A MODIFIED CG-DESCENT AND DPR ALGORITHM FOR UNCONSTRAINED OPTIMIZATION

Aiping Qu, Juan Liu* and Min Li

Abstract

In this paper, a modified CG-DESCENT and DPR conjugate gradient algorithm is presented, which produces sufficient descent search direction at every iteration. This property depends neither on the line search used, nor on the convexity of the objective function. Moreover, we establish the global convergence for general nonlinear functions under suitable conditions. Numerical results show that the proposed method is more efficient than the previous ones.

Key words: Unconstrained optimization, conjugate gradient method, sufficient descent property, global convergence

Mathematics Subject Classification: 90C30, 65K05, 49M37

1 Introduction

Conjugate gradient methods comprise a class of unconstrained optimization algorithms which are characterized by low memory requirements and strong local and global convergence properties. For a general unconstrained optimization problem

$$
\begin{equation*}
\min f(x), \quad x \in R^{n} \tag{1.1}
\end{equation*}
$$

where $f: R^{n} \rightarrow R$ is a continuously differentiable function. The iterative formula of the conjugate gradient method is given by

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k}, \quad k=0,1, \cdots \tag{1.2}
\end{equation*}
$$

where the step-length α_{k} is obtained by carrying out some line search, and the direction d_{k} is defined by

$$
d_{k}= \begin{cases}-g_{0}, & \text { if } k=0 \tag{1.3}\\ -g_{k}+\beta_{k} d_{k-1}, & \text { if } k>0\end{cases}
$$

where β_{k} is a parameter. Some well-known formulas for β_{k} are the Fletcher-Reeves(FR) [2], Polak-Ribiere(PRP) [14], Liu-Storey(LS) [13], Dai-Yuan(DY) [4], the Conjugate Descent(CD) [8] and Hestenes-Stiefel(HS) [11] formulas, which are respectively given by

$$
\beta_{k}^{D Y}=\frac{\left\|g_{k}\right\|^{2}}{d_{k-1}^{T} y_{k-1}}, \quad \beta_{k}^{F R}=\frac{\left\|g_{k}\right\|^{2}}{\left\|g_{k-1}\right\|^{2}}, \quad \beta_{k}^{C D}=\frac{\left\|g_{k}\right\|^{2}}{-d_{k-1}^{T} g_{k-1}},
$$

[^0]$$
\beta_{k}^{H S}=\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}, \quad \beta_{k}^{P R}=\frac{g_{k}^{T} y_{k-1}}{\left\|g_{k-1}\right\|^{2}}, \quad \beta_{k}^{L S}=\frac{g_{k}^{T} y_{k-1}}{-d_{k-1}^{T} g_{k-1}},
$$
where $y_{k-1}=g_{k}-g_{k-1}$ and $\|\cdot\|$ stands for the Euclidean norm of vectors.
An important class of conjugate gradient algorithms is the hybrid conjugate gradient methods. Hu \& Storey [12] and Dai \& Yuan [5] proposed some hybrid methods which we call the H1 method and the H2 method, respectively, that is,
\[

$$
\begin{gather*}
\beta_{k}^{H 1}=\max \left\{0, \min \left\{\beta_{k}^{F R}, \beta_{k}^{P R P}\right\}\right\}, \tag{1.4}\\
\beta_{k}^{H 2}=\max \left\{0, \min \left\{\beta_{k}^{D Y}, \beta_{k}^{H S}\right\}\right\} . \tag{1.5}
\end{gather*}
$$
\]

Gilbert and Nocedal [9] extended H1 to the case that

$$
\begin{equation*}
\beta_{k}^{H 1}=\max \left\{-\beta_{k}^{F R}, \min \left\{\beta_{k}^{F R}, \beta_{k}^{P R P}\right\}\right\} . \tag{1.6}
\end{equation*}
$$

Numerical performances show that the H1 and the H2 methods are better than the PRP method [5,12].

Recently, there has been growing interest in the descent conjugate gradient methods. Hager and Zhang [10] proposed a new conjugate gradient method which was obtained by modifying the HS method and called CG-DESCENT method. The parameter β_{k} in the CG-DESCENT method is given by

$$
\begin{array}{r}
\beta_{k}^{N}=\frac{g_{k}^{T} y_{k-1}}{d_{k-1}^{T} y_{k-1}}-2 \frac{\left\|y_{k-1}\right\|^{2} g_{k}^{T} d_{k-1}}{\left(d_{k-1}^{T} y_{k-1}\right)^{2}}, \\
\beta_{k}^{N+}=\max \left\{\beta_{k}^{N}, \eta_{k}\right\}, \eta_{k}=\frac{-1}{\left\|d_{k}\right\| \min \left\{\left\|g_{k}\right\|, \eta\right\}} \tag{1.8}
\end{array}
$$

where $\eta>0$ is a constant. Later, Yu and Guan [15] motivated by their work proposed a PRP conjugate gradient method as following

$$
\begin{equation*}
\beta_{k}^{D P R}=\frac{g_{k}^{T} y_{k-1}}{\left\|g_{k-1}\right\|^{2}}-C \frac{\left\|y_{k-1}\right\|^{2} g_{k}^{T} d_{k-1}}{\left\|g_{k-1}\right\|^{4}} \tag{1.9}
\end{equation*}
$$

where parameter C essentially controls the relative weight between conjugant and descent. Zhang and Zhou [16] proposed two hybrid methods called NH1 and NH2 method as follows

$$
\begin{align*}
& N H 1: d_{k}=-\left(1+\beta_{k}^{\mathrm{H} 1} \frac{d_{k-1}^{T} g_{k}}{\left\|g_{k}\right\|^{2}}\right) g_{k}+\beta_{k}^{\mathrm{H} 1} d_{k-1} \tag{1.10}\\
& N H 2: d_{k}=-\left(1+\beta_{k}^{\mathrm{H} 2} \frac{d_{k-1}^{T} g_{k}}{\left\|g_{k}\right\|^{2}}\right) g_{k}+\beta_{k}^{\mathrm{H} 2} d_{k-1} \tag{1.11}
\end{align*}
$$

Obviously, these two new hybrid methods satisfy

$$
\begin{equation*}
g_{k}^{T} d_{k}=-\left\|g_{k}\right\|^{2} \tag{1.12}
\end{equation*}
$$

which shows that they are descent and independent of any line search used. The global convergence of these two methods [16] are presented and numerical results also showed their efficiency in real computations.

