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in finance; in particular, some studies report promising results using robust statistical tech-
niques in financial markets.

CMARS has been developed as an alternative method to the well-known regression tool
MARS from data mining and estimation theory [24]. This study further improves CMARS
to treat uncertainty in data. As we know, real-world data include noise in both input and
output variables, meaning that the data of the regression problem are not exactly known or
may not be exactly measured, or, because of intrinsic inaccuracy of the devices, the exact
solution of the problem may not be carried out [8]. Moreover, the data can experience small
changes by variations in the optimal experimental design. All of that can lead to uncertainty
in possible constraints and in the objective function. In order to overcome this problem,
we modified CMARS algorithm by the important robust optimization method developed by
Ben-Tal and Nemirovski [3, 4, 6], and El-Ghaoui and Lebret [12], and called it as Robust
CMARS (RCMARS ), which gradually reduced the estimation variance. Not anticipating
too many details of our elaboration, we mention both (i) that we have parameters at hand
to control some degree of risk-friendliness or -averseness, and (ii) that we employ a concept
of so-called weak robustification.

Robust optimization is a modeling methodology to process optimization problems whose
data are uncertain and merely belong to some uncertainty set, except for outliers, with the
purpose of finding an optimal or a near optimal solution which is feasible for every possible
realization of the uncertain scenarios [7]. The robust optimization approach aims at making
the optimization models robust regarding constraint violations by solving robust counter-
parts of these problems within prespecified uncertain sets for the uncertain parameters [14].
Robust counterparts are solved for the worst-case realization of the uncertain parameters
based on suitable uncertainty sets, predetermined for the random uncertain parameters.

In our previous studies, we firstly incorporated uncertainty into the CMARS model with
complexity terms in the form of integrals of squared first- and second-order derivatives of
the model functions, then, into the discretized Tikhonov regularization and, finally, into the
Conic Quadratic Programming (CQP) form of the problem. Afterwards, we introduced a
robustification of CMARS with robust optimization under polyhedral uncertainty [21, 22].
Because of the computational costs caused by robustification of CMARS, the concept of a
weak robustification has been introduced and called as Weak RCMARS (WRCMARS ).

In this study, we used data from Istanbul Stock Exchange like ISE 100 index, ISE trans-
action number and so on, from Turkish economy like TUFE and TEFE indexes, and also
data of the Fed Funds Interest Rate and VIX Index which have been obtained from the
US market, because of their strong effect on the economy of Turkey. ISE 100 index has
been taken as the dependent variable, and others as the independent variables. We put
a correlation threshold in order to limit the unnecessary and meaningless calculations and
eliminated several variables which do not satisfy this requirement. Afterwards, we applied
RCMARS to the remaining independent variables. This paper is organized as follows. The
objectives and outline of the study are represented in Section 1. In Section 2, RCMARS
is introduced in theory and method. Our RCMARS application with different uncertainty
scenarios is presented in Section 3. A conclusion and an outlook to further studies are stated
in the last section.

2 CMARS Model

CMARS is developed to be an alternative to backward elimination part of MARS, which has
a great potential for fitting nonlinear multivariate functions. In fact, MARS is a powerful
adaptive and flexible nonparametric regression method to estimate general functions of high-
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dimensional regression problems. MARS obeys the following general model representation,
supposed to exist between the variables [15,16]:

Y = f(X) + ε, (2.1)

where Y is the response variable, X = (X1, X2, . . . , Xp)
T is a vector of predictor variables,

and ε is an additive stochastic component which is assumed to have 0 mean and finite
variance. MARS aim to obtain reflected pairs for each input variable Xj (j = 1, 2, . . . , p)
with p-dimensional knots τ i = (τi1, τi2, . . . , τip)

T at, or just nearby, each input data vectors
xi = (xi1, xi2, . . . , xip)

T (i = 1, 2, . . . , N). In MARS, the basis fuctions (BFs) are determined
as [16]

c+(x, τ) = (x− τ)+, c−(x, τ) = (x− τ)−, (2.2)

where (q)+ := max{0, q}, (q)− := max{0,−q} for (q ∈ R) and τ is a univariate knot.
Here, with a knot value, τ , each function is piecewise linear which is called a reflected pair.
Consequently, the set of BFs, indicated by T , takes the following form:

T :=
{
(Xj − τ)+, (τ −Xj)+ | τ ∈ {x1j , x2j , . . . , xNj}, j ∈ {1, 2, . . . , p}

}
,

where N is the number of observations and p is the dimension of the input space. The
function f(X) in equation (2.1) can be closer presented by a successively obtained linear
combination of functions constructed from the set T and the intercept, α0, where Y is
written as

Y = α0 +
M∑
m=1

αmψm(X) + ε. (2.3)

Here, ψm (m = 1, 2, . . . ,M) is a BF from T or products of two or more such functions,
and αm is the unknown coefficient for the mth BF (m = 1, 2, . . . ,M), but m equals to 0 for
the constant one. Therefore, the multiplicative form of the mth BF becomes [16]

