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βHS
k =

gTk yk−1

dTk−1yk−1
, βPR

k =
gTk yk−1

∥gk−1∥2
, βLS

k =
gTk yk−1

−dTk−1gk−1
,

where yk−1 = gk − gk−1 and ∥ · ∥ stands for the Euclidean norm of vectors.
An important class of conjugate gradient algorithms is the hybrid conjugate gradient

methods. Hu & Storey [12] and Dai & Yuan [5] proposed some hybrid methods which we
call the H1 method and the H2 method, respectively, that is,

βH1
k = max{0,min{βFR

k , βPRP
k }}, (1.4)

βH2
k = max{0,min{βDY

k , βHS
k }}. (1.5)

Gilbert and Nocedal [9] extended H1 to the case that

βH1
k = max{−βFR

k ,min{βFR
k , βPRP

k }}. (1.6)

Numerical performances show that the H1 and the H2 methods are better than the PRP
method [5, 12].

Recently, there has been growing interest in the descent conjugate gradient methods.
Hager and Zhang [10] proposed a new conjugate gradient method which was obtained by
modifying the HS method and called CG-DESCENT method. The parameter βk in the
CG-DESCENT method is given by

βN
k =

gTk yk−1

dTk−1yk−1
− 2

∥yk−1∥2gTk dk−1

(dTk−1yk−1)2
, (1.7)

βN+
k = max{βN

k , ηk}, ηk =
−1

∥dk∥min{∥gk∥, η}
, (1.8)

where η > 0 is a constant. Later, Yu and Guan [15] motivated by their work proposed a
PRP conjugate gradient method as following

βDPR
k =

gTk yk−1

∥gk−1∥2
− C

∥yk−1∥2gTk dk−1

∥gk−1∥4
, (1.9)

where parameter C essentially controls the relative weight between conjugant and descent.
Zhang and Zhou [16] proposed two hybrid methods called NH1 and NH2 method as follows

NH1 : dk = −(1 + βH1
k

dTk−1gk

∥gk∥2
)gk + βH1

k dk−1, (1.10)

NH2 : dk = −(1 + βH2
k

dTk−1gk

∥gk∥2
)gk + βH2

k dk−1. (1.11)

Obviously, these two new hybrid methods satisfy

gTk dk = −∥gk∥2, (1.12)

which shows that they are descent and independent of any line search used. The global
convergence of these two methods [16] are presented and numerical results also showed their
efficiency in real computations.

In this paper, in order to obtain an efficiency method in real computations, based on
the idea of the methods all above, we proposed a new method, which is a projection of the
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CG-DESCENT and DPR conjugate algorithms. The search direction dk has the following
form

dk =

{
−g0, if k = 0,

−(1 + βHZPR
k

dT
k−1gk
∥gk∥2 )gk + βHZPR

k dk−1, if k ≥ 1,
(1.13)

where
βHZPR
k = max{0,min{βN

k , βDPR
k }}. (1.14)

From the method above, we can easily obtain (1.12). For convenience, we call the method
above as the HZPR method.

The rest of this paper are organized as follows. In the next section, we prove the global
convergence of the method (1.13) for general nonlinear functions with strong Wolfe line
search. In section 3, we report some numerical results to test the proposed method.

2 Algorithm and Convergence Analysis

First, we make the following standard assumptions for the objective function, which have
been used often in the literature to analyze the global convergence of conjugate methods
with inexact line search.

Assumption (A)

(H1) The level set Ω = {x ∈ Rn|f(x) ≤ f(x0)} is bounded.

(H2) In some neighborhood N of Ω, f is continuously differentiable and its gradient is
Lipschitz continuous, namely, there exists a constant L > 0 such that

∥g(x)− g(y)∥ ≤ L∥x− y∥, ∀x, y ∈ N.

Assumption (A) implies that there exists a positive constant γ̂ and B such that

∥g(x)∥ ≤ γ̂, ∀x ∈ Ω, (2.1)

and
∥x− y∥ ≤ B, ∀x, y ∈ Ω. (2.2)

Now we introduce the steps of the HZPR algorithm as following.

Algorithm 2.1 (HZPR Method).

Step 0: Choose an initial point x0 ∈ Rn. Let k = 0.

Step 1: Compute dk by Eq. (1.13), where βHZPR
k is computed by (1.14).

Step 2: Determine αk by the strong Wolfe line search

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk, (2.3)

|g(xk + αkdk)
T dk| ≤ σ|gTk dk|, (2.4)

where 0 < δ < σ < 1.