In this paper, in order to obtain an efficiency method in real computations, based on the idea of the methods all above, we proposed a new method, which is a projection of the

CG-DESCENT and DPR conjugate algorithms. The search direction d_{k} has the following form

$$
d_{k}= \begin{cases}-g_{0}, & \text { if } \quad k=0 \tag{1.13}\\ -\left(1+\beta_{k}^{H Z P R} \frac{d_{k-1}^{T} g_{k}}{\left\|g_{k}\right\|^{2}}\right) g_{k}+\beta_{k}^{H Z P R} d_{k-1}, & \text { if } \quad k \geq 1\end{cases}
$$

where

$$
\begin{equation*}
\beta_{k}^{H Z P R}=\max \left\{0, \min \left\{\beta_{k}^{N}, \beta_{k}^{D P R}\right\}\right\} . \tag{1.14}
\end{equation*}
$$

From the method above, we can easily obtain (1.12). For convenience, we call the method above as the HZPR method.

The rest of this paper are organized as follows. In the next section, we prove the global convergence of the method (1.13) for general nonlinear functions with strong Wolfe line search. In section 3, we report some numerical results to test the proposed method.

2 Algorithm and Convergence Analysis

First, we make the following standard assumptions for the objective function, which have been used often in the literature to analyze the global convergence of conjugate methods with inexact line search.

Assumption (A)

(H1) The level set $\Omega=\left\{x \in R^{n} \mid f(x) \leq f\left(x_{0}\right)\right\}$ is bounded.
(H2) In some neighborhood N of Ω, f is continuously differentiable and its gradient is Lipschitz continuous, namely, there exists a constant $L>0$ such that

$$
\|g(x)-g(y)\| \leq L\|x-y\|, \quad \forall x, y \in N
$$

Assumption (A) implies that there exists a positive constant $\widehat{\gamma}$ and B such that

$$
\begin{equation*}
\|g(x)\| \leq \widehat{\gamma}, \quad \forall x \in \Omega \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x-y\| \leq B, \quad \forall x, y \in \Omega \tag{2.2}
\end{equation*}
$$

Now we introduce the steps of the HZPR algorithm as following.

Algorithm 2.1 (HZPR Method).

Step 0: Choose an initial point $x_{0} \in R^{n}$. Let $k=0$.
Step 1: Compute d_{k} by Eq. (1.13), where $\beta_{k}^{H Z P R}$ is computed by (1.14).
Step 2: Determine α_{k} by the strong Wolfe line search

$$
\begin{array}{r}
f\left(x_{k}+\alpha_{k} d_{k}\right)-f\left(x_{k}\right) \leq \delta \alpha_{k} g_{k}^{T} d_{k}, \\
\left|g\left(x_{k}+\alpha_{k} d_{k}\right)^{T} d_{k}\right| \leq \sigma\left|g_{k}^{T} d_{k}\right| \tag{2.4}
\end{array}
$$

where $0<\delta<\sigma<1$.
Step 3: Let $x_{k+1}=x_{k}+\alpha_{k} d_{k}$.

Step 4: Let $k:=k+1$ and go to step 1.

The following well-known lemma, called the zoutendijk condition, which was originally given in [18].

Lemma 2.2. Suppose Assumption (A) holds. Consider any method in the form (1.2), where d_{k} is a descent direction and α_{k} satisfies the strong Wolfe condition (2.3) and (2.4). Then we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(d_{k}^{T} g_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}<\infty \tag{2.5}
\end{equation*}
$$

We now establish the global convergence theorem for the HZPR algorithm in a similar way to Theorem 3.1 in [6]. First, we give a useful lemma about $\beta_{k}^{H Z P R}$ in (1.14) which plays an important role in the global convergence analysis.

Lemma 2.3. Suppose Assumption (A) holds. $\left\{x_{k}\right\}$ is generated by algorithm 2.1. If there exist a constant $\epsilon>0$ such that $\left\|g_{k}\right\|>\epsilon$ for all $k>0$, then there exist a positive constant D such that

$$
\begin{equation*}
\left|\beta_{k}^{H Z P R}\right| \leq D\left\|s_{k-1}\right\|, \tag{2.6}
\end{equation*}
$$

where $s_{k-1}=x_{k}-x_{k-1}$.
Proof. From (2.4) and (1.12), we have

$$
\begin{aligned}
\left|d_{k-1}^{T} y_{k-1}\right| & =\left|d_{k-1}^{T} g_{k}-d_{k-1}^{T} g_{k-1}\right| \geq\left|d_{k-1}^{T} g_{k-1}\right|-\left|d_{k-1}^{T} g_{k}\right| \\
& \geq\left|d_{k-1}^{T} g_{k-1}\right|-\sigma\left|g_{k-1}^{T} d_{k-1}\right|=(1-\sigma)\left\|g_{k-1}\right\|^{2} .
\end{aligned}
$$

The above inequality together with (1.12) and (2.4), we have

$$
\begin{aligned}
\left|\beta_{k}^{H Z P R}\right|= & \mid \max \left\{0, \min \left\{\beta_{k}^{D P R}, \beta_{k}^{N}\right\} \mid\right. \\
\leq & \max \left\{\frac{\left\|g_{k}\right\|\left\|y_{k-1}\right\|}{\left\|g_{k-1}\right\|^{2}}+\frac{C\left\|y_{k-1}\right\|^{2} \sigma\left|g_{k-1}^{T} d_{k-1}\right|}{\left\|g_{k-1}\right\|^{4}},\right. \\
& \left.\frac{\left\|g_{k}\right\|\left\|y_{k-1}\right\|}{\left|d_{k-1}^{T} y_{k-1}\right|}+\frac{2\left\|y_{k-1}\right\|^{2} \sigma\left|g_{k-1}^{T} d_{k-1}\right|}{\left(d_{k-1}^{T} y_{k-1}\right)^{2}}\right\} \\
\leq & \max \left\{\frac{\left\|g_{k}\right\|\left\|y_{k-1}\right\|}{\left\|g_{k-1}\right\|^{2}}+\frac{C\left\|y_{k-1}\right\|^{2} \sigma\left\|g_{k-1}\right\|^{2}}{\left\|g_{k-1}\right\|^{4}}\right. \\
& \left.\frac{\left\|g_{k}\right\|\left\|y_{k-1}\right\|}{(1-\sigma)\left\|g_{k-1}\right\|^{2}}+\frac{2\left\|y_{k-1}\right\|^{2} \sigma\left\|g_{k-1}\right\|^{2}}{(1-\sigma)\left\|g_{k-1}\right\|^{4}}\right\} \\
\leq & \max \left\{\frac{L \widehat{\gamma}+C \sigma L^{2} B}{\epsilon^{2}}, \frac{L \widehat{\gamma}+2 \sigma L^{2} B}{(1-\sigma) \epsilon^{2}}\right\}\left\|s_{k-1}\right\| .
\end{aligned}
$$

Defining

$$
D=\max \left\{\frac{L \widehat{\gamma}+C \sigma L^{2} B}{\epsilon^{2}}, \frac{L \widehat{\gamma}+2 \sigma L^{2} B}{(1-\sigma) \epsilon^{2}}\right\},
$$

then we have the result (2.6). The proof is complete.
The next lemma corresponds to Lemma 3.4 in [3] and Lemma 2.3 in [6].