ψm(xi) =

Km∏
j=1

(xiκm
j
− τκm

j
)± (i = 1, 2, . . . , N), (2.4)

where the number of truncated linear functions multiplied in the mth BF is denoted by Km.
Moreover, xiκm

j
is the input variable corresponding to the jth truncated linear function in

the mth BF, and τκm
j

is the knot value corresponding to the variable.
In CMARS method, firstly, the large model provided by the forward MARS algorithm

is built up and addressed. Instead of the backward stepwise algorithm of MARS, as an
alternative [24], the Penalized Residual Sum of Square (PRSS ) withMmax BFs is employed
as a refinement of the Least-Squares Estimation (LSE ) to control the lack of fit from the
viewpoint of the tradeoff between goals of complexity and stability to estimate and assess
the function f(x) in (2.1). Therefore, PRSS has the following form [24]:

PRSS :=

N∑
i=1

(yi −αTψ(
∼
bi))

2 +

Mmax∑
m=1

ϕm

2∑
|θ|=1

θT =(θ1,θ2)

∑
r<s

r,s∈V (m)

∫
Qm

α2
m[Dθ

r,sψm(tm)]2dtm. (2.5)

Here, ψ(
∼
bi) := (1, ψ1(

∼
x1
i ), ψ2(

∼
x2
i ), . . . , ψm(

∼
xMmax
i )); V (m) := {κmj | j = 1, 2, . . . ,Km}

is the variable set associated with the mth BF, ψm; tm = (tm1 , tm2 , . . . , tmKm
)T repre-

sents the vector of variables that contribute to the mth BF, ψm (likewise for x and X in
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equations (2.3) and (2.4)); α is an ((Mmax + 1) × 1)- parameter vector to be estimated
using the data points; ϕm ≥ 0 are the penalty parameters (m = 1, 2, . . . ,Mmax). More-
over, Qm is some suitably large Km -dimensional parallelpipe where the integration occurs;
Dθ
r,sψm(tm) = ((∂|θ|ψm)/(∂θ1tmr ∂

θ2tms ))tm express the first- or second-order derivatives,

where θT = (θ1, θ2), |θ| := θ1 + θ2 and θ1, θ2 ∈ {0, 1}.
Since it is not easy to evaluate the multi-dimensional integrals in (2.5), a discretization

is applied to approximate the integral
∫
α2
m[Dθ

r,sψm(tm)]2dtm (we refer to [22, 24] for more
details). Consequently, the approximation of PRSS in (2.5) can be rearranged as

PRSS ≈
∥∥y −ψ(

∼
b)α

∥∥2
2
+ϕ

∥∥Lα∥∥2
2
, (2.6)

where L is an ((Mmax + 1)× (Mmax + 1))-diagonal matrix. Afterwards, the PRSS problem
turns into a classical Tikhonov Regularization (TR) [2] problem if we employ only one
penalty factor ϕ > 0, ϕ = λ2 for some λ ∈ R instead of using different penalty parameters.
Therefore, the PRSS form in (2.6) may be formulated as a CQP and, using an appropriate

bound
∼
M , the following optimization problem can be stated [24]:

min
t,α

t subject to
∥∥ψ(∼b)α− y

∥∥
2
≤ t,∥∥Lα∥∥

2
≤

√
∼
M.

(2.7)

We underline that this choice of
∼
M have to be the outcome of a careful learning process,

with the help of model-free or model-based methods [2].

3 RCMARS Model

3.1 CMARS Model with Uncertainty

We assume that the input and output variables of our model are random variables all. They
lead us to uncertainty sets; those are assumed to contain confidence intervals (CIs) (we refer
to [20, 22] for more details). For CMARS, the large model that has the maximum number
of BFs, Mmax, is created by Salford MARS R⃝ [18]. The following general model represents
the relation between both the random input variables and the response, itself being affected
with noise:

Y = f(
⌣

X︸︷︷︸
noisy data

) + ε, (3.1)

where
⌣

X = (
⌣

X1,
⌣

X2, . . . ,
⌣

Xp)
T is a vector of random predictor variables. The random

variables
⌣

Xj are assumed to be normally distributed. Here, the following general model is

considered for each input
⌣

Xj [20, 22]:

⌣

Xj = X̄ + ξj . (3.2)

When considering that we have p-dimensional input data and incorporate a “perturba-
tion” (uncertainty) into input data, each input data vector

⌣
xi = (

⌣
xi1,

⌣
xi2, . . . ,

⌣
xip)

T is rep-

resented as
⌣
⌣
xi = (

⌣
⌣
xi1,

⌣
⌣
xi2, . . . ,

⌣
⌣
xip)

T , including the perturbation ∆i = (∆i1,∆i2, . . . ,∆ip)
T

(i = 1, 2, . . . , N). Since, in each coordinate, value
⌣
xij can be outlier, but perturbation of

outlier is not meaningful, for our problem, we, instead, refer to x̄, the average of the input
data