Step 3: Let xk+1 = xk + αkdk.



556 A. QU, J. LIU AND M. LI

Step 4: Let k := k + 1 and go to step 1.

The following well-known lemma, called the zoutendijk condition, which was originally
given in [18].

Lemma 2.2. Suppose Assumption (A) holds. Consider any method in the form (1.2), where
dk is a descent direction and αk satisfies the strong Wolfe condition (2.3) and (2.4). Then
we have

∞∑
k=0

(dTk gk)
2

∥dk∥2
< ∞. (2.5)

We now establish the global convergence theorem for the HZPR algorithm in a similar
way to Theorem 3.1 in [6]. First, we give a useful lemma about βHZPR

k in (1.14) which plays
an important role in the global convergence analysis.

Lemma 2.3. Suppose Assumption (A) holds. {xk} is generated by algorithm 2.1. If there
exist a constant ϵ > 0 such that ∥gk∥ > ϵ for all k > 0, then there exist a positive constant
D such that

|βHZPR
k | ≤ D∥sk−1∥, (2.6)

where sk−1 = xk − xk−1.

Proof. From (2.4) and (1.12), we have

|dTk−1yk−1| = |dTk−1gk − dTk−1gk−1| ≥ |dTk−1gk−1| − |dTk−1gk|
≥ |dTk−1gk−1| − σ|gTk−1dk−1| = (1− σ)∥gk−1∥2.

The above inequality together with (1.12) and (2.4), we have

|βHZPR
k | = |max{0,min{βDPR

k , βN
k }|

≤ max{∥gk∥∥yk−1∥
∥gk−1∥2

+
C∥yk−1∥2σ|gTk−1dk−1|

∥gk−1∥4
,

∥gk∥∥yk−1∥
|dTk−1yk−1|

+
2∥yk−1∥2σ|gTk−1dk−1|

(dTk−1yk−1)2
}

≤ max{∥gk∥∥yk−1∥
∥gk−1∥2

+
C∥yk−1∥2σ∥gk−1∥2

∥gk−1∥4
,

∥gk∥∥yk−1∥
(1− σ)∥gk−1∥2

+
2∥yk−1∥2σ∥gk−1∥2

(1− σ)∥gk−1∥4
}

≤ max{Lγ̂ + CσL2B

ϵ2
,
Lγ̂ + 2σL2B

(1− σ)ϵ2
}∥sk−1∥.

Defining

D = max{Lγ̂ + CσL2B

ϵ2
,
Lγ̂ + 2σL2B

(1− σ)ϵ2
},

then we have the result (2.6). The proof is complete.

The next lemma corresponds to Lemma 3.4 in [3] and Lemma 2.3 in [6].
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Lemma 2.4. Suppose Assumption (A) holds. {xk} is generated by algorithm 2.1. If there
exist a constant ϵ > 0 such that ∥gk∥ > ϵ for all k > 0, then we have

∞∑
k=0

∥uk − uk−1∥2 < ∞, (2.7)

where uk = dk

∥dk∥ .

Proof. Since dk ̸= 0 follows from (1.12) and ∥gk∥ > ϵ, so uk is well-defined. We rewrite
(1.13) as following

dk = −(1 + βHZPR
k

dTk−1gk

∥gk∥2
)gk + βHZPR

k dk−1 = vk + βHZPR
k dk−1. (2.8)

By defining

rk =
vk

∥dk∥
, δk =

βHZPR
k ∥dk−1∥

∥dk∥
.

So, we have
uk = rk + δkuk−1. (2.9)

Then we have from the fact that ∥uk∥ = ∥uk−1∥ = 1

∥rk∥ = ∥uk − δkuk−1∥ = ∥uk−1 − δkuk∥. (2.10)

Using the condition δk ≥ 0, the triangle inequality and (2.10), we have

∥uk − uk−1∥ ≤ ∥(1 + δk)(uk − uk−1)∥ ≤ ∥uk − δkuk−1∥+ ∥uk−1 − δkuk∥ ≤ 2∥rk∥. (2.11)

From (2.1), (2.4) and (2.6), we have

|βHZPR
k | |g

T
k dk−1|
∥gk∥2

≤ D∥sk−1∥
σ|gTk−1dk−1|

∥gk∥2
≤ D

σγ̂2

ϵ2
∥sk−1∥

.
= M∥sk−1∥. (2.12)

From (2.2), (2.12) and (2.8), there exist a constant M1 ≥ 0 such that

∥vk∥ ≤ ∥gk∥+M∥sk−1∥∥gk∥ ≤ M1. (2.13)

From the definition of rk, (2.6) and (2.13), we have

∞∑
k=0

∥rk∥2 =
∞∑
k=0

∥vk∥2

∥dk∥2
≤

∞∑
k=0

M2
1

∥dk∥2
=

∞∑
k=0

M2
1

∥gk∥4
∥gk∥4

∥dk∥2
≤ M2

1

ϵ2

∞∑
k=0

∥gk∥4

∥dk∥2
< ∞. (2.14)

Together with (2.11), we have (2.7).