Lemma 2.4. Suppose Assumption (A) holds. $\left\{x_{k}\right\}$ is generated by algorithm 2.1. If there exist a constant $\epsilon>0$ such that $\left\|g_{k}\right\|>\epsilon$ for all $k>0$, then we have

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\|u_{k}-u_{k-1}\right\|^{2}<\infty \tag{2.7}
\end{equation*}
$$

where $u_{k}=\frac{d_{k}}{\left\|d_{k}\right\|}$.
Proof. Since $d_{k} \neq 0$ follows from (1.12) and $\left\|g_{k}\right\|>\epsilon$, so u_{k} is well-defined. We rewrite (1.13) as following

$$
\begin{equation*}
d_{k}=-\left(1+\beta_{k}^{H Z P R} \frac{d_{k-1}^{T} g_{k}}{\left\|g_{k}\right\|^{2}}\right) g_{k}+\beta_{k}^{H Z P R} d_{k-1}=v_{k}+\beta_{k}^{H Z P R} d_{k-1} \tag{2.8}
\end{equation*}
$$

By defining

$$
r_{k}=\frac{v_{k}}{\left\|d_{k}\right\|}, \quad \delta_{k}=\frac{\beta_{k}^{H Z P R}\left\|d_{k-1}\right\|}{\left\|d_{k}\right\|} .
$$

So, we have

$$
\begin{equation*}
u_{k}=r_{k}+\delta_{k} u_{k-1} \tag{2.9}
\end{equation*}
$$

Then we have from the fact that $\left\|u_{k}\right\|=\left\|u_{k-1}\right\|=1$

$$
\begin{equation*}
\left\|r_{k}\right\|=\left\|u_{k}-\delta_{k} u_{k-1}\right\|=\left\|u_{k-1}-\delta_{k} u_{k}\right\| . \tag{2.10}
\end{equation*}
$$

Using the condition $\delta_{k} \geq 0$, the triangle inequality and (2.10), we have

$$
\begin{equation*}
\left\|u_{k}-u_{k-1}\right\| \leq\left\|\left(1+\delta_{k}\right)\left(u_{k}-u_{k-1}\right)\right\| \leq\left\|u_{k}-\delta_{k} u_{k-1}\right\|+\left\|u_{k-1}-\delta_{k} u_{k}\right\| \leq 2\left\|r_{k}\right\| . \tag{2.11}
\end{equation*}
$$

From (2.1), (2.4) and (2.6), we have

$$
\begin{equation*}
\left|\beta_{k}^{H Z P R}\right| \frac{\left|g_{k}^{T} d_{k-1}\right|}{\left\|g_{k}\right\|^{2}} \leq D\left\|s_{k-1}\right\| \frac{\sigma\left|g_{k-1}^{T} d_{k-1}\right|}{\left\|g_{k}\right\|^{2}} \leq D \frac{\sigma \widehat{\gamma}^{2}}{\epsilon^{2}}\left\|s_{k-1}\right\| \doteq M\left\|s_{k-1}\right\| \tag{2.12}
\end{equation*}
$$

From (2.2), (2.12) and (2.8), there exist a constant $M_{1} \geq 0$ such that

$$
\begin{equation*}
\left\|v_{k}\right\| \leq\left\|g_{k}\right\|+M\left\|s_{k-1}\right\|\left\|g_{k}\right\| \leq M_{1} \tag{2.13}
\end{equation*}
$$

From the definition of $r_{k},(2.6)$ and (2.13), we have

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left\|r_{k}\right\|^{2}=\sum_{k=0}^{\infty} \frac{\left\|v_{k}\right\|^{2}}{\left\|d_{k}\right\|^{2}} \leq \sum_{k=0}^{\infty} \frac{M_{1}^{2}}{\left\|d_{k}\right\|^{2}}=\sum_{k=0}^{\infty} \frac{M_{1}^{2}}{\left\|g_{k}\right\|^{4}} \frac{\left\|g_{k}\right\|^{4}}{\left\|d_{k}\right\|^{2}} \leq \frac{M_{1}^{2}}{\epsilon^{2}} \sum_{k=0}^{\infty} \frac{\left\|g_{k}\right\|^{4}}{\left\|d_{k}\right\|^{2}}<\infty \tag{2.14}
\end{equation*}
$$

Together with (2.11), we have (2.7).
The next theorem establishes the global convergence of the HZPR method. The proof of it is similar to Theorem 4.3 in [9] and Theorem 3.1 in [6] .

Theorem 2.5. Suppose Assumption (A) holds. $\left\{x_{k}\right\}$ is generated by algorithm 2.1. Then we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{2.15}
\end{equation*}
$$

Proof. Assume that the conclusion (2.15) is not true, then there exist a constant $\varepsilon>0$ such that for all $k,\left\|g_{k}\right\|>\varepsilon$. From the definition of u_{k}, we observe that for any $l \geq k$,

$$
\begin{equation*}
x_{l}-x_{k}=\sum_{j=k}^{l-1}\left(x_{j+1}-x_{j}\right)=\sum_{j=k}^{l-1}\left\|s_{j}\right\| u_{k}+\sum_{j=k}^{l-1}\left\|s_{j}\right\|\left(u_{j}-u_{k}\right) . \tag{2.16}
\end{equation*}
$$

By the triangle inequality, from the fact $\left\|u_{k}\right\|=1$, so we have

$$
\begin{equation*}
\sum_{j=k}^{l-1}\left\|s_{j}\right\| \leq\left\|x_{l}-x_{k}\right\|+\sum_{j=k}^{l-1}\left\|s_{j}\right\|\left\|u_{j}-u_{k}\right\| \leq B+\sum_{j=k}^{l-1}\left\|s_{j}\right\|\left\|u_{j}-u_{k}\right\| . \tag{2.17}
\end{equation*}
$$

Let Δ be a positive integer, chosen large enough that

$$
\begin{equation*}
\Delta \geq 4 B D \tag{2.18}
\end{equation*}
$$

where B and D appear in (2.2) and (2.6). By lemma 2.4, we can find a large enough k_{0} that

$$
\begin{equation*}
\sum_{i \geq k_{0}}\left\|u_{k}-u_{k-1}\right\|^{2} \leq \frac{1}{4 \Delta} \tag{2.19}
\end{equation*}
$$

