at x.

Note that the optimality conditions in Lemma 2.3 can be obtained by Definition 2.7 with
ε = 0.

For convenience, we define the following five index sets:

J1(x, ε) := {i| ∇if(x)− τi ≥ −ε, |xi − li| ≤ ε};
J2(x, ε) := {i| |∇if(x)− τi| ≤ ε, li − ε ≤ xi ≤ ε};
J3(x, ε) := {i| |∇if(x)| ≤ τi + ε, |xi| ≤ ε};
J4(x, ε) := {i| |∇if(x) + τi| ≤ ε,−ε ≤ xi ≤ ui + ε};
J5(x, ε) := {i| ∇if(x) + τi ≤ ε, |xi − ui| ≤ ε}.

Then the ε-optimality conditions hold at x if and only if

5∪
i=1

Ji(x, ε) = {1, 2, . . . , n}.

Throughout the paper, for simplicity, we assume that

ε <
1

2
min
i
{−li, ui}. (2.7)

The next theorem gives an equivalent description of the ε-optimality conditions, which
will be used for constructing an inexact CD method and investigating its convergence prop-
erties.

Theorem 2.9. The ε-optimality conditions hold at x if and only if |xi − Pτ,l,u(x)i| ≤ ε
holds for each i.

Proof. By the definitions of Tτ (x) and Pτ,l,u(x) in (2.3) and (2.4), we have that

|xi − Pτ,l,u(x)i| = |xi −mid{li, ui,max {0, |xi −∇if(x)| − τi}sgn(xi −∇if(x))}|

=



|xi − li| if xi −∇if(x) ∈ (−∞, li − τi],

|∇if(x)− τi| if xi −∇if(x) ∈ (li − τi,−τi],
|xi| if xi −∇if(x) ∈ (−τi, τi],
|∇if(x) + τi| if xi −∇if(x) ∈ (τi, ui + τi],

|xi − ui| if xi −∇if(x) ∈ (ui + τi,∞).

(2.8)

We firstly consider the “ if ” part of this theorem. It is sufficient to show that if |xi −
Pτ,l,u(x)i| ≤ ε holds for each i ∈ {1, 2, . . . , n}, then for each i ∈ {1, 2, . . . , n} there exists a
j ∈ {1, 2, . . . , 5} such that i ∈ Jj(x, ε). We can prove this according to the distinct cases in
(2.8). If xi−∇if(x) ∈ (−∞, li− τi], then it follows from |xi−Pτ,l,u(x)i| ≤ ε and (2.8) that
|xi−Pτ,l,u(x)i| = |xi−li| ≤ ε, that is, xi−li ≥ −ε. Moreover, since xi−∇if(x) ∈ (−∞, li−τi]
implies that ∇if(x)− τi ≥ xi − li, we have ∇if(x)− τi ≥ −ε. Therefore, i ∈ J1(x, ε) holds.
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Similarly, we can show that if xi − ∇if(x) is located in other intervals, the corresponding
results also hold.

Conversely, suppose that x is an ε-approximate solution, i.e., for each i ∈ {1, 2, . . . , n},
there exists a j ∈ {1, 2, . . . , 5} such that i ∈ Jj(x, ε). Thus, it is sufficient to show that for
each i and j such that i ∈ Jj(x, ε), the inequality |xi − Pτ,l,u(x)i| ≤ ε holds.

Case 1: i ∈ J1(x, ε) or i ∈ J5(x, ε). First suppose that i ∈ J1(x, ε). Then we have

∇if(x)− τi ≥ −ε and |xi − li| ≤ ε. (2.9)

They imply that xi−∇if(x) ≤ li−τi+2ε. It then follows from (2.7) that xi−∇if(x) ∈
(−∞,−τi). Thus, we focus on (2.8) in two intervals (−∞, li − τi] and (li − τi,−τi]. If
xi−∇if(x) ∈ (−∞, li− τi], it follows from (2.8) that |xi−Pτ,l,u(x)i| = |xi− li|. Then
the inequality |xi − Pτ,l,u(x)i| ≤ ε holds due to (2.9). If xi − ∇if(x) ∈ (li − τi,−τi],
then we have ∇if(x)−τi < xi− li and |xi−Pτ,l,u(x)i| = |∇if(x)−τi| , which together
with (2.9) imply |xi − Pτ,l,u(x)i| ≤ ε. A symmetric argument can prove the case with
i ∈ J5(x, ε).

Case 2: i ∈ J2(x, ε) or i ∈ J4(x, ε). First suppose that i ∈ J2(x, ε). Then we have

|∇if(x)− τi| ≤ ε and li − ε ≤ xi ≤ ε. (2.10)

We obtain −τi − ε ≤ −∇if(x) ≤ ε − τi from the first inequality. Adding these
inequalities and the second inequalities of (2.10), we have li− τi− 2ε ≤ xi−∇if(x) ≤
2ε−τi. With the assumption (2.7) on ε, we have xi−∇if(x) ∈ [li−τi−2ε, ui). Now we
show |xi−Pτ,l,u(x)i| ≤ ε from (2.8) and (2.10) by dividing the interval [li− τi−2ε, ui)
into [li − τi − 2ε, li − τi], (li − τi,−τi], (−τi, τi] and (τi, ui).

(i) If xi −∇if(x) ∈ (li − τi − 2ε, li − τi], it follows from (2.8) that |xi −Pτ,l,u(x)i| =
|xi − li|. Meanwhile, we obtain xi − li ≤ ∇if(x)− τi. Then we have xi − li ≤ ε
from the first inequality in (2.10). On the other hand, we have xi− li ≥ −ε from
the inequalities li−ε ≤ xi ≤ ε in (2.10). Hence, the inequality |xi−Pτ,l,u(x)i| ≤ ε
holds.

(ii) If xi −∇if(x) ∈ (li − τi,−τi], then the inequality |xi − Pτ,l,u(x)i| ≤ ε holds due
to (2.8) and (2.10).

(iii) If xi−∇if(x) ∈ (−τi, τi], then we have |xi−Pτ,l,u(x)i| = |xi| by (2.8). Moreover,
it yields xi ≥ ∇if(x) − τi. It then follows from the inequality |∇if(x) − τi| ≤ ε
in (2.10) that xi ≥ −ε. Furthermore, we have xi ≤ ε from (2.10). Hence,
|xi − Pτ,l,u(x)i| = |xi| ≤ ε.

(iv) If xi−∇if(x) ∈ [τi, ui], we have |xi−Pτ,l,u(x)i| = |∇if(x)+τi| from (2.8). Thus,
|xi − Pτ,l,u(x)i| ≤ ε is equivalent to −τi − ε ≤ ∇if(x) ≤ ε − τi. First, we have
∇if(x) ≤ xi − τi ≤ ε− τi, where the first inequality follows from the assumption
xi − ∇if(x) ∈ [τi, ui], and the second inequality follows from (2.10). Next, we
obtain ∇if(x) ≥ −ε+ τi ≥ −ε− τi, where the first inequality follows from (2.10),
and the second inequality holds due to τi ≥ 0.

In the case where i ∈ J4(x, ε), a similar analysis shows |xi − Pτ,l,u(x)i| ≤ ε.

Case 3: i ∈ J3(x, ε). Then we have

|∇if(x)| ≤ τi + ε and |xi| ≤ ε. (2.11)
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These inequalities imply −τi−2ε ≤ xi−∇if(x) ≤ τi+2ε. Moreover, we have by (2.7)
that li − τi < xi −∇if(x) < ui + τi. Then we prove |xi − Pτ,l,u(x)i| ≤ ε by dividing
the interval (li − τi, ui + τi) into the following three intervals: (li − τi,−τi], (−τi, τi]
and (τi, ui + τi).

(i) If li− τi ≤ xi−∇if(x) ≤ −τi, then we have |xi−Pτ,l,u(x)i| = |∇if(x)− τi| from
(2.8). Thus, |xi−Pτ,l,u(x)i| ≤ ε is equivalent to τi−ε ≤ ∇if(x) ≤ τi+ε. We first
have τi − ε ≤ ∇if(x) from (2.11) and the ineqaulity xi − ∇if(x) ≤ −τi. Next,
we have ∇if(x) ≤ τi + ε since the inequality |∇if(x)| ≤ τi + ε in (2.11) holds.

(ii) If −τi < xi−∇if(x) ≤ τi, then we have |xi−Pτ,l,u(x)i| = |xi| from (2.8). It then
follows from (2.11) that |xi − Pτ,l,u(x)i| ≤ ε.

(iii) If τi ≤ xi −∇if(x) ≤ τi + ui, then we have |xi − Pτ,l,u(x)i| = |∇if(x) + τi| from
(2.8). Meanwhile, ∇if(x) ≤ xi − τi holds. Then the inequality ∇if(x) ≤ ε − τi
holds due to xi ≤ ε in (2.11). Moreover, we have ∇if(x) ≥ −τi − ε by (2.11).
Hence the inequality |xi − Pτ,l,u(x)i| ≤ ε holds.

Upon the preceding proof, the necessary condition of this theorem is confirmed.