The next theorem establishes the global convergence of the HZPR method. The proof
of it is similar to Theorem 4.3 in [9] and Theorem 3.1 in [6] .

Theorem 2.5. Suppose Assumption (A) holds. {xk} is generated by algorithm 2.1. Then
we have

lim inf
k→∞

∥gk∥ = 0. (2.15)



558 A. QU, J. LIU AND M. LI

Proof. Assume that the conclusion (2.15) is not true, then there exist a constant ε > 0 such
that for all k, ∥gk∥ > ε. From the definition of uk, we observe that for any l ≥ k,

xl − xk =
l−1∑
j=k

(xj+1 − xj) =
l−1∑
j=k

∥sj∥uk +
l−1∑
j=k

∥sj∥(uj − uk). (2.16)

By the triangle inequality, from the fact ∥uk∥ = 1, so we have

l−1∑
j=k

∥sj∥ ≤ ∥xl − xk∥+
l−1∑
j=k

∥sj∥∥uj − uk∥ ≤ B +
l−1∑
j=k

∥sj∥∥uj − uk∥. (2.17)

Let ∆ be a positive integer, chosen large enough that

∆ ≥ 4BD, (2.18)

where B and D appear in (2.2) and (2.6). By lemma 2.4, we can find a large enough k0 that∑
i≥k0

∥uk − uk−1∥2 ≤ 1

4∆
. (2.19)

If j > k > k0 and j − k ≤ ∆, then by (2.19) and Cauchy-Schwarz inequality, we have

∥uj − uk∥ ≤
j−1∑
i=k

∥ui+1 − ui∥2

≤
√
j − k(

j−1∑
i=k

∥ui+1 − ui∥2)1/2

≤
√
∆(

1

4∆
)1/2 =

1

2
.

Combining this with (2.2) and (2.17) yields

l−1∑
j=k

∥sj∥ ≤ 2B. (2.20)

From (2.6), (2.8) and (2.13) we have

∥dl∥2 ≤ (∥vk∥+ |βHZPR
l |∥dl−1∥)2 ≤ 2M2

1 + 2D2∥sl−1∥2∥dl−1∥2. (2.21)

Defining Si = 2D2∥si∥2, by induction, we obtain

∥dl∥2 ≤ 2M2
1 + Sl−1∥dl−1∥2

≤ 2M2
1 (1 + Sl−1 + Sl−1Sl−2 + · · ·+ Sl−1Sl−2 · · ·Sk0+1)

+∥dk0∥2Sl−1Sl−2 · · ·Sk0 .

Then we have

∥dl∥2 ≤
{

2M2
1 + Sk0∥dk0∥2, if l = k0 + 1,

2M2
1 (1 +

∑l−1
i=k0+1

∏l−1
j=i Sj) + ∥dk0∥2

∏l−1
j=k0

Sj , if l > k0 + 1.
(2.22)
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Let us consider as follows a product of ∆ consecutive Sj , where k ≥ k0,

k+∆−1∏
j=k

Sj =

k+∆−1∏
j=k

2D2∥sj∥2 = (

k+∆−1∏
j=k

√
2D∥sj∥)2

≤ (

∑k+∆−1
j=k

√
2D∥sj∥

∆
)2∆ ≤ (

2
√
2BD

∆
)2∆ ≤ 1

2∆
.

The product of ∆ consecutive Sj is bounded by 1
2∆ , it follows that the sum in (2.22) is

bounded, and the bound is independent of l. This bound for ∥dl∥, independent of l > k0,
contradicts (2.5), hence we have (2.15). The proof is complete.

3 Numerical Experiments

In this section, we do some numerical experiments to test the performance of the HZPR
method and compare it with some existing methods for solving large scale unconstrained
optimization problems. All codes are written in Fortran and ran on IBM T60 PC with two
1.83 GHz CPU and 2.5GB RAM.