If $j>k>k_{0}$ and $j-k \leq \Delta$, then by (2.19) and Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
\left\|u_{j}-u_{k}\right\| & \leq \sum_{i=k}^{j-1}\left\|u_{i+1}-u_{i}\right\|^{2} \\
& \leq \sqrt{j-k}\left(\sum_{i=k}^{j-1}\left\|u_{i+1}-u_{i}\right\|^{2}\right)^{1 / 2} \\
& \leq \sqrt{\Delta}\left(\frac{1}{4 \Delta}\right)^{1 / 2}=\frac{1}{2}
\end{aligned}
$$

Combining this with (2.2) and (2.17) yields

$$
\begin{equation*}
\sum_{j=k}^{l-1}\left\|s_{j}\right\| \leq 2 B \tag{2.20}
\end{equation*}
$$

From (2.6), (2.8) and (2.13) we have

$$
\begin{equation*}
\left\|d_{l}\right\|^{2} \leq\left(\left\|v_{k}\right\|+\left|\beta_{l}^{H Z P R}\right|\left\|d_{l-1}\right\|\right)^{2} \leq 2 M_{1}^{2}+2 D^{2}\left\|s_{l-1}\right\|^{2}\left\|d_{l-1}\right\|^{2} . \tag{2.21}
\end{equation*}
$$

Defining $S_{i}=2 D^{2}\left\|s_{i}\right\|^{2}$, by induction, we obtain

$$
\begin{aligned}
\left\|d_{l}\right\|^{2} \leq & 2 M_{1}^{2}+S_{l-1}\left\|d_{l-1}\right\|^{2} \\
\leq & 2 M_{1}^{2}\left(1+S_{l-1}+S_{l-1} S_{l-2}+\cdots+S_{l-1} S_{l-2} \cdots S_{k_{0}+1}\right) \\
& +\left\|d_{k_{0}}\right\|^{2} S_{l-1} S_{l-2} \cdots S_{k_{0}}
\end{aligned}
$$

Then we have

$$
\left\|d_{l}\right\|^{2} \leq \begin{cases}2 M_{1}^{2}+S_{k_{0}}\left\|d_{k_{0}}\right\|^{2}, & \text { if } l=k_{0}+1 \tag{2.22}\\ 2 M_{1}^{2}\left(1+\sum_{i=k_{0}+1}^{l-1} \prod_{j=i}^{l-1} S_{j}\right)+\left\|d_{k_{0}}\right\|^{2} \prod_{j=k_{0}}^{l-1} S_{j}, & \text { if } l>k_{0}+1\end{cases}
$$

Let us consider as follows a product of Δ consecutive S_{j}, where $k \geq k_{0}$,

$$
\begin{aligned}
\prod_{j=k}^{k+\Delta-1} S_{j} & =\prod_{j=k}^{k+\Delta-1} 2 D^{2}\left\|s_{j}\right\|^{2}=\left(\prod_{j=k}^{k+\Delta-1} \sqrt{2} D\left\|s_{j}\right\|\right)^{2} \\
& \leq\left(\frac{\sum_{j=k}^{k+\Delta-1} \sqrt{2} D\left\|s_{j}\right\|}{\Delta}\right)^{2 \Delta} \leq\left(\frac{2 \sqrt{2} B D}{\Delta}\right)^{2 \Delta} \leq \frac{1}{2^{\Delta}}
\end{aligned}
$$

The product of Δ consecutive S_{j} is bounded by $\frac{1}{2 \Delta}$, it follows that the sum in (2.22) is bounded, and the bound is independent of l. This bound for $\left\|d_{l}\right\|$, independent of $l>k_{0}$, contradicts (2.5), hence we have (2.15). The proof is complete.

3 Numerical Experiments

In this section, we do some numerical experiments to test the performance of the HZPR method and compare it with some existing methods for solving large scale unconstrained optimization problems. All codes are written in Fortran and ran on IBM T60 PC with two 1.83 GHz CPU and 2.5 GB RAM.

The test problems are the unconstrained problems from Neculai Andrei [1]. For each problem, the dimension n is set to 1000 and 10000 . The parameters in the strong wolfe conditions are as follows: $\sigma=0.9$ and $\delta=0.1$, and $C=1$ in (1.14). We stop the iteration if the inequality $\left\|g_{k}\right\| \leq 10^{-6}$ is satisfied.

We compare the performances of the HZPR method with that of the CG-DESCENT method [10] and the MPRP method [17]. The CG-DESCENT codes can be obtained from Hager's page at http://www.math.ufl.edu/hager/papers/CG.

Table 1 lists the results of the HZPR method, the CG-DESCENT method and the MPRP method which gives the total number of iterations(iter), the total number of function evaluations(fn), the total number of gradient evaluations(gn) and the cpu time(time) in seconds.

We adopt the performance profiles by Dolan and More [7] to compare the performance among the tested methods. That is, for each method, we plot the fraction P of problems for which the method is within a factor τ of the best time. The left side of the figure gives the percentage of the test problems for which a method is the fastest; the right side gives the percentage of the test problems that are successfully solved by each of the methods. The top curve is the method that solved the most problems in a time that are within a factor τ of the best time. Figure 1-4 are the performance profile measured by CPU time, the number of iterations, the number of function evaluations and the number of gradient evaluations, respectively.