3 Inexact Coordinate Descent (ICD) Method

In this section, we first present a framework for the ICD method, and then give some
assumptions for the “inexact solutions”.

A general framework of the ICD method can be described as follows.

Inexact coordinate descent (ICD) method:
Step 0: Choose an initial point x0 ∈ [l, u] and let r := 0.
Step 1: If some termination condition holds, then stop.
Step 2: Choose an index i(r) ∈ {1, . . . , n}, and get an approximate solution xr+1

i(r) of the

following one dimensional subproblem:

minimize
xi(r)∈{li(r)≤xi(r)≤ui(r)}

F (xr1, x
r
2, . . . , x

r
i(r)−1, xi(r), x

r
i(r)+1, . . . , x

r
n). (3.1)

Step 3: Set xr+1
j := xrj for all j ∈ {1, . . . , n} such that j ̸= i(r), and let r := r + 1. Go to

Step 1.

Note that the exact solution of the subproblem (3.1) is unique from Assumption 2.1(a)
and the strict convexity of g. We use the notation i(r) for the index chosen at the rth
iteration. For simplicity, we use i instead of i(r) when i(r) is clear from the context.

For the global convergence of the ICD method, it is important to define the inexactness
of the approximate solutions of the subproblem (3.1) and to choose an appropriate index
i(r) in Step 2.

For the inexactness, we require the following assumptions:

Assumption 3.1. We assume that the following statements hold:

(i) F (xr1, x
r
2, . . . , x

r
i−1, x

r+1
i , xri+1, . . . , x

r
n) ≤ min

xi∈{li,0,ui,xr
i }
F (xr1, x

r
2, . . . , x

r
i−1, xi, x

r
i+1, . . . , x

r
n).

(ii) xr+1
i is feasible, i.e., xr+1

i ∈ [li, ui].

(iii) xr+1
i is an εr+1-approximate solution of the subproblem (3.1).



AN INEXACT CD METHOD FOR l1-REGULARIZED OPTIMIZATION 575

(iv) Conditions on εr+1: εr+1 ≤ min{δr, αr|xr+1
i − xri |, εr}, where {δr} is a monotoni-

cally decreasing sequence such that lim
r→∞

δr = 0, and αr ∈ [0, ᾱ] holds with a positive

constant ᾱ.

(v) Conditions on αr: αr <
σmin

j
∥Aj∥2

Lmax
j

∥Aj∥2 + 1
holds for sufficiently large r, where σ is

a positive constant defined in (2.1), and L is the Lipschitz constant of ∇g given in
Lemma 2.5.

Here we make a simple explanation. Part (i) enforces not only that {F (xr)} is decreasing
but also that {F (xr+1)} is less than F (xr1, x

r
2, . . . , x

r
i−1, xi, x

r
i+1, . . . , x

r
n) at the point where

F is nonsmooth. This condition is easy to check when computing. It also plays a key role for
the convergence of {xr} when the objective function is not differentiable. In Part (iii), recall
that the ε-optimality conditions for the one dimensional subproblem (3.1) is that one of
(i)-(v) in Definition 2.7 holds at xi(r). The assumptions (i)-(iv) are necessary for the global
convergence while the assumption (v) on αr is used to guarantee the linear convergence rate
of {xr}.

Note that if we obtain the exact solution of the subproblem (3.1) on each iteration, then
the sequence {xr} satisfies Assumption 3.1 automatically. Hence, the classical CD method
is a special case of the ICD method.

For the choice of the coordinate i(r) in Step 2, we adopt the following “almost cycle rule”,
which is also called “generalized Gauss-Seidel rule” in [14, 16]. This rule is an extension of
the classical cyclic rule in [4].

Almost cyclic rule:
There exists an integer B ≥ n, such that every coordinate is iterated upon at least once
every B successive iterations.

In the next section, we will show the ICD method with the almost cycle rule converges
R-linearly to a solution under Assumptions 2.1 and 3.1.

4 Global and Linear Convergence

In this section, we show the global and linear convergence of the ICD method. Compared
with the classical exact CD method, the ICD method has many “inexact” factors. Thus we
need some preparations.

First of all, we illustrate a brief outline of the proof.

(1) lim
r→∞

{xr+1 − xr} = 0. (Lemma 4.3)

(2) Axr → Ax∗, where x∗ is one of the optimal solutions. (Theorem 4.8)

(3) Sufficient decreasing: F (xr)− F (xr+1) ≥ η∥xr − xr+1∥2 for some positive constant η.
(Lemma 4.9)

(4) Error bound: ∥Axr −Ax∗∥ ≤ κ∥xr − Pτ,l,u(x
r)∥ for some κ. (Lemma 4.10)

(5) Linear convergence. (Theorems 4.12 and 4.13)
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Note that since it is not necessary for the matrix A to have full column rank, Axr → Ax∗

(Theorem 4.8) does not imply xr → x∗.
For convenience, we define two vectors x̃r+1 and xr+1 as follows.

x̃r+1 := (xr1, x
r
2, . . . , x

r
i(r)−1, x̃

r+1
i(r) , x

r
i(r)+1, . . . , x

r
n), (4.1)

and

xr+1 := (xr1, x
r
2, . . . , x

r
i(r)−1, x

r+1
i(r) , x

r
i(r)+1, . . . , x

r
n), (4.2)

where xr+1
i(r) and x̃r+1

i(r) are an εr+1-approximate solution and the exact solution of the sub-

problem (3.1), respectively.
In the first part of this section, we show lim

r→∞
{F (x̃r)− F (xr)} = 0 and lim

r→∞
{xr+1 − xr} =

0. To this end, we need the following function hi : Rn ×Rn → R and Lemma 4.1.

hi(y, z) := ∇if(z)(yi − zi) + τi(|yi| − |zi|)

=


(∇if(z) + τi)(yi − zi) if yi ≥ 0, zi ≥ 0,

∇if(z)(yi − zi) + τi(yi + zi) if yi ≥ 0, zi ≤ 0,

∇if(z)(yi − zi) + τi(−yi − zi) if yi ≤ 0, zi ≥ 0,

(∇if(z)− τi)(yi − zi) if yi ≤ 0, zi ≤ 0.

(4.3)

Lemma 4.1. There exists a positive constant M such that |xr+1
i(r) − x̃

r+1
i(r) | ≤

2M
∥Ai(r)∥

for all r.

Proof. By lemma 2.4, we have that the set Ω(F (x0)) is compact. Since {Axr+1}, {Ax̃r+1} ⊆
Ω(F (x0)) holds, we further obtain that {Axr+1} and {Ax̃r+1} are bounded, that is, there
exists a constant M > 0 such that ∥Axr+1∥, ∥Axr∥ ≤M for all r. Then we deduce

∥Ai(r)∥|xr+1
i(r) − x̃r+1

i(r) | = ∥Axr+1 −Ax̃r+1∥ ≤ ∥Axr+1∥+ ∥Ax̃r+1∥ ≤ 2M,

which implies the conclusion since Ai is nonzero for all i.

Lemma 4.2. lim
r→∞

{F (x̃r)− F (xr)} = 0.

Proof. Since x̃r+1
i(r) is the exact solution of the subproblem (3.1), the inequality

F (x̃r+1)− F (xr+1) ≤ 0 (4.4)

always holds. On the other hand, by the convexity of f , we have

F (x̃r+1)− F (xr+1) ≥ ∇i(r)f(x
r+1)(x̃r+1

i(r) − xr+1
i(r) ) + τi(r)(|x̃r+1

i(r) | − |xr+1
i(r) |)

= hi(r)(x̃
r+1, xr+1).

(4.5)

Let index sets ZA and ZB be defined by

ZA := {r| |x̃ri(r) − xri(r)| ≤ εr}, ZB := {r| |x̃ri(r) − xri(r)| > εr},

respectively. First we consider the subsequence {xr+1}ZA of {xr}. Since {Axr} is bounded,
{∇f(xr)} is also bounded from the continuity of ∇g. It then follows from (4.4), (4.5) and
εr+1 → 0 that lim

r→∞, r∈ZA
{F (x̃r+1)− F (xr+1)} = 0.
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Next we consider the subsequence {xr+1}ZB . We will show the following inequality

hi(r)(x̃
r+1, xr+1) ≥ −Pεr+1, ∀ r + 1 ∈ ZB (4.6)

holds, where P = 2M
∥Ai(r)∥

+2τi(r)+2εr+1. Then it is easy to show lim
r→∞, r∈ZB

{F (x̃r+1)− F (xr+1)}

= 0 from (4.4), (4.5), (4.6) and εr → 0.
Recall that xr+1

i(r) is an εr+1-approximate solution of the subproblem (3.1), i.e., there

exists a j ∈ {1, 2, . . . , 5} such that i(r) ∈ Jj(x
r+1, εr+1). Suppose that r + 1 ∈ ZB . In

the rest part, we show that (4.6) holds for i(r) ∈ Jj(x
r+1, εr+1), j ∈ {1, 2, . . . , 5}. For

simplicity, we only show the cases i(r) ∈ Jj(x
r+1, εr+1), j ∈ {1, 2, 3}. The cases j ∈ {4, 5}

can be deduced in a similar way.