The test problems are the unconstrained problems from Neculai Andrei [1]. For each
problem, the dimension n is set to 1 000 and 10 000. The parameters in the strong wolfe
conditions are as follows: σ = 0.9 and δ = 0.1, and C = 1 in (1.14). We stop the iteration
if the inequality ∥gk∥ ≤ 10−6 is satisfied.

We compare the performances of the HZPR method with that of the CG-DESCENT
method [10] and the MPRP method [17]. The CG-DESCENT codes can be obtained from
Hager’s page at http://www.math.ufl.edu/hager/papers/CG.

Table 1 lists the results of the HZPR method, the CG-DESCENT method and the
MPRP method which gives the total number of iterations(iter), the total number of function
evaluations(fn), the total number of gradient evaluations(gn) and the cpu time(time) in
seconds.

We adopt the performance profiles by Dolan and More [7] to compare the performance
among the tested methods. That is, for each method, we plot the fraction P of problems for
which the method is within a factor τ of the best time. The left side of the figure gives the
percentage of the test problems for which a method is the fastest; the right side gives the
percentage of the test problems that are successfully solved by each of the methods. The
top curve is the method that solved the most problems in a time that are within a factor τ
of the best time. Figure 1-4 are the performance profile measured by CPU time, the number
of iterations, the number of function evaluations and the number of gradient evaluations,
respectively.

Table 1: The result of HZPR, MPRP and CG-DESCENT

Problem N CG-DESCENT MPRP HZPR
iter/fn/gn/time iter/fn/gn/time iter/fn/gn/time

ROTH 1000 14/31/22/0.00E+00 12/30/22/1.56E-02 12/29/23/1.56E-02
ROTH 10000 18/39/27/9.38E-02 15/36/27/9.38E-02 11/25/19/4.69E-02
TRIGMETRIC 1000 100/211/117/2.34E-01 73/151/81/1.56E-01 70/146/78/1.56E-01
TRIGMETRIC 10000 94/196/109/2.17E+00 79/164/89/1.81E+00 86/183/104/2.06E+00
ROSENBROCK 1000 36/120/94/1.56E-02 40/104/76/1.56E-02 40/116/90/3.12E-02
ROSENBROCK 10000 34/111/87/1.56E-01 38/98/70/1.56E-01 46/132/102/2.03E-01
WHITEHOLST 1000 39/117/87/1.56E-02 40/109/77/1.56E-02 43/132/101/1.56E-02
WHITEHOLST 10000 39/123/94/1.88E-01 41/110/76/1.88E-01 42/134/105/2.19E-01
BEALEU63 1000 17/36/21/1.56E-02 12/25/14/1.56E-02 17/35/21/1.56E-02
BEALEU63 10000 17/36/21/7.81E-02 12/25/14/4.69E-02 17/35/21/7.81E-02
PENALTY 1000 36/70/42/1.56E-02 36/69/41/1.56E-02 33/66/39/1.56E-02
PENALTY 10000 42/80/48/1.56E-01 38/76/43/1.41E-01 38/76/42/1.41E-01
PQUADRATIC 1000 188/377/189/7.81E-02 188/377/189/6.25E-02 188/377/189/6.25E-02
PQUADRATIC 10000 598/1197/599/2.20E+00 598/1197/599/ 2.28E+00 598/1197/599/2.31E+00
RAYDAN1 1000 252/381/377/2.66E-01 242/365/363/2.34E-01 232/352/346/2.34E-01