Table 1: The result of HZPR, MPRP and CG-DESCENT

Problem	\mathbf{N}	CG-DESCENT iter/fn/gn/time	MPRP iter/fn/gn/time	HZPR iter/fn/gn/time
ROTH	1000	$14 / 31 / 22 / 0.00 \mathrm{E}+00$	$12 / 30 / 22 / 1.56 \mathrm{E}-02$	$12 / 29 / 23 / 1.56 \mathrm{E}-02$
ROTH	10000	$18 / 39 / 27 / 9.38 \mathrm{E}-02$	$15 / 36 / 27 / 9.38 \mathrm{E}-02$	$11 / 25 / 19 / 4.69 \mathrm{E}-02$
TRIGMETRIC	1000	$100 / 211 / 117 / 2.34 \mathrm{E}-01$	$73 / 151 / 81 / 1.56 \mathrm{E}-01$	$70 / 146 / 78 / 1.56 \mathrm{E}-01$
TRIGMETRIC	10000	$94 / 196 / 109 / 2.17 \mathrm{E}+00$	$79 / 164 / 89 / 1.81 \mathrm{E}+00$	$86 / 183 / 104 / 2.06 \mathrm{E}+00$
ROSENBROCK	1000	$36 / 120 / 94 / 1.56 \mathrm{E}-02$	$40 / 104 / 76 / 1.56 \mathrm{E}-02$	$40 / 116 / 90 / 3.12 \mathrm{E}-02$
ROSENBROCK	10000	$34 / 111 / 87 / 1.56 \mathrm{E}-01$	$38 / 98 / 70 / 1.56 \mathrm{E}-01$	$46 / 132 / 102 / 2.03 \mathrm{E}-01$
WHITEHOLST	1000	$39 / 117 / 87 / 1.56 \mathrm{E}-02$	$40 / 109 / 77 / 1.56 \mathrm{E}-02$	$43 / 132 / 101 / 1.56 \mathrm{E}-02$
WHITEHOLST	10000	$39 / 123 / 94 / 1.88 \mathrm{E}-01$	$41 / 110 / 76 / 1.88 \mathrm{E}-01$	$42 / 134 / 105 / 2.19 \mathrm{E}-01$
BEALEU63	1000	$17 / 36 / 21 / 1.56 \mathrm{E}-02$	$12 / 25 / 141.56 \mathrm{E}-02$	$17 / 35 / 21 / 1.56 \mathrm{E}-02$
BEALEU63	10000	$17 / 36 / 21 / 7.81 \mathrm{E}-02$	$12 / 25 / 14 / 4.69 \mathrm{E}-02$	$17 / 35 / 21 / 7.81 \mathrm{E}-02$
PENALTY	1000	$36 / 70 / 42 / 1.56 \mathrm{E}-02$	$36 / 69 / 41 / 1.56 \mathrm{E}-02$	$33 / 66 / 39 / 1.56 \mathrm{E}-02$
PENALTY	10000	$42 / 80 / 48 / 1.56 \mathrm{E}-01$	$38 / 76 / 43 / 1.41 \mathrm{E}-01$	$38 / 76 / 42 / 1.41 \mathrm{E}-01$
PQUADRATIC	1000	$188 / 377 / 189 / 7.81 \mathrm{E}-02$	$188 / 377 / 89 / 6.25 \mathrm{E}-02$	$188 / 377 / 189 / 625 \mathrm{E}-02$
PQUADRATIC	10000	$598 / 1197 / 599 / 2.20 \mathrm{E}+00$	$598 / 1197 / 599 / 2.28 \mathrm{E}+00$	$598 / 1197 / 599 / 2.31 \mathrm{E}+00$
RAYDAN1	1000	$252 / 381 / 377 / 2.66 \mathrm{E}-01$	$242 / 365 / 363 / 2.34 \mathrm{E}-01$	$232 / 352 / 346 / 2.34 \mathrm{E}-01$
			Continued on next page	