Case 1: i(r) ∈ J1(x
r+1, εr+1). We have ∇i(r)f(x

r+1) − τi(r) ≥ −εr+1 and |xr+1
i(r) − li(r)| ≤

εr+1.

Since εr+1 ≤ 1

2
min{−li(r), ui(r)}, the inequality xr+1

i(r) < 0 holds.

(a) If x̃r+1
i(r) ≥ 0, then it follows from (4.3), Lemma 4.1 and∇i(r)f(x

r+1)−τi(r) ≥ −εr+1

that

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) + τi(r))x̃
r+1
i(r) − (∇i(r)f(x

r+1)− τi(r))x
r+1
i(r)

≥ (2τi(r) − εr+1)x̃r+1
i(r) − xr+1

i(r) (−ε
r+1)

≥ − εr+1(x̃r+1
i(r) − xr+1

i(r) )

≥ − εr+1 2M

∥Ai(r)∥
.

(b) If x̃r+1
i(r) < 0, then x̃r+1

i(r) − xr+1
i(r) > 0 holds by |xr+1

i(r) − li(r)| ≤ εr+1 and r + 1 ∈ ZB .

We further have hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1)−τi(r))(x̃r+1
i(r)−x

r+1
i(r) ) ≥ −εr+1 2M

∥Ai(r)∥
from (4.3), ∇i(r)f(x

r+1) − τi(r) ≥ −εr+1 and Lemma 4.1. Therefore, the inequality
(4.6) holds when i(r) ∈ J1(x

r+1, εr+1).

Case 2: i(r) ∈ J2(x
r+1, εr+1). We have |∇i(r)f(x

r+1) − τi(r)| ≤ εr+1 and li(r) − εr+1 ≤
xr+1
i(r) ≤ εr+1. Now,

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1)− τi(r))(x̃
r+1
i(r) − xr+1

i(r) ) + T (xr+1
i(r) , x̃

r+1
i(r) , τi(r)), (4.7)

where

T (xr+1
i(r) , x̃

r+1
i(r) , τi(r)) := τi(r)

(
x̃r+1
i(r) + |x̃r+1

i(r) | − xr+1
i(r) − |xr+1

i(r) |
)

=


0 if x̃r+1

i(r) ≤ 0, xr+1
i(r) ≤ 0,

2τi(r)x̃
r+1
i(r) if 0 < x̃r+1

i(r) , x
r+1
i(r) ≤ 0,

−2τi(r)x
r+1
i(r) if x̃r+1

i(r) ≤ 0, 0 < xr+1
i(r) ,

2τi(r)

(
x̃r+1
i(r) − xr+1

i(r)

)
if 0 < x̃r+1

i(r) , 0 < xr+1
i(r) .

(4.8)

Suppose first that one of x̃r+1
i(r) and xr+1

i(r) is nonpositive. It is easy to see that
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T (xr+1
i(r) , x̃

r+1
i(r) , τi(r)) is no less than −2τi(r)ε

r+1. It then follows from |∇i(r)f(x
r+1) −

τi(r)| ≤ εr+1, Lemma 4.1 and (4.7) that

hi(r)(x̃
r+1, xr+1) ≥ −εr+1

( 2M

∥Ai(r)∥
+ 2τi(r)

)
.

Next suppose that both x̃r+1
i(r) and xr+1

i(r) are positive. Then

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) + τi(r))x̃
r+1
i(r) − xr+1

i(r) (∇i(r)f(x
r+1) + τi(r))

≥ (2τi − εr+1)x̃r+1
i(r) − xr+1

i(r) (2τi(r) + εr+1)

≥ − εr+1
( 2M

∥Ai(r)∥
+ xr+1

i(r)

)
− xr+1

i(r) (2τi(r) + εr+1)

≥ −
( 2M

∥Ai(r)∥
+ 2τi(r) + 2εr+1

)
εr+1,

where the first inequality follows from |∇i(r)f(x
r+1) − τi(r)| ≤ εr+1, x̃r+1

i(r) > 0 and

xr+1
i(r) > 0, the second inequality follows from x̃r+1

i(r) > 0 and Lemma 4.1, and the last

inequality follows from 0 ≤ xr+1
i(r) ≤ εr+1. Thus, the inequality (4.6) is confirmed.

Case 3: i(r) ∈ J3(x
r+1, εr+1). We have |∇i(r)f(x

r+1)| ≤ τi(r) + εr+1 and |xr+1
i(r) | ≤ εr+1.

Moreover, we deduce ∇i(r)f(x
r+1)+τi(r) ∈ [−εr+1, 2τi+ε

r+1] from the first inequality.

Next we only show that the inequality (4.6) holds when 0 ≤ xr+1
i(r) ≤ εr+1. A symmetric

argument can prove the case −εr+1 ≤ xr+1
i(r) ≤ 0.

(a) Suppose that x̃r+1
i(r) ≥ 0. If ∇if(x

r+1) + τi(r) ∈ [−εr+1, 0), then we have from

Lemma 4.1 that

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1) + τi(r))(x̃
r+1
i(r) − xr+1

i(r) )

≥ − |∇i(r)f(x
r+1) + τi(r)||x̃r+1

i(r) − xr+1
i(r) |

≥ − εr+1 2M

∥Ai(r)∥
.

If ∇if(x
r+1) + τi(r) ∈ [0, 2τi(r) + εr+1], then x̃r+1

i(r) (∇i(r)f(x
r+1) + τi(r)) ≥ 0. Since

0 ≤ xr+1
i(r) ≤ εr+1, we have

hi(r)(x̃
r+1, xr+1) = x̃r+1

i(r) (∇i(r)f(x
r+1) + τi(r))− xr+1

i(r) (∇i(r)f(x
r+1) + τi(r))

≥ − εr+1(εr+1 + 2τi(r)).

(b) Suppose that x̃r+1
i(r) < 0. Then it follows from |∇i(r)f(x

r+1)| ≤ τi(r) + εr+1,

0 ≤ xr+1
i(r) ≤ εr+1 and Lemma 4.1 that

hi(r)(x̃
r+1, xr+1) = (∇i(r)f(x

r+1)− τi(r))x̃
r+1
i(r) − xr+1

i(r) (∇if(x
r+1) + τi(r))

≥ εr+1x̃r+1
i(r) − xr+1

i(r) (2τi(r) + εr+1)

= εr+1(x̃r+1
i(r) − xr+1

i(r) )− 2τi(r)x
r+1
i(r)

≥ − εr+1
( 2M

∥Ai(r)∥
+ 2τi(r)

)
.
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It is clear that hi(r)(x̃
r+1, xr+1) in both cases (a) and (b) satisfies (4.6).

Using the above lemmas, we can show that {xr+1 − xr} converges to 0.

Lemma 4.3. For the sequence {xr} generated by the ICD method, we have lim
r→∞

{xr+1 − xr}
= 0.

Proof. We argue it by contradiction. Suppose that xr+1 − xr 9 0. Then there exist at
least one coordinate i ∈ {1, 2, . . . , n}, a scalar γ > 0 and an infinite subset Z̃ of nonnegative
integers such that |xr+1

i − xri | ≥ γ for all r ∈ Z̃. Since γ > 0, the index i is the index i(r)
chosen in Step 2 of the ICD method at the rth step. Therefore, for any j ̸= i(r), we have
xr+1
j = xrj , which together with the assumption |xr+1

i(r) − xri(r)| ≥ γ implies that

∥A(xr+1 − xr)∥ = ∥Ai(r)∥|xr+1
i(r) − xri(r)| ≥ ∥Ai(r)∥γ, ∀r ∈ Z̃. (4.9)

Since {Axr} is bounded, there exist t1,∞, t2,∞ ∈ Rn and an infinite set H ⊆ Z̃ such that

lim
r→∞, r∈H

Axr = t1,∞, lim
r→∞, r∈H

Axr+1 = t2,∞. (4.10)

Note that t1,∞ ̸= t2,∞ due to (4.9). It then follows from the continuity of g on Ω(F (x0))
and (4.10) that

lim
r→∞, r∈H

g(Axr) = g(t1,∞), lim
r→∞, r∈H

g(Axr+1) = g(t2,∞). (4.11)

Since F (xr) is monotonically decreasing from Assumption 3.1(i) and F (xr) ≥ F (x∗)
holds for any optimal solution x∗, the sequence {F (xr)} is convergent. Let F∞ be its limit.
Then we have

lim
r→∞, r∈H

F (xr) = F∞, lim
r→∞, r∈H

F (xr+1) = F∞. (4.12)

Moreover, by Lemma 4.2 and (4.12), we obtain

lim
r→∞, r∈H

F (x̃r+1) = lim
r→∞, r∈H

F (xr+1)− lim
r→∞, r∈H

(F (xr+1)− F (x̃r+1)) = F∞, (4.13)

where x̃r+1 is defined in (4.1). Since F is convex and F (x̃r+1) ≤ F (xr+1) ≤ F (xr) hold, we
have