Continued on next page



560 A. QU, J. LIU AND M. LI

Table 1 – continued from previous page

Problem N CG-DESCENT MPRP HZPR
iter/fn/gn/time iter/fn/gn/time iter/fn/gn/time

RAYDAN1 10000 829/1101/1388/7.98E+00 839/1101/1418/8.17E+00 808/1061/1365/7.89E+00
RAYDAN2 1000 5/11/7/0.00E+00 6/13/9/0.00E+00 6/12/8/1.56E-02
RAYDAN2 10000 6/13/9/6.25E-02 6/13/9/6.25E-02 6/13/9/7.81E-02
DIAGONAL1 1000 307/430/493/3.59E-01 330/463/529/3.91E-01 296/416/474/3.59E-01
DIAGONAL1 10000 989/1218/1753/1.15E+01 998/1235/1761/1.18E+01 991/1216/1761/1.17E+01
DIAGONAL2 1000 201/382/247/2.50E-01 233/436/307/2.97E-01 207/386/273/2.50E-01
DIAGONAL2 10000 615/1175/809/7.88E+00 641/1161/873/8.17E+00 616/1174/841/8.03E+00
DIAGONAL3 1000 262/374/414/4.22E-01 270/385/427/4.38E-01 261/373/412/4.22E-01
DIAGONAL3 10000 889/1095/1574/1.42E+01 881/1095/1550/1.42E+01 885/1095/1562/1.42E+01
HAGER 1000 50/85/77/7.81E-02 50/85/77/7.81E-02 50/84/78/7.81E-02
HAGER 10000 93/144/151/1.33E+00 92/143/149/1.31E+00 93/143/152/1.33E+00
GTRIDIAG1 1000 26/45/37/0.00E+00 26/44/36/1.56E-02 26/44/36/0.00E+00
GTRIDIAG1 10000 26/43/37/1.25E-01 26/42/38/1.41E-01 26/42/38/1.25E-01
TRIDIAG1 1000 18/37/21/0.00E+00 21/43/29/1.56E-02 22/45/27/1.56E-02
TRIDIAG1 10000 18/37/21/7.81E-02 21/43/29/9.38E-02 24/49/27/9.38E-02
TETERMS 1000 9/19/13/1.56E-02 10/20/14/1.56E-02 10/20/14/1.56E-02
TETERMS 10000 9/19/13/1.88E-01 12/26/18/2.66E-01 9/20/14/2.03E-01
GTRIDIAG2 1000 50/92/60/1.56E-02 47/85/58/3.12E-02 46/84/56/1.56E-02
GTRIDIAG2 10000 52/95/63/2.97E-01 54/99/65/3.12E-01 53/100/61/2.97E-01
DIAGONAL4 1000 4/9/6/0.00E+00 4/9/6/0.00E+00 4/9/6/0.00E+00
DIAGONAL4 10000 4/9/6/0.00E+00 4/9/6/1.56E-02 4/9/6/1.56E-02
DIAGONAL5 1000 3/8/5/1.56E-02 3/8/5/1.56E-02 3/8/5/0.00E+00
DIAGONAL5 10000 3/8/5/1.09E-01 3/8/5/1.09E-01 3/8/5/1.09E-01
HIMMELB 1000 9/22/14/0.00E+00 9/22/14/0.00E+00 9/22/14/0.00E+00
HIMMELB 10000 9/22/14/4.69E-02 9/22/14/4.69E-02 9/22/14/3.12E-02
GPSC1 1000 726/1152/1471/1.06E+00 488/845/854/ 7.34E-01 564/898/1124/8.28E-01
GPSC1 10000 840/1234/1797/1.17E+01 1057/1639/2193/1.53E+01 729/1139/1504/1.06E+01
PSC1 1000 15/29/18/3.12E-02 12/24/15/1.56E-02 13/26/17/3.12E-02
PSC1 10000 12/26/15/1.88E-01 11/23/13/1.56E-01 12/24/15/1.56E-01
POWELL 1000 116/236/135/4.69E-02 216/434/235/6.25E-02 75/153/93/3.12E-02