⌣
xi, as the reference value wherever we use

⌣
x. Here, ∆i is a generic element of U1,
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which is the uncertainty set for our input data. Herewith, our new values of piecewise linear
BFs are shown in the following:

⌣
xij →

⌣
⌣
xij ;

⌣
⌣
xij = x̄j +∆ij , |∆i| ≤ ρij (j = 1, 2, . . . , p; i = 1, 2, . . . , N), (3.3)

where
⌣
xij is an noisy input value;

⌣
⌣
xij is an input value that has uncertainty; ∆ij is a

perturbation of
⌣
xij ; ρij is the semilength of CI for input data, and the amount of perturbation

in each dimension is restricted by ρij .
Similarly, when we incorporate a “perturbation” (uncertainty) into output data, our

output data vector
⌣
y = (

⌣
y1,

⌣
y2, . . . ,

⌣
yN )T is stated as

⌣
⌣
y = (

⌣
⌣
y1,

⌣
⌣
y2, . . . ,

⌣
⌣
yN )T including the

perturbationH = (H1,H2, . . . ,HN )T . As again value
⌣
yi can be outlier and since perturbation

of outlier is not meaningful, for our problem, we refer to ȳ, the average of the output data
⌣
yi, as the reference value wherever we write

⌣
y. Here, we restrict the vector H to be elements

of U2, being the uncertainty set for our output data. So, our new output values can be
represented by [20,22]:

⌣
yi →

⌣
⌣
yi;

⌣
⌣
yi = ȳ +Hi, |Hi| ≤ νi (i = 1, 2, . . . , N). (3.4)

Here, the amount of perturbation is limited by νi which is the semilength of the CI for
the output data.

In order to robustify CMARS, we employ some robust optimization on the BFs provided
by the MARS [15] model. MARS method constructs expansions of piecewise linear BFs; by

us, it will be based on the new data set that has uncertainty. Aiming at the variable
⌣
⌣
x we

prefer the following notation for the piecewise linear BFs [16]:

c+(
⌣
⌣
x, τ) = (

⌣
⌣
x− τ)+, c−(

⌣
⌣
x, τ) = (

⌣
⌣
x− τ)−. (3.5)

Incorporating the uncertainty sets U1 ⊆ RN×Mmax and U2 ⊆ RN , determined below in

Subsection 3.3, into the data (
⌣
⌣
xi,

⌣
⌣
yi), the multiplicative form of the mth BF can be stated

as

ψm(
⌣
⌣
xi) =

Km∏
j=1

(
⌣
⌣
xiκm

j
− τκm

j
)± (i = 1, 2, . . . , N). (3.6)

Then, for our CMARS model with uncertainty, PRSS in (2.6) will have the following ap-
proximate representation:

PRSS ≈
∥∥⌣

⌣
y −ψ(

⌣
⌣

b)α
∥∥2
2
+ϕ

∥∥Lα∥∥2
2
. (3.7)

Herewith, the PRSS minimization problem again looks like a classical TR [2] problem
with ϕ > 0, i.e., ϕ = λ2 for some λ ∈ R. Then, it can be coped with through CQP [22, 24].
The second (complexity) part of the PRSS approximation remains the same as it is in
CMARS after we incorporate a “perturbation” into the real input data

⌣
xi, in each dimension,

and into the output data
⌣
yi, since we do not make any changes for the function in the multi-

dimensional integrals. When estimating the BFs (
⌣
⌣
xiκm

j
− τκm

j
)± in (3.6), we can evaluate

them by the following special terms of estimation [22]:

(
⌣
⌣
xiκm

j
− τκm

j
)± ≤ (

⌣
xiκm

j
− τκm

j
)± + (∆iκm

j
+ (±Aiκm

j
))±. (3.8)

In our studies on CMARS and RCMARS, we usually write ψm(xm) for the mth BF, where xm is some
subvector of x. For not overloading the exposition by further indices and for the easy of understanding, we
denote that value by ψm(x) in this paper.
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Here, Aiκm
j

is interpreted and employed as control parameters. If we consider the risk
friendly case, we select the value of Aiκm

j
between 0 and the absolute value of Aiκm

j
i.e.,

⌣

Aiκm
j

∈ [0, |Aiκm
j
|]. Here, to simplify the notation, we still preserve the notion Aiκm

j
for

⌣

Aiκm
j
. To estimate the values ψ(

⌣
xi) and ψ(

⌣
⌣
xi), we can employ (3.8) in the subsequent form,

where all the “+” and “-” signs belong to each other, respectively [20]:

Km∏
j=1

(
⌣
⌣
xiκm

j
− τκm

j
)±︸ ︷︷ ︸

=:ψm(
⌣
⌣
xi)

≤
Km∏
j=1

(
⌣
xiκm

j
− τκm

j
)±︸ ︷︷ ︸

=:ψm(
⌣
xi)

+

∑
A⊆

̸=
{1,...,K}

∏
a∈A

(
⌣
xia − τa)±

∏
b∈{1,...,K}/A

((±Aib) + ∆ib)± (i = 1, 2, . . . , N).