F (x̃r+1) ≤ F

(
xr + xr+1

2

)
≤ 1

2
F (xr) +

1

2
F (xr+1) ≤ F (xr).

Taking a limit on these inequalities, we obtain

lim
r→∞, r∈H

F

(
xr+1 + xr

2

)
= F∞. (4.14)



580 X. HUA AND N. YAMASHITA

On the other hand,

lim
r→∞, r∈H

F
(xr+1 + xr

2

)
≤ lim
r→∞, r∈H

g
(Axr+1 +Axr

2

)
+ lim sup
r→∞, r∈H

{⟨
b,
xr+1 + xr

2

⟩
+

n∑
i=1

τi(r)

∣∣∣xr+1
i(r) + xri(r)

2

∣∣∣}
≤ g
( t1,∞ + t2,∞

2

)
+

1

2
lim sup
r→∞, r∈H

{
⟨b, xr⟩+

n∑
i=1

τi(r)|xri(r)|
}

+
1

2
lim sup
r→∞, r∈H

{
⟨b, xr+1⟩+

n∑
i=1

τi(r)|xr+1
i(r) |

}
= g
( t1,∞ + t2,∞

2

)
+

1

2
lim sup
r→∞, r∈H

{F (xr)− g(Axr)}+ 1

2
lim sup
r→∞, r∈H

{F (xr+1)− g(Axr+1)}

= g
( t1,∞ + t2,∞

2

)
+

1

2
(F∞ − g(t1,∞)) +

1

2
(F∞ − g(t2,∞))

<
1

2
(g(t1,∞) + g(t2,∞)) +

1

2
(F∞ − g(t1,∞)) +

1

2
(F∞ − g(t2,∞))

= F∞,

where the second inequality follows from the continuity of g and (4.10), the first equality
follows from the definition of F , the second equality follows from (4.11) and (4.12), and the
third inequality follows from the strict convexity of g and t1,∞ ̸= t2,∞. But this inequality
contradicts (4.14). Thus lim

r→∞
{xr+1 − xr} = 0.

In the second part of this section, we will show the convergence of {Axr}. Since {Axr}
is bounded, there exist t∞ ∈ Rn and an infinite set X such that

lim
r→∞, r∈X

Axr = t∞. (4.15)

Then with the continuity of ∇g, we have

lim
r→∞, r∈X

∇f(xr) = d∞, (4.16)

where

d∞ := AT∇g(t∞) + b. (4.17)

For the set X , we have the following result with Lemma 4.3, which provides an interesting
property associated with {∇f(xr)}.

Lemma 4.4. For any s ∈ {0, 1, . . . , B − 1}, where B is the integer defined in the almost
cycle rule, we have lim

r→∞, r∈X
∇f(xr−s) = d∞.

Proof. For any s ∈ {0, 1, . . . , B− 1}, we have Axr−s =
s−1∑
k=0

A(xr−s+k − xr−s+k+1)+Axr. It

then follows from Lemma 4.3 and (4.15) that

lim
r→∞, r∈X

Axr−s = lim
r→∞, r∈X

s−1∑
k=0

A(xr−s+k − xr−s+k+1) + lim
r→∞,r∈X

Axr = t∞.
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From the continuity of ∇g, we have lim
r→∞, r∈X

∇f(xr−s) = lim
r→∞, r∈X

AT∇g(Axr−s) + b =

AT∇g(t∞) + b, which together with (4.17) shows this lemma.

Lemma 4.4 implies that for each i ∈ {1, 2, . . . , n}, and s ∈ {0, 1, . . . , B − 1}, we have

lim
r→∞, r∈X

∇if(x
r−s) = d∞i . (4.18)

For a fixed coordinate i, let φ(r, i) denote the largest integer r̄, which does not exceed r,
such that the ith coordinate of x is iterated upon at the r̄th iteration, that is, for all r ∈ X ,
we have

xri = x
φ(r,i)
i . (4.19)

Since the coordinate is chosen by the almost cycle rule, the relation r −B + 1 ≤ φ(r, i) ≤ r
holds for all r ∈ X . From (4.18), we further obtain

lim
r→∞, r∈X

∇if(x
φ(r,i)) = d∞i . (4.20)

Now we define the following six index sets associated with d∞i as

J∞
1 := {i| d∞i > τi};
J∞
2 := {i| d∞i < −τi};
J∞
3 := {i| |d∞i | < τi};
J∞
4 := {i| d∞i = τi, τi > 0};
J∞
5 := {i| d∞i = −τi, τi > 0};
J∞
6 := {i| d∞i = 0, τi = 0}.

Note that
6∪
i=1

J∞
i = {1, 2, . . . , n}. Next two lemmas give sufficient conditions under which

{xri }X is fixed or lies in some interval.

Lemma 4.5. Suppose that Assumption 3.1(i) and (iii) hold. Let L and ε0 be the constants
given in Lemma 2.5. If εφ(r,i) < ε0, then the following statements hold for any fixed i:

(i) If ∇if(x
φ(r,i))− τi > L∥Ai∥2εφ(r,i) and x

φ(r,i)
i ≤ εφ(r,i) + li hold, then x

φ(r,i)
i = li.

(ii) If ∇if(x
φ(r,i)) + τi < −L∥Ai∥2εφ(r,i) and ui − εφ(r,i) ≤ x

φ(r,i)
i hold, then x

φ(r,i)
i = ui.

(iii) If ∇if(x
φ(r,i)) + τi > L∥Ai∥2εφ(r,i) and |xφ(r,i)i | ≤ εφ(r,i) hold, then x

φ(r,i)
i ≤ 0.

(iv) If ∇if(x
φ(r,i))− τi < −L∥Ai∥2εφ(r,i) and |xφ(r,i)i | ≤ εφ(r,i) hold, then x

φ(r,i)
i ≥ 0.

Proof. Here, we only show (i) and (iii). The rest can be obtained similarly.

To show (i), we argue by contradiction. If it is not true, then we have li < x
φ(r,i)
i ≤

εφ(r,i) + li by Assumption 3.1(ii). From the Lipschitz continuity of ∇g in

Lemma 2.5, we obtain that |∇if(x̂
φ(r,i))−∇if(x

φ(r,i))| ≤ L∥Ai∥2|li−xφ(r,i)i |, where x̂φ(r,i) :=
(xr1, . . . , x

r
i−1, li, x

r
i+1, . . . , x

r
n). We further can ensure ∇if(x̂

φ(r,i)) − τi ≥ −L∥Ai∥2εφ(r,i) +
∇if(x

φ(r,i))− τi > 0 with the assumptions li < x
φ(r,i)
i ≤ εφ(r,i) + li and ∇if(x

φ(r,i))− τi >
L∥Ai∥2εφ(r,i). It then follows from the KKT conditions in Lemma 2.2 that li is the exact
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solution of the subproblem (3.1). Since the solution of the subproblem (3.1) is unique, we
have F (xφ(r,i)) − F (x̂φ(r,i)) > 0, which contradicts Assumption 3.1(i). Therefore, we have

x
φ(r,i)
i = li.

For (iii), we also prove by contradiction. Suppose that the contray holds, i.e., x
φ(r,i)
i ∈

(0, εφ(r,i)]. Let x̃φ(r,i) := (xr1, . . . , x
r
i−1, 0, x

r
i+1, . . . , x

r
n). Then, by Lemma 2.5 and the as-

sumption x
φ(r,i)
i ∈ (0, εφ(r,i)], we have

|∇if(x̃
φ(r,i))−∇if(x

φ(r,i))| ≤ L∥Ai∥2|0− x
φ(r,i)
i | ≤ L∥Ai∥2εφ(r,i),

which implies

−L∥Ai∥2εφ(r,i) +∇if(x
φ(r,i)) ≤ ∇if(x̃

φ(r,i)).

By the convexity of f , 0 < x
φ(r,i)
i ≤ εφ(r,i) and ∇if(x

φ(r,i)) + τi > L∥Ai∥2εφ(r,i), we
further have that

F (xφ(r,i))− F (x̃φ(r,i)) ≥ ∇if(x̃
φ(r,i))(x

φ(r,i)
i − 0) + τix

φ(r,i)
i > 0, (4.21)

which contradicts Assumption 3.1(i).

Lemma 4.6. Suppose that Assumption 3.1 holds. Then, for sufficiently large r, we have

{xri }X = li, ∀i ∈ J∞
1 ; (4.22)

{xri }X = ui, ∀i ∈ J∞
2 ; (4.23)

{xri }X = 0, ∀i ∈ J∞
3 ; (4.24)

li ≤ {xri }X ≤ 0, ∀i ∈ J∞
4 ; (4.25)

0 ≤ {xri }X ≤ ui, ∀i ∈ J∞
5 ; (4.26)

li ≤ {xri }X ≤ ui, ∀i ∈ J∞
6 . (4.27)

Proof. Here we only show (4.22) and (4.25). Since the rest part can be shown in a similar
way, we omit the proof.

Case 1: i ∈ J∞
1 . To show (4.22), it is sufficient to show

{xφ(r,i)i }X = li, (4.28)

since xri = x
φ(r,i)
i holds by (4.19). From (4.20), we have that for ε̄ =

d∞i −τi
2 > 0,

i ∈ J∞
1 , there exists a nonnegative integer r̄ such that

d∞i − ε̄ ≤ ∇if(x
φ(r,i)) ≤ d∞i + ε̄, ∀r ≥ r̄, r ∈ X .