POWELL 10000 581/1186/659/2.00E+00 178/358/197/6.41E-01 328/660/393/1.19E+00
BD1 1000 25/64/56/3.12E-02 17/47/42/1.56E-02 24/64/53/3.12E-02
BD1 10000 25/64/56/2.97E-01 17/47/42/2.34E-01 24/64/53/2.97E-01
MARATOS 1000 52/159/127/1.56E-02 70/230/186/3.12E-02 70/233/193/3.12E-02
MARATOS 10000 51/168/134/2.34E-01 67/198/158/2.97E-01 74/235/193/3.44E-01
QDP 1000 135/271/162/4.69E-02 137/275/165/6.25E-02 136/273/163/6.25E-02
QDP 10000 442/885/544/1.91E+00 430/861/523/1.89E+00 430/861/525/1.91E+00
WOOD 1000 189/416/240/7.81E-02 269/594/339/1.09E-01 146/344/219/6.25E-02
WOOD 10000 183/421/256/7.50E-01 248/528/308/1.00E+00 142/338/218/6.09E-01
HIEBERT 1000 79/257/197/4.69E-02 76/248/198/3.12E-02 100/368/306/6.25E-02
HIEBERT 10000 71/236/190/3.28E-01 75/251/197/3.59E-01 98/327/264/4.69E-01
QF1 1000 189/379/190/6.25E-02 189/379/190/7.81E-02 189/379/190/6.25E-02
QF1 10000 600/1201/601/1.95E+00 600/1201/601/2.03E+00 600/1201/601/2.03E+00
QP1 1000 15/29/18/0.00E+00 14/29/17/0.00E+00 14/30/17/0.00E+00
QP1 10000 17/35/21/7.81E-02 16/35/20/7.81E-02 17/36/21/7.81E-02
QP2 1000 42/132/100/9.38E-02 55/163/124/1.09E-01 58/188/153/1.25E-01
QP2 10000 39/133/103/9.06E-01 50/152/116/1.05E+00 43/136/105/9.38E-01
QF2 1000 393/687/501/1.25E-01 394/688/503/1.41E-01 390/683/496/1.41E-01
QF2 10000 1253/2167/1601/4.39E+00 1276/2191/1646/4.62E+00 1251/2164/1598/4.55E+00
EP1 1000 3/7/5/0.00E+00 3/7/5/0.00E+00 3/7/5/0.00E+00
EP1 10000 3/7/5/3.12E-02 3/7/5/3.12E-02 3/7/5/1.56E-02
TRIDIAG2 1000 39/63/56/1.56E-02 37/61/52/1.56E-02 38/62/54/1.56E-02
TRIDIAG2 10000 42/68/65/1.72E-01 39/61/62/1.72E-01 37/60/60/1.72E-01
BDQRTIC 1000 1006/1877/1947/6.72E-01 710/1264/1607/5.16E-01 539/1126/724/3.44E-01
TRIDIA 1000 356/713/357/1.41E-01 358/717/359/1.41E-01 358/717/359/1.41E-01
TRIDIA 10000 1175/2351/1176/4.45E+00 1176/2353/1177/4.59E+00 1177/2355/1178/4.61E+00
ARWHEAD 1000 12/28/19/1.56E-02 14/37/27/0.00E+00 9/22/16/1.56E-02
ARWHEAD 10000 10/22/15/4.69E-02 8/19/13/4.69E-02 9/24/18/4.69E-02
NONDIA 1000 13/29/21/1.56E-02 10/22/15/0.00E+00 12/26/17/1.56E-02
NONDIA 10000 11/37/32/6.25E-02 9/29/22/4.69E-02 11/30/23/4.69E-02
NONDQUAR 1000 16252/32520/17640/7.30E+00 12041/24093/12529/5.47E+00 6501/13096/8345/3.17E+00
DQDRTIC 1000 7/15/8/0.00E+00 7/15/8/0.00E+00 7/15/8/0.00E+00