Problem N CG-DESCENT MPRP ${ }^{\text {a }}$ MZPR				
		iter/fn/gn/time	iter/fn/gn/time	iter/fn/gn/time
RAYDAN1	10000	829/1101/1388/7.98E+00	839/1101/1418/8.17E+00	808/1061/1365/7.89E+00
RAYDAN2	1000	$5 / 11 / 7 / 0.00 \mathrm{E}+00$	6/13/9/0.00E+00	6/12/8/1.56E-02
RAYDAN2	10000	6/13/9/6.25E-02	6/13/9/6.25E-02	6/13/9/7.81E-02
DIAGONAL1	1000	307/430/493/3.59E-01	$330 / 463 / 529 / 3.91 \mathrm{E}-01$	296/416/474/3.59E-01
DIAGONAL1	10000	989/1218/1753/1.15E+01	998/1235/1761/1.18E+01	991/1216/1761/1.17E+01
DIAGONAL2	1000	201/382/247/2.50E-01	233/436/307/2.97E-01	207/386/273/2.50E-01
DIAGONAL2	10000	615/1175/809/7.88E+00	641/1161/873/8.17E+00	616/1174/841/8.03E+00
DIAGONAL3	1000	262/374/414/4.22E-01	270/385/427/4.38E-01	261/373/412/4.22E-01
DIAGONAL3	10000	889/1095/1574/1.42E+01	881/1095/1550/1.42E+01	$885 / 1095 / 1562 / 1.42 \mathrm{E}+01$
HAGER	1000	50/85/77/7.81E-02	50/85/77/7.81E-02	50/84/78/7.81E-02
HAGER	10000	93/144/151/1.33E+00	92/143/149/1.31E+00	93/143/152/1.33E+00
GTRIDIAG1	1000	26/45/37/0.00E+00	26/44/36/1.56E-02	$26 / 44 / 36 / 0.00 \mathrm{E}+00$
GTRIDIAG1	10000	26/43/37/1.25E-01	$26 / 42 / 38 / 1.41 \mathrm{E}-01$	$26 / 42 / 38 / 1.25 \mathrm{E}-01$
TRIDIAG1	1000	18/37/21/0.00E+00	21/43/29/1.56E-02	22/45/27/1.56E-02
TRIDIAG1	10000	18/37/21/7.81E-02	21/43/29/9.38E-02	24/49/27/9.38E-02
TETERMS	1000	9/19/13/1.56E-02	10/20/14/1.56E-02	10/20/14/1.56E-02
TETERMS	10000	9/19/13/1.88E-01	12/26/18/2.66E-01	9/20/14/2.03E-01
GTRIDIAG2	1000	50/92/60/1.56E-02	47/85/58/3.12E-02	46/84/56/1.56E-02
GTRIDIAG2	10000	52/95/63/2.97E-01	54/99/65/3.12E-01	$53 / 100 / 61 / 2.97 \mathrm{E}-01$
DIAGONAL4	1000	4/9/6/0.00E+00	4/9/6/0.00E+00	4/9/6/0.00E+00
DIAGONAL4	10000	4/9/6/0.00E+00	4/9/6/1.56E-02	4/9/6/1.56E-02
DIAGONAL5	1000	3/8/5/1.56E-02	3/8/5/1.56E-02	$3 / 8 / 5 / 0.00 \mathrm{E}+00$
DIAGONAL5	10000	3/8/5/1.09E-01	$3 / 8 / 5 / 1.09 \mathrm{E}-01$	$3 / 8 / 5 / 1.09 \mathrm{E}-01$
Himmelb	1000	9/22/14/0.00E+00	$9 / 22 / 14 / 0.00 \mathrm{E}+00$	$9 / 22 / 14 / 0.00 \mathrm{E}+00$
Himmelb	10000	9/22/14/4.69E-02	9/22/14/4.69E-02	9/22/14/3.12E-02
GPSC1	1000	726/1152/1471/1.06E+00	488/845/854/7.34E-01	564/898/1124/8.28E-01
GPSC1	10000	840/1234/1797/1.17E+01	1057/1639/2193/1.53E+01	729/1139/1504/1.06E+01
PSC1	1000	15/29/18/3.12E-02	12/24/15/1.56E-02	13/26/17/3.12E-02
PSC1	10000	12/26/15/1.88E-01	11/23/13/1.56E-01	12/24/15/1.56E-01
POWELL	1000	116/236/135/4.69E-02	216/434/235/6.25E-02	75/153/93/3.12E-02
POWELL	10000	581/1186/659/2.00E+00	178/358/197/6.41E-01	328/660/393/1.19E+00
BD1	1000	25/64/56/3.12E-02	17/47/42/1.56E-02	24/64/53/3.12E-02
BD1	10000	25/64/56/2.97E-01	17/47/42/2.34E-01	$24 / 64 / 53 / 2.97 \mathrm{E}-01$
MARATOS	1000	52/159/127/1.56E-02	70/230/186/3.12E-02	70/233/193/3.12E-02
MARATOS	10000	51/168/134/2.34E-01	67/198/158/2.97E-01	74/235/193/3.44E-01
QDP	1000	135/271/162/4.69E-02	137/275/165/6.25E-02	136/273/163/6.25E-02
QDP	10000	442/885/544/1.91E+00	430/861/523/1.89E+00	$430 / 861 / 525 / 1.91 \mathrm{E}+00$
WOOD	1000	189/416/240/7.81E-02	269/594/339/1.09E-01	146/344/219/6.25E-02
WOOD	10000	183/421/256/7.50E-01	248/528/308/1.00E+00	142/338/218/6.09E-01
HIEBERT	1000	79/257/197/4.69E-02	76/248/198/3.12E-02	100/368/306/6.25E-02
HIEBERT	10000	71/236/190/3.28E-01	75/251/197/3.59E-01	98/327/264/4.69E-01
QF1	1000	189/379/190/6.25E-02	189/379/190/7.81E-02	189/379/190/6.25E-02
QF1	10000	600/1201/601/1.95E+00	600/1201/601/2.03E+00	600/1201/601/2.03E+00
QP1	1000	15/29/18/0.00E+00	14/29/17/0.00E+00	14/30/17/0.00E+00
QP1	10000	17/35/21/7.81E-02	16/35/20/7.81E-02	17/36/21/7.81E-02
QP2	1000	42/132/100/9.38E-02	$55 / 163 / 124 / 1.09 \mathrm{E}-01$	58/188/153/1.25E-01
QP2	10000	39/133/103/9.06E-01	$50 / 152 / 116 / 1.05 \mathrm{E}+00$	43/136/105/9.38E-01
QF2	1000	393/687/501/1.25E-01	394/688/503/1.41E-01	$390 / 683 / 496 / 1.41 \mathrm{E}-01$
QF2	10000	1253/2167/1601/4.39E+00	1276/2191/1646/4.62E+00	1251/2164/1598/4.55E+00
EP1	1000	$3 / 7 / 5 / 0.00 \mathrm{E}+00$	$3 / 7 / 5 / 0.00 \mathrm{E}+00$	$3 / 7 / 5 / 0.00 \mathrm{E}+00$
EP1	10000	3/7/5/3.12E-02	$3 / 7 / 5 / 3.12 \mathrm{E}-02$	$3 / 7 / 5 / 1.56 \mathrm{E}-02$
TRIDIAG2	1000	39/63/56/1.56E-02	37/61/52/1.56E-02	38/62/54/1.56E-02
TRIDIAG2	10000	42/68/65/1.72E-01	39/61/62/1.72E-01	37/60/60/1.72E-01
BDQRTIC	1000	1006/1877/1947/6.72E-01	710/1264/1607/5.16E-01	$539 / 1126 / 724 / 3.44 \mathrm{E}-01$
TRIDIA	1000	356/713/357/1.41E-01	358/717/359/1.41E-01	$358 / 717 / 359 / 1.41 \mathrm{E}-01$
TRIDIA	10000	1175/2351/1176/4.45E+00	1176/2353/1177/4.59E+00	1177/2355/1178/4.61E+00
ARWHEAD	1000	12/28/19/1.56E-02	14/37/27/0.00E+00	9/22/16/1.56E-02
ARWHEAD	10000	10/22/15/4.69E-02	8/19/13/4.69E-02	9/24/18/4.69E-02
NONDIA	1000	13/29/21/1.56E-02	10/22/15/0.00E+00	12/26/17/1.56E-02
NONDIA	10000	11/37/32/6.25E-02	9/29/22/4.69E-02	11/30/23/4.69E-02
NONDQUAR	1000	16252/32520/17640/7.30E +00	12041/24093/12529/5.47E+00	$6501 / 13096 / 8345 / 3.17 \mathrm{E}+00$
DQDRTIC	1000	7/15/8/0.00E+00	7/15/8/0.00E+00	7/15/8/0.00E+00
DQDRTIC	10000	10/21/11/4.69E-02	7/15/8/1.56E-02	$7 / 15 / 8 / 1.56 \mathrm{E}-02$
EG2	1000	125/285/229/1.72E-01	124/257/238/1.56E-01	35/99/96/6.25E-02
EG2	10000	1979/3584/5207/2.95E+01	567/1172/1672/9.42E+00	141/353/261/1.89E+00
DIXMAANA	1000	9/19/10/1.56E-02	8/17/9/1.56E-02	9/19/10/0.00E+00
DIXMAANA	10000	9/19/10/9.38E-02	7/15/8/7.81E-02	8/17/9/9.38E-02
DIXMAANB	1000	21/55/35/3.12E-02	20/54/34/3.12E-02	22/58/38/1.56E-02
DIXMAANB	10000	22/57/38/2.97E-01	22/58/38/2.97E-01	22/59/39/2.97E-01
DIXMAANC	1000	30/81/54/4.69E-02	26/70/45/3.12E-02	26/70/46/3.12E-02
DIXMAANC	10000	$31 / 83 / 55 / 4.06 \mathrm{E}-01$	27/72/48/3.59E-01	24/66/43/3.28E-01
DIXMAANE	1000	176/339/191/1.88E-01	162/319/169/1.72E-01	171/328/187/1.72E-01
DIXMAANE	10000	465/917/486/4.69E+00	451/902/458/4.56E+00	$468 / 925 / 494 / 4.80 \mathrm{E}+00$
PPQ	1000	159/319/160/2.58E+00	160/321/161/2.61E+00	159/319/160/2.59E+00
PPQ	10000	28/57/33/5.21E+01	29/59/34/5.37E+01	29/59/34/5.37E+01
BT	1000	47/96/49/1.56E-02	47/95/48/1.56E-02	40/81/41/1.56E-02
BT	10000	37/75/38/1.72E-01	53/110/59/2.66E-01	41/83/42/2.03E-01
APQ	1000	189/379/190/6.25E-02	189/379/190/6.25E-02	189/379/190/6.25E-02
APQ	10000	600/1201/601/1.95E+00	600/1201/601/2.05E+00	$600 / 1201 / 601 / 2.05 \mathrm{E}+00$
TPQ	1000	177/355/178/7.81E-02	177/355/178/9.38E-02	177/355/178/7.81E-02
TPQ	10000	562/1125/563/2.48E+00	$562 / 1125 / 563 / 2.56 \mathrm{E}+00$	562/1125/563/2.56E+00
EDENSCH	1000	29/49/42/1.56E-02	27/46/39/1.56E-02	27/46/38/1.56E-02
EDENSCH	10000	27/47/42/1.41E-01	$26 / 43 / 38 / 1.41 \mathrm{E}-01$	$26 / 44 / 40 / 1.41 \mathrm{E}-01$
VARDIM	1000	36/74/38/1.56E-02	36/73/38/1.56E-02	38/78/41/1.56E-02
VARDIM	10000	46/93/47/1.72E-01	46/93/47/1.88E-01	46/93/47/1.88E-01
S1	1000	2000/4001/2002/7.19E-01	2000/4001/2002/7.50E-01	1999/3999/2001/7.50E-01
LIARWHD	1000	20/42/27/0.00E+00	24/52/37/1.56E-02	$24 / 53 / 36 / 0.00 \mathrm{E}+00$
LIARWHD	10000	26/62/43/1.25E-01	25/56/36/1.09E-01	25/55/36/1.25E-01
DIAGONAL6	1000	5/11/6/0.00E+00	5/11/6/0.00E+00	$5 / 11 / 6 / 0.00 \mathrm{E}+00$
DIAGONAL6	10000	5/11/6/4.69E-02	$5 / 11 / 6 / 4.69 \mathrm{E}-02$	5/11/6/6.25E-02
DIXON3DQ	1000	1989/3979/1991/7.03E-01	1993/3987/1995/7.19E-01	1993/3987/1995/7.03E-01
DIXMAANF	1000	227/484/295/2.50E-01	$338 / 680 / 401 / 3.59 \mathrm{E}-01$	206/436/260/2.34E-01
DIXMAANF	10000	697/1402/903/7.69E+00	1384/2912/1614/1.51E+01	555/1165/702/6.23E+00
DIXMAANG	1000	234/478/270/2.66E-01	275/567/304/3.28E-01	227/464/255/2.50E-01
				Continued on next page