It is easy to see that d∞i − τi − ε̄ is positive. Then we have

∇if(x
φ(r,i))− τi ≥ d∞i − τi − ε̄ > max{1, L∥Ai∥2}εφ(r,i) ≥ εφ(r,i) (4.29)

for sufficiently large r, since εr → 0 and ∇if(x
φ(r,i)) → d∞i hold. Furthermore, we

ensure i ∈ J1(x
φ(r,i), εφ(r,i)), since x

φ(r,i)
i is an εφ(r,i)-approximate solution of the

subproblem (3.1). It implies that |xφ(r,i)i − li| ≤ εφ(r,i). Then by the Assumption
3.1(ii) and (2.7), we have

li ≤ x
φ(r,i)
i ≤ εφ(r,i) + li < 0. (4.30)

Thus, the equality (4.28) follows from (4.29), (4.30) and Lemma 4.5(i), and hence
(4.22) holds.
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Case 2: i ∈ J4. In this case, we have d∞i = τi and τi > 0. Let ε̃ = τi
2 . It then follows from

(4.20) that there exists an r̃, such that 1
2τi < ∇if(x

φ(r,i)) < 3
2τi hold for all r ∈ X ,

r ≥ r̃. Then for sufficiently large r, the inequalities

∇if(x
φ(r,i)) + τi >

3

2
τi > max{1, L∥Ai∥2}εφ(r,i) ≥ εφ(r,i) (4.31)

hold due to εr → 0. We further obtain i ∈
3∪
j=1

Jj(x
φ(r,i), εφ(r,i)) from Definition 2.7.

Therefore, we have

x
φ(r,i)
i ∈ [li, ε

φ(r,i)]. (4.32)

It finally follows from (4.31), (4.32) and Lemma 4.5(iii) that x
φ(r,i)
i ∈ [li, 0]. (4.25)

holds form (4.19).

Next, we will show that Axr → Ax∗, where x∗ is an arbitrary optimal solution of the
problem (1.1). For this purpose, we recall Hoffman’s error bound [3].

Lemma 4.7. Let B ∈ Rk×n, C ∈ Rk×n and e ∈ Rk, d ∈ Rk. Suppose that the linear
system By = e, Cy ≤ d is consistent. Then there exists a scalar θ > 0 depending only
on B and C such that, for any x̄ ∈ [l, u], l, u ∈ Rn, there is a point ȳ ∈ Rn satisfying
Bȳ = e, Cȳ ≤ d and ∥x̄− ȳ∥ ≤ θ(∥Bx̄− e∥+ ∥(Cx̄− d)+∥), where (xi)+ := max{0, xi} .

Theorem 4.8. Let x∗ be an optimal solution of the problem (1.1). Then we have lim
r→∞

Axr =

Ax∗.

Proof. In the first step, we show that Axr → Ax∗ holds for r ∈ X , where X is an infinite
set given in (4.15). To this end, we consider the following linear system of y:

Ay = Axr, yi = xri (i ∈ J∞
1 ∪ J∞

2 ∪ J∞
3 ), yi ≤ 0 (i ∈ J∞

4 ), and yi ≥ 0 (i ∈ J∞
5 ), y ∈ [l, u].

It follows from (4.22)-(4.27) that xr is a solution of this system for sufficiently large r,
that is, the system is consistent. For any fixed point x̄ in [l, u], by Lemma 4.7, there exist a
solution yr ∈ [l, u] of the above system and a constant θ, which is independent of xr, such
that

∥yr − x̄∥ ≤ θ
(
∥Ax̄−Axr∥+

∑
i∈J1∪J2∪J3

|x̄i − xri |+
∑
i∈J4

max{0, x̄i}+
∑
i∈J5

max{0,−x̄i}
)
.

From the boundness of {Axr} and (4.22)-(4.24), we further have that the right-hand side of
this inequality is bounded. It implies that {yr}X is also bounded, and hence it has at least
one accumulation point. We denote it by y∞. Furthermore, from (4.15) and Lemma 4.6, we
have that y∞ satisfies the following system:

Ay∞ = t∞, y∞i = li (i ∈ J1), y∞i = ui (i ∈ J2), y∞i = 0 (i ∈ J3),

li ≤ y∞i ≤ 0 (i ∈ J4), 0 ≤ y∞i ≤ ui (i ∈ J5), li ≤ y∞i ≤ ui (i ∈ J6).

It then follows from (4.17) that∇f(y∞) = AT∇g(Ay∞)+b = d∞. Moreover, the relation
y∞ = Pτ,l,u(y

∞) holds from the above system and Lemma 2.2. Thus, y∞ is an optimal
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solution of the problem (1.1) by Lemma 2.3. From Lemma 2.6, we have Ay∞ = Ax∗, i.e.,
t∞ = Ax∗.

In the second step, we show lim
r→∞

Axr = Ax∗. Since {Axr} is bounded, it is sufficient to

show that any accumulation point of {Axr} is Ax∗. Let X̂ be any subset of nonnegative
integers such that {Axr} is convergent, and let t̂∞ be a limit of {Axr}X̂ . Then we can show

that t̂∞ = Ax∗ holds for the set X̂ as Lemmas 4.4-4.6. Moreover, the first step of the current
proof, i.e., {Axr}X̂ → Ax∗ holds. Thus, {Axr} → Ax∗ holds for r → ∞.

Theorem 4.8 implies that there exists a scalar r̄ > 0, such that Axr ∈ B(Ax∗) for any
r ≥ r̄, where B(Ax∗) is the closed ball defined before (2.1). Note that g is strongly convex
on B(Ax∗).

In the third part of this section, we show the sufficient decreasing of {F (xr)} for suffi-
ciently large r.

Lemma 4.9. Under Assumption 3.1, there exists a scalar η > 0 such that F (xr)−F (xr+1) ≥
η∥xr − xr+1∥2 holds for sufficiently large r.

Proof. Note that Axr, Axr+1 ∈ B(Ax∗) holds for sufficiently large r. It then follows from
Assumption 2.1 that g is strongly convex in B(Ax∗). Furthermore, we have

F (xr)− F (xr+1) = g(Axr)− g(Axr+1)− ⟨AT∇g(Axr+1), xr − xr+1⟩
+ ⟨∇f(xr+1), xr − xr+1⟩+ τi(r)|xri(r)| − τi(r)|xr+1

i(r) |

≥ σ∥A(xr − xr+1)∥2 + ⟨∇i(r)f(x
r+1), xri(r) − xr+1

i(r) ⟩+ τi(r)

(
|xri(r)| − |xr+1

i(r) |
)

= σ∥Ai(r)∥2|xri(r) − xr+1
i(r) |

2 + hi(r)(x
r, xr+1)

≥ σmin
j

∥Aj∥2∥xr − xr+1∥2 + hi(r)(x
r, xr+1),

where hi(r) is defined in (4.3), and i(r) denotes the index chosen on the rth step.
Next, we show the inequality

hi(r)(x
r, xr+1) ≥ −αrL̃(xri(r) − xr+1

i(r) )
2, (4.33)

where L̃ := max
j

{1, L∥Aj∥2}, and αr is given in Assumption 3.1(v). Note that L̃ ≥ 1.

We show it by considering 6 cases: i(r) ∈ J∞
j , j = 1, 2, . . . , 6. First, we have from

Lemma 4.6 that

hi(r)(x
r, xr+1) = 0, ∀ i(r) ∈

3∪
j=1

J∞
j .

Hence, (4.33) holds for i(r) ∈ J∞
j , j = 1, 2, 3. Then, we only need to consider the other

three cases i ∈ J∞
4 , i ∈ J∞

5 and i ∈ J∞
6 . Here, for simplicity, we only show the case i ∈ J∞

4 .
The rest two cases can be obtained in a similar way.

If i(r) ∈ J∞
4 , then it follows from Lemma 4.6 that for the sufficiently large r, xri(r), x

r+1
i(r) ∈

[li(r), 0] holds. Then we have

hi(r)(x
r, xr+1) = ⟨∇i(r)f(x

r+1)− τi(r), x
r
i(r) − xr+1

i(r) ⟩

≥ − |∇i(r)f(x
r+1)− τi(r)||xri(r) − xr+1

i(r) |.
(4.34)

From the proof of (4.25) in Lemma 4.6, we have i(r) ∈
3∪
j=1

Jj(x
r+1, εr+1). Thus we show

(4.33) by considering the following three distinct cases.
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Case 1: i(r) ∈ J1(x
r+1, εr+1). We have by Assumption 3.1(ii) that

∇i(r)f(x
r+1)− τi(r) ≥ −εr+1 and li(r) ≤ xr+1

i(r) ≤ li(r) + εr+1. (4.35)

The first inequality means that ∇i(r)f(x
r+1)− τi(r) ∈ [−εr+1,∞) = [−εr+1, L̃εr+1] ∪

(L̃εr+1,∞). First suppose that ∇i(r)f(x
r+1) − τi(r) ∈ [−εr+1, L̃εr+1]. It then follows

from (4.34) and Assumption 3.1(iv) that hi(r)(x
r, xr+1) ≥ −L̃εr+1|xri(r) − xr+1

i(r) | ≥
−αrL̃|xri(r) − xr+1

i(r) |
2, which satisfies (4.33).