(3.9)
Then, for each BF, the uncertainty value |uim| can be estimated in the subsequent way [20]:

|uim| ≤
∑

A⊆
̸=
{1,...,K}

∏
a∈A

|⌣xia − τa|︸ ︷︷ ︸
≤Biaρia

∏
b∈{1,...,K}/A

(| ±Aiκj
m
+∆iκj

m
|)︸ ︷︷ ︸

≤γib+ρib

≤
∑

A⊆
̸=
{1,...,K}

∏
a∈A

Biaρia
∏

b∈{1,...,K}/A

(γib + ρib)

≤
∑

A⊆
̸=
{1,...,K}

∏
a∈A

Bia︸︷︷︸
≤Bi

∏
a∈A

ρia
∏

b∈{1,...,K}/A

(γib + ρib)

≤
∑

A⊆
̸=
{1,...,K}

B
|A|−1
i

∏
a∈A

ρia
∏

b∈{1,...,K}/A

(γib + ρib),

(3.10)

where the amount of the value of Aiκj
m

is restricted by γ, the cardinality of the set A has
been denoted through |A|, and Bi is also considered to be applied as a control parameter.
The value of Bi is equal to 2 in cases without outliers, but for outliers, it will be greater
than 2. For such a case, we will have to select a different value for Bi.

3.2 Robustification of the CMARS Model

The CMARS model depends on parameters. Small perturbations in data can result in very
different model parameters, which may indeed cause unstable solutions. The purpose and
basic idea of RCMARS is to decrease the estimation error, while keeping efficiency as high
as possible. In order to achieve this goal, one applies some approaches such as usage of
more robust estimators, scenario optimization and robust counterpart. We aim to reduce
the estimation variance by using a robustification in CMARS [22].

Let us conduct a penalization in the form of TR and study it as a CQP problem for
our CMARS model in order to achieve a reduction in the complexity of the regression
method MARS. That complexity especially means sensitivity with respect to noise in the
data. Regularization in CMARS is already some first kind of robustification, but, in our
study, we additionally robustify CMARS through the robust optimization approach, which
is some rigorous kind of regularization in the input and output domain. However, as stated
in Subsection 3.1, we employ control parameters for a fine tuning. For all these reasons, we
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have some generalization effect now in the part of
∥∥ψ(⌣⌣b)α −

⌣
⌣
y
∥∥2
2
, when we conduct our

robustification of CMARS for both input and output variables by including uncertainty, via
robust optimization [22]. But, we need not make any change in the additional integration
term on the complexity, or energy in Subsection 4.3, equation (4.3). Therefore, the part of
remains the same as in CMARS.

3.3 Polyhedral Uncertainty and Robust Counterpart for the CMARS Model

As we know, robustification is more successful when ellipsoidal uncertainty sets are employed,
rather than polyhedral uncertainty sets. Nevertheless, using ellipsoidal uncertainty sets can
increase the complexity of our optimization models [23, 25]. We study robust CQP (robust
second order optimization problem, robust SCOP) under polyhedral uncertainty and we shall
find out that it equivalently means a standard CQP.

To analyze the robustness problem, we assume that the given model uncertainty is rep-

resented by a family of matrices ψ(
⌣
⌣
x) = ψ(

⌣
x) + U and vectors

⌣
⌣
y =

⌣
y + v, where U1,

containing U , and U2, containing v, are bounded sets which need to be specified. Here, the
uncertainty matrix U ∈ U1 and uncertainty vector v ∈ U2 are of the formats [21,22]

U =


u11 u12 . . . u1Mmax

u21 u22 . . . u2Mmax

...
...

. . .
...

uN1 uN2 . . . uNMmax

 and v =


v1
v2
...
vN

 . (3.11)

As we do not want to increase the overall complexity of our optimization problems, we
select the uncertainty sets U1 and U2 of type polyhedral for both input and output data in
our model, to study our robustness problem. Based on these sets, the robust counterpart is
defined as

min
α

max
W∈U1
z∈U2

∥∥Wα− z
∥∥2
2
+ϕ

∥∥Lα∥∥2
2
. (3.12)

with some ϕ ≥ 0 . Here, U1 is a polytope with 2N ·Mmax verticesW 1,W 2, . . . ,W 2N·Mmax

. It
is not a singleton, but permits a representation [21,22]

U1 =

{
2N·Mmax∑
j=1

δjW
j |δj ≥ 0 (j ∈ {1, 2, . . . , 2N ·Mmax}),

2N·Mmax∑
j=1

δj = 1

}
, (3.13)

i.e., U1 = conv{W 1,W 2, . . . ,W 2N·Mmax} is the convex hull. Furthermore, U2 is a polytope

with 2N vertices z1, z2, . . . , z2
N

. It permits the form

U2 =

{
2N∑
i=1

φiz
i|φi ≥ 0 (i ∈ {1, 2, . . . , 2N}),

2N∑
j=1

φi = 1

}
, (3.14)