DQDRTIC 10000 10/21/11/4.69E-02 7/15/8/1.56E-02 7/15/8/1.56E-02
EG2 1000 125/285/229/1.72E-01 124/257/238/1.56E-01 35/99/96/6.25E-02
EG2 10000 1979/3584/5207/2.95E+01 567/1172/1672/9.42E+00 141/353/261/1.89E+00
DIXMAANA 1000 9/19/10/1.56E-02 8/17/9/1.56E-02 9/19/10/0.00E+00
DIXMAANA 10000 9/19/10/9.38E-02 7/15/8/7.81E-02 8/17/9/9.38E-02
DIXMAANB 1000 21/55/35/3.12E-02 20/54/34/3.12E-02 22/58/38/1.56E-02
DIXMAANB 10000 22/57/38/2.97E-01 22/58/38/2.97E-01 22/59/39/2.97E-01
DIXMAANC 1000 30/81/54/4.69E-02 26/70/45/3.12E-02 26/70/46/3.12E-02
DIXMAANC 10000 31/83/55/4.06E-01 27/72/48/3.59E-01 24/66/43/3.28E-01
DIXMAANE 1000 176/339/191/1.88E-01 162/319/169/1.72E-01 171/328/187/1.72E-01
DIXMAANE 10000 465/917/486/4.69E+00 451/902/458/4.56E+00 468/925/494/4.80E+00
PPQ 1000 159/319/160/2.58E+00 160/321/161/2.61E+00 159/319/160/2.59E+00
PPQ 10000 28/57/33/5.21E+01 29/59/34/5.37E+01 29/59/34/5.37E+01
BT 1000 47/96/49/1.56E-02 47/95/48/1.56E-02 40/81/41/1.56E-02
BT 10000 37/75/38/1.72E-01 53/110/59/2.66E-01 41/83/42/2.03E-01
APQ 1000 189/379/190/6.25E-02 189/379/190/6.25E-02 189/379/190/6.25E-02
APQ 10000 600/1201/601/1.95E+00 600/1201/601/2.05E+00 600/1201/601/2.05E+00
TPQ 1000 177/355/178/7.81E-02 177/355/178/9.38E-02 177/355/178/7.81E-02
TPQ 10000 562/1125/563/2.48E+00 562/1125/563/2.56E+00 562/1125/563/2.56E+00
EDENSCH 1000 29/49/42/1.56E-02 27/46/39/1.56E-02 27/46/38/1.56E-02
EDENSCH 10000 27/47/42/1.41E-01 26/43/38/1.41E-01 26/44/40/1.41E-01
VARDIM 1000 36/74/38/1.56E-02 36/73/38/1.56E-02 38/78/41/1.56E-02
VARDIM 10000 46/93/47/1.72E-01 46/93/47/1.88E-01 46/93/47/1.88E-01
S1 1000 2000/4001/2002/7.19E-01 2000/4001/2002/7.50E-01 1999/3999/2001/7.50E-01
LIARWHD 1000 20/42/27/0.00E+00 24/52/37/1.56E-02 24/53/36/0.00E+00
LIARWHD 10000 26/62/43/1.25E-01 25/56/36/1.09E-01 25/55/36/1.25E-01
DIAGONAL6 1000 5/11/6/0.00E+00 5/11/6/0.00E+00 5/11/6/0.00E+00
DIAGONAL6 10000 5/11/6/4.69E-02 5/11/6/4.69E-02 5/11/6/6.25E-02
DIXON3DQ 1000 1989/3979/1991/7.03E-01 1993/3987/1995/7.19E-01 1993/3987/1995/7.03E-01
DIXMAANF 1000 227/484/295/2.50E-01 338/680/401/3.59E-01 206/436/260/2.34E-01
DIXMAANF 10000 697/1402/903/7.69E+00 1384/2912/1614/1.51E+01 555/1165/702/6.23E+00
DIXMAANG 1000 234/478/270/2.66E-01 275/567/304/3.28E-01 227/464/255/2.50E-01