Next suppose that ∇i(r)f(x
r+1) − τi(r) ∈ (L̃εr+1,∞). Then xr+1

i(r) = li(r) holds from

li(r) ≤ xr+1
i(r) ≤ li(r) + εr+1 and Lemma 4.5(i). Therefore, we get hi(r)(x

r, xr+1) =

⟨∇i(r)f(x
r+1)− τi(r), x

r
i(r) − li(r)⟩ ≥ 0, which implies (4.33) obviously.

Case 2: i(r) ∈ J2(x
r+1, εr+1). In this case, we have |∇i(r)f(x

r+1)−τi(r)| ≤ εr+1 and li(r) ≤
xr+1
i(r) ≤ 0. From Assumption 3.1(iv) and (4.34), we have hi(r)(x

r, xr+1) ≥ −εr+1|xri(r)−
xr+1
i(r) | ≥ −αr|xri(r) − xr+1

i(r) |
2, which also implies (4.33).

Case 3: i(r) ∈ J3(x
r+1, εr+1). We have |∇i(r)f(x

r+1)| ≤ τi(r) + εr+1 and −εr+1 ≤ xr+1
i(r) ≤

0, hence we have ∇i(r)f(x
r+1) − τi(r) ∈ [−2τi(r) − εr+1, εr+1]. If ∇i(r)f(x

r+1) −
τi(r) ∈ [−L̃εr+1, εr+1], then (4.33) holds from Assumption 3.1(iv). If ∇i(r)f(x

r+1) −
τi(r) ∈ [−2τi(r) − εr+1,−L̃εr+1), then we have xr+1

i(r) = 0 from Lemma 4.5 and xr+1
i(r) ∈

[−εr+1, 0]. Hence, we have hi(r)(x
r, xr+1) = (∇i(r)f(x

r+1) − τi(r))x
r
i(r) ≥ 0 ≥

−αrL̃(xri(r) − xr+1
i(r) )

2.

Consequently, the inequality (4.33) holds.

The sequence {αr} satisfies αr <
σmin

j
∥Aj∥2

max
j

{1, L∥Aj∥2}
for sufficiently large r from the As-

sumption 3.1(v). Then the inequality of this theorem holds for sufficiently large r with
η := σmin

j
∥Aj∥2 − αrmax

j
{1, L∥Aj∥2} > 0.

In the last part of this section, before showing the global and linear convergence of {xr},
we first recall a kind of the Lipschitz error bound in [12, 13, 23].

Lemma 4.10. There exists a scalar constant κ > 0 such that

∥Axr −Ax∗∥ ≤ κ∥xr − Pτ,l,u(x
r)∥ (4.36)

holds for any Axr ∈ B(Ax∗).

Proof. Since g is strongly convex on B(Ax∗) and ∇g is Lipschitz continuous, there exists a
constant κ̂ > 0 such that ∥xr−x∗(r)∥ ≤ κ̂∥xr−Pτ,l,u(xr)∥, where x∗(r) is a nearest solution
from xr [23, Lemma 4.4]. It then follows from Lemma 2.6 and ∥Axr−Ax∗∥ ≤ ∥A∥∥xr−x∗∥
that (4.36) holds with κ := ∥A∥κ̂.

The following result is a direct extension of [22, Lemma 4.5(a)] to the problem (1.1).

Lemma 4.11. Under Assumption 3.1, there exists a constant ω > 0 such that the inequality

∥Axr −Ax∗∥ ≤ ω
r+B−1∑
h=r

∥xh − xh+1∥ holds for sufficiently large r.
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Proof. To show this lemma, by Lemmas 4.10, it is sufficient to show that there exists a

constant ω̂ > 0 such that ∥xr−Pτ,l,u(xr)∥ ≤ ω̂
r+B−1∑
h=r

∥xh − xh+1∥. Since ∥xr−Pτ,l,u(xr)∥ ≤
√
n max

i
|xri − Pτ,l,u(x

r)i|, we only need to show that there exists a constant ω̃ > 0 such that

|xri − Pτ,l,u(x
r)i| ≤ ω̃

r+B−1∑
h=r

∥xh − xh+1∥ holds for each i ∈ {1, 2, . . . , n}.

Note that Axr ∈ B(Ax∗) for sufficiently large r. For any fixed index i ∈ {1, 2, . . . , n}, let
ψ(r, i) be the smallest integer N (N ≥ r) such that xri is updated on the Nth step. Then,
we have

|xri − Pτ,l,u(x
r)i|

=

∣∣∣∣∣∣
ψ(r,i)−1∑
h=r

[
(xhi − Pτ,l,u(x

h)i)− (xh+1
i − Pτ,l,u(x

h+1)i)
]
+ (x

ψ(r,i)
i − Pτ,l,u(x

ψ(r,i))i)

∣∣∣∣∣∣
≤
ψ(r,i)−1∑
h=r

∣∣[(xhi − Pτ,l,u(x
h)i)− (xh+1

i − Pτ,l,u(x
h+1)i)

]∣∣+ ∣∣∣xψ(r,i)i − Pτ,l,u(x
ψ(r,i))i

∣∣∣ ,
where the inequality follows from the triangle inequality.

It then follows from the the nonexpensive property (2.5) of the projection Pτ,l,u(x),
Assumption 3.1(iv) and Theorem 2.9 that

|xri − Pτ,l,u(x
r)i| ≤

ψ(r,i)−1∑
h=r

(
2
∣∣xhi − xh+1

i

∣∣+ ∣∣∇if(x
h)−∇if(x

h+1)
∣∣)

+ αr

∣∣∣xψ(r,i)i − x
ψ(r,i)−1
i

∣∣∣ .
Since r + 1 ≤ ψ(r, i) ≤ r +B hold by the almost cycle rule, we obtain

|xri − Pτ,l,u(x
r)i| ≤

r+B−1∑
h=r

(
2
∣∣xhi − xh+1

i

∣∣+ ∣∣∇if(x
h)−∇if(x

h+1)
∣∣)

+ αr

∣∣∣xψ(r,i)i − x
ψ(r,i)−1
i

∣∣∣ .
It then follows from the Lipschitz continuity of ∇g and Assumption 3.1 that

|xri − Pτ,l,u(x
r)i| ≤ (2 + ∥A∥2L)

r+B−1∑
h=r

∥∥xh − xh+1
∥∥+ αr

∥∥∥xψ(r,i) − xψ(r,i)−1
∥∥∥

≤

2 + ∥A∥2L+

σmin
j

∥Aj∥2

max
j

{1, L∥Aj∥2}

 r+B−1∑
h=r

∥∥xh − xh+1
∥∥ ,

where the first inequality follows from ∥xh − xh+1∥ ≥ |xhi − xh+1
i |.

Let ω̃ := 2 + ∥A∥2L +
σmin

j
∥Aj∥2

max
j

{1, L∥Aj∥2}
. Then it is easy to see that ω̃ > 0. Thus the

inequality of this lemma holds with ω = κ
√
nω̃, where κ is given in Lemma 4.10.
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Now we are ready to show the linear convergence of {F (xr)} and {xr}.

Theorem 4.12. Suppose that {xr} is generated by the ICD method with the almost cycle
rule. Let F ∗ denote the optimal value of the problem (1.1). Then {F (xr)} converges to F ∗

at least B-step Q-linearly.

Proof. In the first step, we show the global convergence of the sequence {F (xr)}. Let x∗ be
an optimal solution of the problem (1.1). Then we have F ∗ = F (x∗). It follows from the
mean value theorem that there exists ξ ∈ Rn, which is on the line segment that joins xr

with x∗, such that g(Axr)− g(Ax∗) = ⟨AT∇g(Aξ), xr − x∗⟩.
Since Axr → Ax∗and ∇f(xr) → d∞ hold, we have

d∞ = lim
x→∞

∇f(xr) = lim
x→∞

AT∇g(Axr) + b = AT∇g(Ax∗) + b = ∇f(x∗). (4.37)

Thus, we have

F (xr)− F ∗ =⟨AT∇g(Aξ)−AT∇g(Ax∗), xr − x∗⟩

+ ⟨AT∇g(Ax∗) + b, xr − x∗⟩+
n∑
i=1

τi(|xri | − |x∗i |)

≤ L∥Aξ −Ax∗∥∥A(xr − x∗)∥+ ⟨AT∇g(Ax∗) + b, xr − x∗⟩+
n∑
i=1

τi(|xri | − |x∗i |)

≤ L∥A(xr − x∗)∥2 + ⟨d∞, xr − x∗⟩+
n∑
i=1

τi(|xri | − |x∗i |)

= L∥A(xr − x∗)∥2 +
n∑
i=1

[d∞i (xri − x∗i ) + τi(|xri | − |x∗i |)] , (4.38)

where the first inequality follows from the Lipschitz continuity of ∇g, and the second in-
equality follows from (4.37).