where U2 = conv{z1, z2, . . . , z2N } is the convex hull. Here, any uncertainty sets U1 and
U2 can be represented as a convex combination of vertices W j (j ∈ {1, 2, . . . , 2N×Mmax})
and zi (i ∈ {1, 2, . . . , 2N}) of the polytope, respectively. The entries are found to have
become intervals. Therefore, our matrix W and vector z with uncertainty are lying in the
Cartesian product of intervals that are parallelpipes (see [21, 22] for more details). Here,
we represented the matrix W as a vector with uncertainty which generates a parallelpipe.
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We have a (N × Mmax)-matrix W = (wij)i=1,2,...,N
j=1,2,...,Mmax

and we can write it as a vector

t = (tk)k=1,2,...,N×Mmax , where tk := uij with k = i + (j − 1)N . So, our matrix W can be
canonically represented as a vector tk = (t1, t2, . . . , tN×Mmax)

T by putting the columns of
W behind each other [22].

3.4 Robust CQP with Polyhedral Uncertainty

For our CMARS model, the optimization problem is written as follows [21,22]:

min
t,α

t subject to
∥∥ψ(⌣b)α− ⌣

y
∥∥
2
≤ t,∥∥Lα∥∥

2
≤

√
⌣

M,

(3.15)

with some parameter
⌣

M ≥ 0. When polyhedral uncertainty implied into the CMARS model
based on the uncertainty sets U1 and U2, the robust counterpart is defined by

min
α

max
W∈U1
z∈U2

∥∥Wα− z
∥∥2
2
+ϕ

∥∥Lα∥∥2
2
, (3.16)

with some ϕ ≥ 0. So, via height variable t (by an epigraph argument), the robust CQP for
our optimization problem is equivalently represented in the following form [22]:

min
t,α

t subject to
∥∥Wα− z

∥∥
2
≤ t ∀ W︸︷︷︸

=
∑2N·Mmax

j=1 δjW j

∈ U1, z︸︷︷︸
=
∑2N

i=1 φizi

∈ U2,

∥∥Lα∥∥
2
≤

√
⌣

M.

(3.17)

Here, U1 and U2 are polytopes which are described by their vertices as

U1 = conv{W 1,W 2, . . . ,W 2N·Mmax}, U2 = conv{z1, z2, . . . , z2
N

}. (3.18)

Therefore, our robust CQP can be equivalently stated by a standard CQP [5, 13] as
follows:

min
t,α

t subject to
∥∥W jα− zi

∥∥
2
≤ t (i = 1, 2, . . . , 2N ; j = 1, 2, . . . , 2N ·Mmax),∥∥Lα∥∥

2
≤

√
⌣

M.
(3.19)

Afterwards, we can solve our robust CQP by using MOSEKTM [19] software program.

Here, we note that the values
√

⌣

M are determined by a model-free method. When we

employ the
√

⌣

M values in our RCMARS code and solve by using MOSEK, we apply the√
⌣

M value that has the minimum value of PRSS in the equation (3.7).

4 A Real-World Application of RCMARS in the Financial Market

4.1 Data Description

We selected the time-series data for the empirical part from the website of Central Bank
of the Republic of Turkey [9]. The data contain the economic indicators which are the
most commonly used ones for the interpretation of an economic situation. Monthly data
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have been preferred in order to have more definite and stationary results, relative to daily
or weekly data. If we could not find the monthly data, we used daily data and converted
them to monthly data by taking averages, or for some of them the last data of the month
were taken as the data of the month, like Net Foreign Exchange Reserves and International
Gold Reserves. ISE 100 stock index is the dependent variable in our data set. We used this
index, because it is a statistical measure of change in an economy or a securities market. For
financial markets, an index is an imaginary portfolio of securities representing a particular
market or a portion of it. It has its own calculation methodology and is usually expressed in
terms of a change from a base value. Thus, the percentage change is more important than
the actual numerical value.

The independent variables are ISE Transaction Number (the number of transaction dur-
ing a defined time period, in our case during the month), ISE Trading Volume (the number
of shares or contracts of a security traded during a defined time period, again for a month),
Capacity Usage Ratio (the ratio of the production capacity of the economy to the maximum
capacity of economy), Euro and Dollar Exchange Rate, Net Foreign Exchange Reserves and
International Gold Reserves, Gold Price, Credit Volume, Price Indexes like WPI and CPI
(TEFE and TUFE, respectively). WPI or Wholesale Price Index (TEFE) is the price of
a representative basket of wholesale goods, while a CPI or Consumer Price Index (TUFE)
measures changes in the price level of consumer goods and services purchased by households.

Two indicators from the USA are taken to our analyses: Fed Funds Interest Rate and
VIX Index (a measure of the market’s expectation of stock market volatility over the next
30 day period), because of the strong effect of the USA on the economy of Turkey and the
world.

As it is said above, in this study, we use ISE 100 Stock Market index as a dependent
variable. This is the successor of the Composite Index, which was introduced in 1986 in-
cluding the stocks of 40 companies and was in time limited to the stocks of 100 companies.
It consists of 100 stocks, which have been selected among the stocks of companies listed
on the National Market, and the stocks of real estate investment trusts and venture capital
investment trusts, listed on the Corporate Products Market, and it covers ISE 30 and ISE
50 stocks.