Continued on next page
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Table 1 – continued from previous page

Problem N CG-DESCENT MPRP HZPR
iter/fn/gn/time iter/fn/gn/time iter/fn/gn/time

DIXMAANG 10000 568/1129/631/6.17E+00 1186/2396/1247/1.28E+01 691/1371/772/7.61E+00
DIXMAANH 1000 259/562/343/3.12E-01 35/145/124/7.81E-02 240/535/332/2.97E-01
DIXMAANH 10000 61/206/184/1.22E+00 61/195/174/1.16E+00 758/1576/957/8.47E+00
DIXMAANI 1000 157/313/160/1.56E-01 160/317/165/1.56E-01 157/314/159/1.72E-01
DIXMAANI 10000 469/919/497/4.78E+00 444/891/448/4.53E+00 458/912/474/4.70E+00
DIXMAANJ 1000 215/454/277/2.50E-01 259/522/307/2.81E-01 245/509/304/2.66E-01
DIXMAANJ 10000 699/1468/946/7.97E+00 827/1699/934/8.81E+00 650/1354/842/7.34E+00
DIXMAANK 1000 231/486/284/2.81E-01 212/456/264/2.66E-01 233/497/298/2.81E-01
DIXMAANK 10000 653/1329/770/7.59E+00 1593/3180/1735/1.80E+01 612/1258/746/7.31E+00
DIXMAANL 1000 5903/11878/7483/8.34E+00 14912/31009/16324/5.14E+01 5002/10585/5723/6.97E+00
ENGVAL1 1000 29/52/39/1.56E-02 30/53/41/1.56E-02 27/48/36/1.56E-02
ENGVAL1 10000 26/44/38/1.25E-01 28/50/40/1.41E-01 25/45/36/1.25E-01
FLETCHCR 1000 2946/6017/3073/1.33E+00 2926/6022/3100/1.36E+00 2930/6037/3108/1.38E+00
COSINE 1000 13/29/26/3.12E-02 11/26/23/1.56E-02 11/27/22/1.56E-02
COSINE 10000 13/33/30/1.88E-01 12/28/27/1.72E-01 12/28/26/1.56E-01
DENSCHNB 1000 8/17/9/0.00E+00 6/13/7/0.00E+00 8/17/9/1.56E-02
DENSCHNB 10000 8/17/9/3.12E-02 6/13/7/1.56E-02 8/17/9/3.12E-02
DENSCHNF 1000 30/71/56/3.12E-02 21/50/40/1.56E-02 22/53/43/1.56E-02
DENSCHNF 10000 26/63/52/1.56E-01 21/50/40/1.25E-01 22/53/43/1.41E-01
SINQUAD 1000 551/1223/761/7.97E-01 1483/3175/1880 /2.05E+00 290/772/570/5.47E-01
SINQUAD 10000 2203/4763/2770/3.03E+01 3982/8502/4903/5.41E+01 3745/9359/6538/6.44E+01
BIGGSB1 1000 500/1001/501/1.72E-01 500/1001/501/1.72E-01 500/1001/501/1.88E-01
BIGGSB1 10000 5000/10001/5001/1.71E+01 5001/10003/5003/1.77E+01 5000/10001/5001/1.78E+01
PPQ2 1000 0/1/1/1.56E-02 0/1/1/0.00E+00 0/1/1/1.56E-02
PPQ2 10000 0/1/1/1.17E+00 0/1/1/1.16E+00 0/1/1/1.16E+00
SQ2 1000 53/107/54/1.56E-02 53/107/54/3.12E-02 53/107/54/1.56E-02
SQ2 10000 177/355/178/5.78E-01 177/355/178/6.09E-01 177/355/178/5.94E-01
GENROSE 1000 6457/13308/7001/2.80E+00 4238/8498/4296/1.84E+00 6554/13334/6906/2.89E+00
NONDIA 1000 3336/7054/4709/1.42E+00 3041/6327/4693/1.36E+00 109/232/143/4.69E-02
PENALTY1 1000 14/29/15/0.00E+00 14/29/15/0.00E+00 14/29/15/0.00E+00
PENALTY1 10000 16/33/17/7.81E-02 16/33/17/6.25E-02 16/33/17/6.25E-02
POWER 1000 10456/20913/10457/3.62E+00 10454/20909/10455/3.77E+00 10457/20915/10458/3.75E+00
FREUOTH 1000 120/233/157/7.81E-02 69/130/105/4.69E-02 48/100/76/3.12E-02
FREUOTH 10000 114/207/185/8.28E-01 52/104/89/3.91E-01 53/101/94/4.22E-01
SROSENBR 1000 32/96/72/1.56E-02 36/88/62/1.56E-02 42/129/100/1.56E-02
SROSENBR 10000 36/101/77/1.72E-01 38/92/65/1.72E-01 43/138/111/2.34E-01
WOODS 1000 369/784/428/1.56E-01 332/711/394/1.41E-01 309/659/364/1.41E-01
WOODS 10000 211/466/272/9.06E-01 263/564/311/1.14E+00 138/321/200/6.41E-01
DQRTIC 1000 31/63/32/1.56E-02 31/63/32/1.56E-02 31/63/32/1.56E-02
DQRTIC 10000 37/75/38/1.41E-01 36/73/37/1.41E-01 36/73/37/1.41E-01
NONCVXU2 1000 2529/4386/3203/4.14E+00 2449/4237/3114/4.05E+00 2661/4408/3579/4.52E+00
BROYDN7D 1000 1007/2304/1333/8.75E-01 985/2321/ 1366/8.91E-01 544/1290/768/5.00E-01
BROWNAL 1000 6/19/19/0.00E+00 6/17/17/0.00E+00 6/17/17/0.00E+00
BROWNAL 10000 7/22/22/9.38E-02 7/19/19/9.38E-02 7/19/19/9.38E-02
GENHUMPS 1000 778/1658/892/2.11E+00 654/1407/764/ 1.94E+00 655/1438/805/1.89E+00
BDEXP 1000 14/29/15/4.69E-02 14/29/15/4.69E-02 14/29/15/4.69E-02
BDEXP 10000 14/29/15/3.59E-01 14/29/15/3.91E-01 14/29/15/3.75E-01
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Fig: Performance profiles based on CPU times
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Figure 1: Performance profiles based on CPU time

From the results of our numerical experiments, we can see that the HZPR method
performs better than the CG-DESCENT method and the MPRP method, which implies
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Figure 2: Performance profiles based on iterations
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Figure 3: Performance profiles for the number of function evaluations



A MODIFIED CG-PR CONJUGATE GRADIENT ALGORITHM 563

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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CG−DESCENT
MPRP
HZPRHZPR

MPRP

CG−DESCENT

Figure 4: Performance profiles for the number of gradient evaluations

that the HZPR method is efficient in real computation.
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