With the special structure of the problem (1.1), we can show that for sufficiently large
r,

d∞i (xri − x∗i ) + τi(|xri | − |x∗i |) = 0, ∀i ∈ {1, 2, . . . , n}. (4.39)

We prove this by considering the distinct cases about the index sets J∞
j , j = {1, 2, . . . , 6}

since {1, 2, . . . , n} =
6∪
j=1

J∞
j . For simplicity, we only prove the cases i ∈ J∞

1 and i ∈ J∞
4 .

The other cases can be shown in a similar way. If i ∈ J∞
1 , i.e., d∞i > τi, then it follows from

Lemma 4.6 that xri = li for sufficiently large r. On the other hand, we have ∇if(x
∗) > τi by

(4.37). It then follows from Lemma 2.2 that x∗i = li. These two relations imply that (4.39)
holds. If i ∈ J4, i.e., d

∞
i = τi, it then follows from Lemma 4.6 that for sufficiently large r,

li ≤ xri ≤ 0. On the other hand, we have τi = ∇if(x
∗) by (4.37). It further implies that

li ≤ x∗ ≤ 0 from Lemma 2.2. Combining these three relations, we have that (4.39) holds.
Consequently, we have 0 ≤ F (xr)−F ∗ ≤ L∥A(xr−x∗)∥2 by (4.38) and (4.39). It implies

F (xr) → F ∗, since Axr → Ax∗ holds, that is, {F (xr)} is globally convergent.
In the second step, we show the B-step Q-linear convergence rate of {F (xr)}. To this

end, we need to ensure that there exists a constant c ∈ (0, 1) such that

F (xr+B)− F ∗ ≤ c (F (xr)− F ∗) . (4.40)
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From (4.38), (4.39) and Lemma 4.11, we have

F (xr)− F ∗ ≤ Lω2

(
r+B−1∑
h=r

∥xh − xh+1∥

)2

.

Letting k := h− r + 1, we further have that

F (xr)− F ∗ ≤ Lω2

(
B∑
k=1

∥xk+r−1 − xk+r∥

)2

≤ Lω2B

B∑
k=1

(
∥xk+r−1 − xk+r∥

)2
.

It then follows from Lemma 4.9 that

F (xr)− F ∗ ≤ Lω2B

η

B∑
k=1

(
F (xk+r−1)− F (xk+r)

)
=
Lω2B

η

(
F (xr)− F (xr+B)

)
.

By rearranging the items of the above inequality, we have

F (xr+B)− F ∗ ≤ c (F (xr)− F ∗) , (4.41)

where c = 1− η
Lω2B . Since η

Lω2B > 0 and c < 1, it means that {F (xr)} converges to F ∗ at
least B-step Q-linearly.

Theorem 4.13. Suppose that {xr} is generated by the ICD method with the almost cycle
rule. Then {xr} converges to an optimal solution of the problem (1.1) at least R-linearly.

Proof. First we show that {xr} is convergent. Let F ∗ be the optimal value of the problem
(1.1). Since F (xr) converges to F ∗ at least Q-linearly by Theorem 4.12, we have that F (xr)
converges to F ∗ at least R-linearly, that is, there exist constants K > 0 and ĉ ∈ (0, 1) such
that

F (xr)− F ∗ ≤ Kĉr. (4.42)

From Lemma 4.9, we have for sufficiently large r,

0 ≤ ∥xr − xr+1∥2 ≤ 1

η
(F (xr)− F ∗) +

1

η

(
F ∗ − F (xr+1)

)
≤ 1

η
(F (xr)− F ∗) , (4.43)

where the last inequality holds since F ∗ − F (xr+1) ≤ 0.
By combining (4.42) with (4.43), we have that ∥xr−xr+1∥2 ≤ K

η ĉ
r, that is, ∥xr−xr+1∥ ≤√

K
η ĉ

r
2 . Let c̄ := ĉ

1
2 . Then, we have c̄ ∈ (0, 1). Moreover, we obtain, for any positive integer

m,n and m > n,

∥xm − xn∥ ≤
m−n−1∑
k=0

∥xm−k − xm−k−1∥ ≤

√
K

η

m−n−1∑
k=0

c̄m−k−1 =

√
K

η

c̄n − c̄m

1− c̄
≤

√
K

η

c̄n

1− c̄
,

which implies that {xr} is a cauchy sequence due to 0 < c̄ < 1. Therefore, {xr} is convergent.
In the rest, we show that {xr} converges to an optimal solution at least R-linearly. Let

x∞ denote the limit point of {xr}. Since ∥xm − xn∥ ≤
√

K
η
c̄n−c̄m
1−c̄ , we have

∥x∞ − xn∥ = lim
m→∞

∥xm − xn∥ ≤ lim
m→∞

√
K

η

c̄n − c̄m

1− c̄
=

√
K

η

c̄n

1− c̄
,
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which implies that {xr} converges to x∞ at least R-linearly since 0 < c̄ < 1 holds.
Finally, we complete the proof by showing that the x∞ is an optimal solution. With the

continuity of F , we have lim
r→∞

F (xr) = F (x∞). It then follows from F (xr) → F ∗ in Theorem

4.12 that F (x∞) = F ∗, that is, x∞ is also an optimal solution of the problem (1.1).

5 Numerical Experiments

In this section, we present some numerical experiments of the ICD method (the proposed
method) for the following unconstrained l1-regularized logistic regression problem:

minimize
w∈Rn−1,v∈R

F (x) :=
1

m

m∑
j=1

log(1 + exp(−(wT qj + vpj))) + µ∥w∥1, (5.1)

where x = (w, v) ∈ Rn and qj = pjzj . Moreover, (zj , pj) ∈ Rn−1 × {−1, 1}, j = 1, 2, . . . ,m

are a set of training examples. For simplicity, we let f(x) := 1
m

m∑
j=1

log(1 + exp(−(wT qj + vpj)))

and τ := (µ, . . . , µ, 0)T ∈ Rn. Note that the computational costs of evaluating f(x), ∇if(x)
and ∇2

iif(x) are O(m) if we update only one variable xi on each step and store β = Bx,
where B = [Q, p] with QT = [q1, . . . , qm] and p = (p1, . . . , pm)T ∈ Rm. This is because

f(x) = 1
m

m∑
j=1

log(1 + exp(−βj)) and βnew = βold + (xnewi − xoldi )Bi.

We report some numerical results on randomly generated problems for various inexact
criteria satisfying Assumption 3.1. We also show the comparison with the CGD method
[14].

5.1 Implementations

We exploit the following gradient method with line search to solve the one dimensional
subproblem (3.1) in the ICD method.

Algorithm 1.

Step 0: Let i := i(r) andGi := ∇if(x
r). If mid{Gi+τi, Gi−τi, xri } = 0, then set xr+1

i := xri
and return. Otherwise let k := 0, G0

i := Gi, and y
0 := xr. Go to Step 1.

Step 1: Choose a scaling factor skii > 0. Calculate a search direction dk as follows.

dk := argmin
d∈R

{
Gki d+ τi|yki + d|+ skii

2
d2
}
.

Step 2: Determine a stepsize αk by the Armijo rule in [14] with γ = 0.

Step 3: Set yk+1
i := yki + αkdk, yk+1

j := xrj for all j ̸= i, and Gk+1
i := ∇if(y

k+1). If

the inexact criterion is satisfied, then set xr+1
i := yk+1

i and return. Otherwise let
k := k + 1. Go to Step 1.

The difference between the ICD method and the CGD method [14] lies in Step 3 of
Algorithm 1. The CGD method does not check the inexact criterion in Step 3 and always
returns to the main algorithm with k = 0. On the other hand, the ICD method returns to
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the main algorithm only when the inexact criterion holds. Note that if the criteria are weak,
then the ICD method may be regarded as the CGD method.

In the numerical experiments, we choose the scaling factor skii in Step 1 according to the
following 3 options:

(i) skii = ∇2
iif(y

k);

(ii) skii = 1;

(iii) s0ii = 1 and skii =
Gk

i −G
k−1
i

yki −y
k−1
i

for k ≥ 1.

The choice (i) corresponds to the Newton method, while choice (ii) conforms to the steepest
descent method. The option (iii) is motivated by the quasi-Newton method.