Problem	N	CG-DESCENT	MPRP	HZPR
		iter/fn/gn/time	iter/fn/gn/time	iter/fn/gn/time
DIXMAANG	10000	568/1129/631/6.17E+00	1186/2396/1247/1.28E+01	$691 / 1371 / 772 / 7.61 \mathrm{E}+00$
DIXMAANH	1000	259/562/343/3.12E-01	$35 / 145 / 124 / 7.81 \mathrm{E}-02$	240/535/332/2.97E-01
DIXMAANH	10000	61/206/184/1.22E+00	61/195/174/1.16E+00	758/1576/957/8.47E+00
DIXMAANI	1000	157/313/160/1.56E-01	160/317/165/1.56E-01	157/314/159/1.72E-01
DIXMAANI	10000	469/919/497/4.78E+00	444/891/448/4.53E+00	458/912/474/4.70E+00
DIXMAANJ	1000	215/454/277/2.50E-01	259/522/307/2.81E-01	245/509/304/2.66E-01
DIXMAANJ	10000	699/1468/946/7.97E+00	827/1699/934/8.81E+00	$650 / 1354 / 842 / 7.34 \mathrm{E}+00$
DIXMAANK	1000	231/486/284/2.81E-01	212/456/264/2.66E-01	233/497/298/2.81E-01
DIXMAANK	10000	653/1329/770/7.59E+00	1593/3180/1735/1.80E+01	$612 / 1258 / 746 / 7.31 \mathrm{E}+00$
DIXMAANL	1000	$5903 / 11878 / 7483 / 8.34 \mathrm{E}+00$	14912/31009/16324/5.14E+01	5002/10585/5723/6.97E+00
ENGVAL1	1000	29/52/39/1.56E-02	30/53/41/1.56E-02	27/48/36/1.56E-02
ENGVAL1	10000	26/44/38/1.25E-01	28/50/40/1.41E-01	25/45/36/1.25E-01
FLETCHCR	1000	2946/6017/3073/1.33E+00	2926/6022/3100/1.36E+00	2930/6037/3108/1.38E+00
COSINE	1000	13/29/26/3.12E-02	11/26/23/1.56E-02	11/27/22/1.56E-02
COSINE	10000	13/33/30/1.88E-01	12/28/27/1.72E-01	12/28/26/1.56E-01
DENSCHNB	1000	8/17/9/0.00E+00	6/13/7/0.00E+00	8/17/9/1.56E-02
DENSCHNB	10000	8/17/9/3.12E-02	6/13/7/1.56E-02	8/17/9/3.12E-02
DENSCHNF	1000	30/71/56/3.12E-02	21/50/40/1.56E-02	22/53/43/1.56E-02
DENSCHNF	10000	26/63/52/1.56E-01	21/50/40/1.25E-01	22/53/43/1.41E-01
SINQUAD	1000	551/1223/761/7.97E-01	1483/3175/1880/2.05E+00	290/772/570/5.47E-01
SINQUAD	10000	2203/4763/2770/3.03E+01	3982/8502/4903/5.41E+01	3745/9359/6538/6.44E+01
BIGGSB1	1000	$500 / 1001 / 501 / 1.72 \mathrm{E}-01$	500/1001/501/1.72E-01	500/1001/501/1.88E-01
BIGGSB1	10000	$5000 / 10001 / 5001 / 1.71 \mathrm{E}+01$	5001/10003/5003/1.77E+01	5000/10001/5001/1.78E+01
PPQ2	1000	$0 / 1 / 1 / 1.56 \mathrm{E}-02$	$0 / 1 / 1 / 0.00 \mathrm{E}+00$	0/1/1/1.56E-02
PPQ2	10000	$0 / 1 / 1 / 1.17 \mathrm{E}+00$	$0 / 1 / 1 / 1.16 \mathrm{E}+00$	$0 / 1 / 1 / 1.16 \mathrm{E}+00$
SQ2	1000	53/107/54/1.56E-02	53/107/54/3.12E-02	53/107/54/1.56E-02
SQ2	10000	177/355/178/5.78E-01	177/355/178/6.09E-01	177/355/178/5.94E-01
GENROSE	1000	6457/13308/7001/2.80E+00	4238/8498/4296/1.84E+00	6554/13334/6906/2.89E+00
NONDIA	1000	$3336 / 7054 / 4709 / 1.42 \mathrm{E}+00$	3041/6327/4693/1.36E+00	109/232/143/4.69E-02
PENALTY1	1000	14/29/15/0.00E+00	14/29/15/0.00E+00	14/29/15/0.00E+00
PENALTY1	10000	16/33/17/7.81E-02	16/33/17/6.25E-02	16/33/17/6.25E-02
POWER	1000	10456/20913/10457/3.62E+00	10454/20909/10455/3.77E+00	10457/20915/10458/3.75E+00
FREUOTH	1000	120/233/157/7.81E-02	69/130/105/4.69E-02	48/100/76/3.12E-02
FREUOTH	10000	114/207/185/8.28E-01	52/104/89/3.91E-01	53/101/94/4.22E-01
SROSENBR	1000	32/96/72/1.56E-02	36/88/62/1.56E-02	42/129/100/1.56E-02
SROSENBR	10000	36/101/77/1.72E-01	38/92/65/1.72E-01	43/138/111/2.34E-01
WOODS	1000	369/784/428/1.56E-01	$332 / 711 / 394 / 1.41 \mathrm{E}-01$	309/659/364/1.41E-01
WOODS	10000	211/466/272/9.06E-01	263/564/311/1.14E+00	138/321/200/6.41E-01
DQRTIC	1000	$31 / 63 / 32 / 1.56 \mathrm{E}-02$	31/63/32/1.56E-02	$31 / 63 / 32 / 1.56 \mathrm{E}-02$
DQRTIC	10000	$37 / 75 / 38 / 1.41 \mathrm{E}-01$	$36 / 73 / 37 / 1.41 \mathrm{E}-01$	$36 / 73 / 37 / 1.41 \mathrm{E}-01$
NONCVXU2	1000	2529/4386/3203/4.14E+00	$2449 / 4237 / 3114 / 4.05 \mathrm{E}+00$	$2661 / 4408 / 3579 / 4.52 \mathrm{E}+00$
BROYDN7D	1000	1007/2304/1333/8.75E-01	985/2321/1366/8.91E-01	544/1290/768/5.00E-01
BROWNAL	1000	6/19/19/0.00E+00	6/17/17/0.00E+00	6/17/17/0.00E+00
BROWNAL	10000	7/22/22/9.38E-02	7/19/19/9.38E-02	7/19/19/9.38E-02
GENHUMPS	1000	$778 / 1658 / 892 / 2.11 \mathrm{E}+00$	654/1407/764/1.94E+00	$655 / 1438 / 805 / 1.89 \mathrm{E}+00$
BDEXP	1000	14/29/15/4.69E-02	14/29/15/4.69E-02	14/29/15/4.69E-02
BDEXP	10000	14/29/15/3.59E-01	14/29/15/3.91E-01	14/29/15/3.75E-01