The data cover the time horizon between January 1999 and December 2009. Some of
the series do not contain the data of December 2009; therefore, the absent values are calcu-
lated in Excel using interpolation. We also checked the correlation among these series, in
order to prevent from unnecessary and meaningless calculations. We assumed a correlation
threshold of 0.90 to decide about the strength of correlation. The most correlated factors
are ISE Trading Volume, International Gold Reserves, Net Foreign Exchange Reserves and
WPI (TEFE). For example, there is a correlation of 0.94 between ISE Transaction Number
and ISE Trading Volume. So, ISE Transaction Number is taken out from the list. Eventu-
ally, our data set consists of ISE Trading Volume, Capacity Usage Ratio, Euro and Dollar
Exchange Rates, Credit Volume, Gold Price, WPI (TEFE), Fed Funds Interest Rate and
VIX Index.

4.2 Obtaining Large Model from MARS Program

For the implementation of our RCMARS algorithm developed, we used a data set from the
financial market and, eliminating some of the predictor variables which have the correlation.
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At the end we have 8 predictor input variables:

X1 : ISE Trading Volume, X2 : Capacity Usage Ratio,

X3 : Euro Exchange Rate, X4 : Credit Volume,

X5 : Dollar Exchange Rate, X6 : Price Index (TEFE),

X7 : Federal Funds Interest Rate, X8 : VIX Index,

with 76 observations. However, we do not have enough computer capacity to solve our
problem (3.12) that is given as a tradeoff between tractability and robustification. Therefore
we divide our data set into two subsets, each of which has 38 observations. Firstly, we
validate our assumption that the input variables and the output variable are distributed
normally, using bootstrapping method [11] from statistics. In order to implement RCMARS
algorithm, first, the MARS models are constructed for each subset by using the Salford
MARS version 3 [8] and, then, the maximum number of BFs (Mmax) and the highest degree
of interactions are determined by trial and error. In first part of our data set, Mmax is
assigned to be 12, and the highest degree of interaction is assigned to be 3. Then, the
largest models for the first part and the second part of the data set are constructed in the
forward MARS algorithm by its software.

To prevent from nondifferentiability in our optimization problem, we choose the knot
values different from data points. However, these values are very much nearby to the cor-
responding input data. Then, the BFs for the first part of the data set can be introduced
into the largest model subsequent way:

Y = α0 +
M∑
m=1

αmψm(x) + ε

= α0 + α1ψ1(x) + α2ψ2(x) + α3ψ3(x) + α4ψ4(x) + α5ψ5(x) + α6ψ6(x)

+ α7ψ7(x) + α8ψ8(x) + α9ψ9(x) + α10ψ10(x) + α11ψ11(x) + α12ψ12(x) + ε

= α0 + α1 max{0, x8 − 0.365}+ α2 max{0, 0.365− x8}
+ α3 max{0, x1 + 0.567}+ α4 max{0,−0.567− x1}
+ α5 max{0, x2 + 0.542}+ α6 max{0,−0.542− x2}
+ α7 max{0, x4 + 2.187} ·max{0,−0.542− x2}
+ α8 max{0, x4 + 0.098} ·max{0, 0.365− x8}
+ α9 max{0,−0.098− x4} ·max{0, 0.365− x8}
+ α10 max{0, x7 + 2.216} ·max{0, x1 + 0.567}
+ α11 max{0, x6 − 0.542} ·max{0, x7 + 2.216} ·max{0, x1 + 0.567}
+ α12 max{0, 0.542− x8} ·max{0, x7 + 2.216} ·max{0, x1 + 0.567}+ ε.

Likewise, the BFs for the second part of the data set become inserted in the largest
model in the following manner:

Y = α0 +
M∑
m=1

αmψm(x) + ε

= α0 + α1ψ1(x) + α2ψ2(x) + α3ψ3(x) + α4ψ4(x) + α5ψ5(x) + α6ψ6(x)
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+ α7ψ7(x) + α8ψ8(x) + α9ψ9(x) + α10ψ10(x) + α11ψ11(x) + α12ψ12(x) + ε

= α0 + α1 max{0, x4 − 0.575}+ α2 max{0, 0.575− x3}
+ α5 max{0, x1 − 0.019} ·max{0, 0.275− x3}
+ α6 max{0, 0.019− x1} ·max{0, 0.275− x3}
+ α7 max{0, x1 + 2.172} ·max{0, x4 − 0.575}
+ α8 max{0, x7 + 0.583} ·max{0, 0.575− x4}
+ α9 max{0, x5 + 0.309} ·max{0, x7 + 2.583} ·max{0, 0.575− x4}
+ α10 max{0,−0.309− x5} ·max{0, x7 + 2.583} ·max{0, 0.575− x4}
+ α11 max{0, x2 + 0.499} ·max{0, 0.575− x4}
+ α12 max{0,−0.499− x2} ·max{0, 0.575− x4}+ ε.