Additionally, we exploit the under/over-relaxation technique in the numerical experi-
ments. Note that Pτ,l,u(x) = Tτ (x − ∇f(x)) when l = −∞ and u = +∞. Let xr+1

i be an
εr+1-approximate solution of the subproblem (3.1), i.e., |xr+1

i − Tτ (x
r+1 − ∇f(xr+1))i| ≤

εr+1, and x̄r+1 be an under/over-relaxation estimator to xr+1 with parameter ω such that

x̄r+1
i = ωxr+1

i + (1− ω)xri ,

x̄r+1
j = xr+1

j , ∀j ̸= i.
(5.2)

If the gradient of the function f in (5.1) is Lipschitz continuous with Lipschitz constant L ,
we have

|x̄r+1
i − Tτ (x̄

r+1 −∇f(x̄r+1))i| ≤
∣∣xr+1
i − Tτ (x

r+1 −∇f(xr+1))i
∣∣

+ (2 + L)
∣∣(ω − 1)(xr+1

i − xri )
∣∣

≤ εr+1 + (2 + L)|ω − 1|
∣∣xr+1
i − xri

∣∣
≤ (ar + (2 + L)|ω − 1|)

∣∣xr+1
i − xri

∣∣ ,
where the last inequality follows from Assumption (3.1). Let ār = ar+(2+L)|ω−1|. If δr >
ār|xr+1

i − xri |, then x̄
r+1
i is an ε̄r+1-approximate solution, where ε̄r+1 = min{δr, ār|xr+1

i −
xri |}. This condition usually holds when δr slowly converges to 0, e.g., δr = O( 1r ).

5.2 Test Problems

We generate the training examples randomly as in [9]. In our implementation, we have
generated 8 random problems. Four of them have the scale of n = 1001,m = 100, and
the others are n = 101,m = 1000. All training examples have an equal number of positive
(pj = 1) and negative (pj = −1) training examples. Each feature qji of positive (negative)
examples qj obeys independent and identical distribution. In our implementation, we adopt
the normal distribution N (υ, 1), where the mean υ is drawn from a uniform distribution on
[0, 1] for positive examples ([−1, 0] for negative examples).

We choose the regularized parameter µ based on µmax=
1
m

∥∥m−
m Σpj=1q

j+ m+

m Σpj=−1q
j
∥∥
∞,

where m− denotes the number of negative examples, and m+ denotes the number of posi-
tive examples. It is shown in [9] that the vector x = 0 ∈ Rn is the optimal solution of the
problem (5.1) if µ ≥ µmax. In our implementation, we let µ = 0.1µmax or µ = 0.01µmax.
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5.3 Numerical Results

In this section, we give some numerical examples to illustrate the performances of the ICD
method. The algorithm is implemented in MATLAB (Version 7.10.0), and running on an
Intel(R) Core(TM)2 Duo CPU E6850 @3.00GHz. We terminate the algorithms when

∥xr − Tτ (x
r −∇f(xr))∥∞ ≤ 10−3. (5.3)

To save the CPU time, we check the termination condition in every 100 iterations. Through-
out the experiments, we choose all initial points x0 = 0, and adopt the simple cycle rule to
choose i for the ICD method and the CGD method.

5.3.1 Investigation of the inexact criteria

To see the performances of the ICD method on various inexact criteria, we solve two random
problems with

εr = min{ 10

r⌊
r
n ⌋ , a

⌊ r
n ⌋|xr+1

i − xri |}, (5.4)

where a varies from 0.1 to 0.8. Here, we use ⌊ rn⌋ to reduce its sensitivity to r. In these
experiments, we choose skii = ∇2

iif(y
k) in Step 2 of Algorithm 1. We also use the same skii for

the CGD method. Table 1 presents the total number of evaluating Gki and f , the iteration
r, and the CPU time (in seconds) for these two problems. From Table 1, we find that the
ICD method performs better when a approaches to 1, yet it is worse than the CGD method.
The results indicate that the solution of the subproblem (3.1) with high accuracy does not
always improve the convergence. Note that the number of the gradient evaluations for the
ICD method is larger than that for the CGD method. This is because the ICD method
evaluates both G0

i = ∇if(y
0) and G1

i = ∇if(y
1) even if the Algorithm 1 is terminated at

Step 3 with k = 0. However, the CGD method only evaluates G0
i at each iteration.

Table 1: Performances of the ICD method with various a in (5.4) and the CGD method.

5.3.2 Comparison of the ICD method and the CGD method

We first show some numerical results for the ICD method and the CGDmethod with the Hes-
sian information, that is, skii = ∇2

iif(y
k). The ICD method is implemented with under the re-

laxation technique (ω = 0.5 ∼ 1.0 in (5.2)) and εr = max{10−4,min{10/r⌊ r
n ⌋, 0.8⌊

r
n ⌋|xr+1

i −
xri |}}. Table 2 reports the numerical results for four instances. From Table 2, we see that the
performances on the ICD method with ω = 1.0 and the CGD method are roughly same since
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both of them exploit the Hessian information. The ICD method with appropriate relaxation
factor (ω < 1.0) is faster than the CGD method for some problems. The performances of
the ICD method with over relaxation, i.e., ω > 1, is worse for these four instances and hence
we omit them.

Table 2: Comparison of the ICD method and the CGD method for skii = ∇2
iif(y

k).

Next we consider the case where the Hessian ∇2
iif(y

k) is not available. Then we may
choose skii as in the steepest descent method (skii = 1) or in the quasi-Newton method. Note
that the CGD method can not adopt the quasi-Newton method since it returns with k = 0
in Algorithm 1. Table 3 reports the performances of the ICD method combined with the
quasi-Newton method and the CGD method with skii = 1. We also give results for the
CGD method with skii = ∇2

iif(y
k) for the better understanding. From Table 3, we find that

the ICD method combined with the quasi-Newton method performs similarly as the CGD
method with skii = ∇2

iif(y
k), but much better than the CGD method with skii = 1. Hence,

if the Hessian computation for the function f is expensive, then the ICD method combined
with the quasi-Newton method is an efficient alternative approach.

Table 3: Performances of the ICD method and the CGD method when ∇2
iif(y

k) is not
available.
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6 Conclusions

In this paper, we have presented a framework of the ICD method for solving l1-regularized
convex optimization (1.1). We also have established the R-linear convergence rate of this
method under the almost cycle rule. The key to the ICD method lies in Assumption 3.1
for the “inexact solution”. On each iteration step, we only need to find an approximate
solution, which raises the possibility to solve general l1-regularized convex problems.

The proposed ICD method solves a one-dimensional subproblem on each iteration. The
Block Coordinate Descent method, which solves a small scale multi-dimensional subproblem,
is efficient for some practical problems. Thus it is interesting to extend the proposed ICD
method to the “inexact” block CD method.
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[8] O. Güler, On the convergence of the proximal point algorithm for convex minimization,
SIAM J. Control Optim. 29 (1991) 403–419.

[9] K. Koh, S.J. Kim and S. Boyd, An interior-point method for large-scale l1-regularized
logistic regression, J. Mach. Learn. Res. 8 (2007) 1519–1555.

[10] M.A.T. Figueiredo, R.D. Nowak and S.J. Wright, Gradient projection for sparse recon-
struction: Application to compressed sensing and other inverse problems, IEEE J. Sel.
Topics Signal Process. 1 (2007) 586–597.

[11] M.Y. Park and T. Hastie, L1-regularization path algorithm for generalized linear mod-
els, J. Roy. Stat. Soc. B 69 (2007) 659–677.

[12] P. Tseng, Approximation accuracy, gradient methods, and error bound for structured
convex optimization, Math. Program. 125 (2010) 263–295.



594 X. HUA AND N. YAMASHITA

[13] P. Tseng, Convegence of a block coordinate descent method for nondifferentiable mini-
mization, J. Optim. Theory Appl. 109 (2001) 475–494.

[14] P. Tseng and S. Yun, A coordinate gradient descent method for nonsmooth separable
minimization, Math. Program. 117 (2009) 387–423.

[15] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[16] S.J. Wright, Accelerated block-coordinate relaxation for regularized optimization, SIAM
J. Optim. 22 (2012) 159–186.

[17] S. Bonettini, Inexact block coordinate descent methods with application to non-negative
matrix factorization, IMA J. Numer. Anal. 31 (2011) 1431–1452.

[18] T.T. Wu and K. Lange, Coordinate descent algorithms for lasso penalized regression,
Ann. Appl. Stat. 2 (2008) 224–244.

[19] W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for l1-
minimization with applications to compressed sensing, SIAM J. Imaging Sci. 1 (2008)
143–168.

[20] Yu. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer
Academic, Boston, 2004.

[21] Y. Xu and W. Yin, A block coordinate descent method for multi-convex optimization
with applications to nonnegative tensor factorization and completion, Rice University
CAAM Technical Report 2012.

[22] Z.Q. Luo and P. Tseng, On the convergence of the coordinate descent method for convex
differentiable minimization, J. Optim. Theory Appl. 72 (1992) 7–35.

[23] Z.Q. Luo and P. Tseng, On the linear convergence of descent methods for convex es-
sentially smooth minimization, SIAM J. Control Optim. 30 (1992) 408–425.

Manuscript received 13 December 2012
revised 29 July 2013

accepted for publication 18 September 2013

Xiaoqin Hua
School of Mathematics and Physics
Jiangsu University of Science and Technology
Zhenjiang 212003, China
Current address: Department of Applied Mathematics and Physics
Graduate School of Informatics, Kyoto University
Kyoto 606-8501, Japan
E-mail address: xqhua@amp.i.kyoto-u.ac.jp

Nobuo Yamashita
Department of Applied Mathematics and Physics
Graduate School of Informatics, Kyoto University
Kyoto 606-8501, Japan
E-mail address: nobuo@i.kyoto-u.ac.jp