Fig: Performance profiles based on CPU times

Figure 1: Performance profiles based on CPU time
From the results of our numerical experiments, we can see that the HZPR method performs better than the CG-DESCENT method and the MPRP method, which implies

Figure 2: Performance profiles based on iterations

Figure 3: Performance profiles for the number of function evaluations

Figure 4: Performance profiles for the number of gradient evaluations
that the HZPR method is efficient in real computation.

References

[1] N. Andrei, An uncontrained optimization test functions collection, Advanced Modeling and Optimization 10 (2008) 147-161.
[2] R. Fletcher and C.Reeves, Function minimization by conjugate gradients, The Computer Journal 7(1964) 149-154.
[3] Y.H. Dai and L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Applied Mathematics and Optimization 43 (2001) 87-101.
[4] Y.H. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization 10 (2000) 177-182.
[5] Y.H. Dai and Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained optimization, Annals of Operations Research 103 (2001) 33-47
[6] Z.F. Dai and F.H. Wen, A modified CG-DESCENT method for unconstrained optimization, Journal of Computational and Applied Mathematics 235 (2011) 3332-3341.
[7] E.D. Dolan and J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming 91 (2002) 201-213.
[8] R. Fletcher, Practical Methods of Optimization, Vol I: Unconstrained Optimization, Wiley \& Sons, New York, 1987.
[9] J.C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization 2 (1992) 21-42.
[10] W.W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an effcient line search, SIAM Journal on Optimization 16 (2005) 170-192.
[11] M.R. Hestenes and E.L. Stiefel, Methods of conjugate gradients for solving linear systems, Journal cf Research of the National 49 (1952) 409-432.
[12] Y.F. Hu and C. Storey, Global convergence result for conjugate gradient methods, Journal of Optimization Theory and Applications 71 (1991) 399-405.
[13] Y.L. Liu and C.S. Storey, Efficient generalized conjugate gradient algorithms, part 1: theory, Journal of Optimization Theory and Applications 69 (1991) 129-137.
[14] B. Polak and G. Ribire, Note surla convergence des mthodes de directions conjugues, Revue Francaise d'Informatique et de Recherche 16 (1969) 35-43.
[15] G.H. Yu, L. Guan and W.Chen. Spectral conjugate gradient methods with sufficient descent property for large-scale unconstrained optimization, Optimization Methods and Software 23 (2008) 275-293.
[16] L. Zhang and W.J. Zhou, Two Descent Hybrid Conjugate Gradient Methods for Optimization, Journal of Computational and Applied Mathematics 216 (2008) 251-264.
[17] L. Zhang, W. Zhou and D.H. Li, A descent modified Polak-Ribi‘ere-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical Analysis 26 (2006) 629-640.
[18] G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear Programming, J. Abadie (eds.), North-Holland, Amsterdam, 1970, pp. 37-86.

Manuscript received 25 March 2012
revised 6 August 2012
accepted for publication 7 August 2012

Aiping Qu
School of Computer, Wuhan University, Wuhan 430072, China
Department of Mathematics, Huaihua University, Huaihua 418000, China
E-mail address: qap213qap@163.com
Juan Liu
School of Computer, Wuhan University, Wuhan 430072, China
E-mail address: liujuan@whu.edu.cn
Min Li
Department of Mathematics, Huaihua University, Huaihua 418000, China
E-mail address: minjiecow@163.com

[^0]: *Corresponding author. The work was supported by the NSF of China granted 61272274.