4.3 Evaluating Accuracy and Complexity of PRSS Form

For this numeric example, we approximate the PRSS formula as follows:

PRSS ≈

=Accuracy︷ ︸︸ ︷∥∥y −ψ(
∼
b)α

∥∥2
2
+

=Complexity︷ ︸︸ ︷
ϕ
∥∥Lα∥∥2

2
. (4.1)

Herein, the first part of the TR term, which is the right-hand side, and that of the PRSS
function, are equal to each other, whereas, their second parts are equal approximately.
Subsequently, all those parts are stated:

Accuracy :

∥∥y −ψ(
∼
b)α

∥∥2
2
= (y −αTψ(

∼
b))T (y −αTψ(

∼
b)) =

N∑
i=1

(yi −αTψ(
∼
bi))

2 =: (∗), (4.2)

Complexity :

ϕ
∥∥Lα∥∥2

2
≈

12∑
m=1

ϕm

2∑
|θ|=1

θT =(θ1,θ2)

∑
r<s

r,s∈V (m)

∫
Qm

α2
m[Dθ

rsψm(tm)]2dtm =: (∗∗), (4.3)

where, indeed, PRSS := (∗) + (∗∗) and ϕ = ϕm (m = 1, 2, . . . , 12). Having discretized all
the multi-dimensional integrals in the complexity part, they jointly turn into the form of
equation (3.7) and, finally, the discretized form is indicated by L. As a result, the matrix
L becomes a diagonal matrix and the first column elements of L are all zero. The diagonal
elements of this matrix, Lm (m = 1, 2, . . . , 12) are given below for the first part of our data
set:

L =


0 0 . . . 0
0 1.296 . . . 0
...

...
. . .

...
0 0 . . . 0.294

 . (4.4)
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For the second part of our data set, the diagonal elements of L, Lm (m = 1, 2, . . . , 12)
are comprised as follows:

L =


0 0 . . . 0
0 1.177 . . . 0
...

...
. . .

...
0 0 . . . 2.345

 . (4.5)

4.4 Calculating Uncertainty Values for Input and Output Data under Polyhe-
dral Uncertainty

We incorporate a perturbation (uncertainty) into the real input data in each dimension and
into the output data, after we obtain accuracy and complexity terms, to employ our
robust optimization technique on the CMARS model. For this purpose, the right-hand side
on an uncertainty bound from (3.10) is evaluated for all input and output values which are
represented by CIs, and the uncertainty matrices and vectors based on polyhedral uncertainty
sets are obtained by using (3.13) and (3.14).

Furthermore, to perform the given calculations, we need normally distributed data and,
since in our data set some variables are not normally distributed, we use the bootstrapping
method of statistics [11], which is the general approach to statistical inference based on
building a sampling distribution for a statistic by resampling from the data at hand. After
the normalization of the variables, we transform them into the standard normal distribution;
the CI is constructed to be [-3, 3].

With our worst case approach, for the each observation, we use the equation (3.10) to
receive the uncertainty vectors with their entries uim (i = 1, 2, . . . , 38;m = 1, 2, . . . , 12) :

|uim| = |ψm(
⌣
⌣
xi)− ψm(

⌣
xi)| =

∑
A⊆

̸=
{1,...,K}

B
|A|−1
i

∏
a∈A

ρia
∏

b∈{1,...,K}/A

(γib + ρib). (4.6)

Now, we can write our uncertainty matrix for the input data as follows:

U =


u11 u12 . . . u112
u21 u22 . . . u212
...

...
. . .

...
u381 u382 . . . u3812

 ∈


[3.525,−3.525] 0 . . . 0
[3.802,−3.802] 0 . . . 0

...
...

. . .
...

0 [3.201,−3.201] . . . [46.419,−46.419]

 .
After we have incorporated uncertainty for each input value, matrices of our BFs can

be expressed in the following forms, just by concentrating on the lower and upper interval
boundaries, respectively:

W upper = ψ(
⌣

b) +Uupper =


1 3.817 . . . 0
1 3.817 . . . 0
...

...
. . .

...
1 0 . . . 47.364

 , (4.7)

W lower = ψ(
⌣

b) +U lower =


1 −3.232 . . . 0
1 −3.787 . . . 0
...

...
. . .

...
1 0 . . . −45.474

 . (4.8)
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The output data, the uncertainty vector and the vectors with uncertainty are represented
below, respectively:

v =


v1
v2
...
v38

 ∈


[3,−3]
[3,−3]

...
[3,−3]

 , zupper = ⌣
y+vupper =


−4.489
−3.561

...
−1.874

 , zlower = ⌣
y+vlower =


1.511
2.439

...
4.127

 .
(4.9)

The calculation done above is applicable for both parts of our training data set.

4.5 Receiving Weak RCMARS Models Using Combinatorial Approach

As we mentioned in the previous section, PRSS is approximated by a TR problem, and
we can easily formulate it as a CQP problem. Moreover, we incorporate a perturbation
(uncertainty) into the real input data,

⌣
xi (i = 1, 2, . . . , 38), in each dimension and into the

output data, y, by using our robust optimization approach for a robustification of CMARS.
For this aim, by applying (3.6) and (3.7) we obtain the uncertainty matrices and vectors
based on polyhedral uncertainty. Then, using relation (4.4) we evaluate uncertainty for all
input and output values which are represented by CIs. The boundaries of CIs are assumed
to be [-3, 3], after the variables are transformed into the standard normal distribution.

For our example, the uncertainty matrix for input data has a huge size, and we do not
have enough computer capacity to solve our problem for this uncertainty matrix. Indeed,
we have a tradeoff between tractability and robustification. To overcome that obstacle,
in this example, we robustify our CQP problem for each sample value (observation) using
the combinatorial approach, which we call weak robustification. As a result, we obtain 38
different weak RCMARS (WRCMARS ) models, for each part of our data set, and resolve
them with MOSEK [19].

Based on polyhedral uncertainty sets, to solve our problem, we use their vertices. In
order to find them, we need especially to apply the Cartesian product of all the intervals
of input data in the observations. Hence, our WRCMARS models have different structures
depending on the number of entries (BFs), which are used to explain the observations. For
instance, we can represent the last observations WRCMARS model, which has 3 entries, in
the following form:

minimize
t,α

t,

subject to 1.51069− α0 − 0.29234α1 − 0.35539α4 = β1,

2.43887− α0 − 0.01516α1 − 0.10152α3 = β2,

...

− 1.87353− α0 + 2.677α2 + 3.090α3 + 45.474α5 = β320,

(β2
1 + β2

2 + . . .+ β2
20)

1/2 ≤ t,

(β2
21 + β2

22 + . . .+ β2
40)

1/2 ≤ t,

...

(β2
301 + β2

302 + . . .+ β2
320)

1/2 ≤ t,

(β2
321 + β2

322 + β2
323 + β2

324 + β2
325)

1/2 ≤
⌣

M1/2.
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In order to solve this problem, we transform it into the MOSEK format above. For this
transformation, we attribute new unknown variables in the linear terms which are lying in
these 17 cones. By this, in fact, we simplify the notations in the cones and write them as
equality and inequality constraints. Therefore, for our last sample, our problem includes
325 linear constraints and 17 quadratic cones.

We write this formulation for each value of our sample (N = 38) and solve them sepa-
rately by using MOSEK program [19]. MOSEK apply an interior-point optimizer, which is
an implementation of a homogeneous and self-dual algorithm. We obtain MOSEK results
and find the t values for all auxiliary problems; then, using the worst-case approach, we
select the solution which has the maximum t value. Then we continue with our calculations
using the parameter values αj (j = 1, 2, . . . , 12) that we find from the auxiliary problem
which has the highest t value.

4.6 Sensitivity to the Changes in the Confidence Interval Limits of RCMARS

Here, the boundaries of CIs are supposed to be [-3, 3], after the variables are transformed
into the standard normal distribution. In order to represent sensitivity to the changes in
the CI limits of the input data and output data and to find suitable interval limits for us,
we obtain different uncertainty matrices, U , for the input data and different uncertainty
vectors, v, for the output data as the form of (3.11) by using 7 different intervals. These
ones are given by the pairs ±3,±3/2,±3/4,±3/6,±3/8,±3/10 and, as a special case, the
mid-point value of our interval (i.e., zero lengths interval). In the latter case, it reduces
to the CMARS model. This shows that CMARS is a special case of RCMARS. Therefore,
we calculate our parameters with 7 different uncertainty scenarios using these values under
polyhedral uncertainty sets for our training data set.

In Subsection 4.7, all of the parameter estimates as well as model accuracies for different

uncertainty scenarios are shown. We note here that we defined the values
√

⌣

M by a model-

free method. When we apply the
√

⌣

M values in our RCMARS code and solve it by MOSEK,

we use that
√

⌣

M value which has the minimum value of PRSS approximately in equation
(2.7). In order to compare the results concerning accuracy for RCMARS and CMARS, we
employ Average Absolute Error (AAE ) and Root Mean Squared Error (RMSE ). Also, we
represent variances (σ2) of CMARS and RCMARS in Subsection 4.7.

4.7 Results

In this study, we construct uncertainty matrices, U , for the input data and uncertainty
vectors, v, for the output data and, we recieve 7 different uncertainty scenarios by using the
interval values, ±3,±3/2,±3/4,±3/6,±3/8,±3/10 and zero.

From Tables 1 and 2 below it seems that the solutions obtained are sensitive to the
limits of CIs. When the lengths of the CIs are narrow, we evaluate better performance
results. Moreover, as in our previous study [21], when we use the mid-point (zero value)
of our interval values for both input and output data, which is the certain data case; we
receive the same parameter estimates as we obtained for CMARS. This is our particular
special case.

The values
√

⌣

M in our application are defined by a model-free (train and error) method.
When we assess the ψm(x) values in our RCMARS code and employ MOSEK, RCMARS
provides us several solutions, each of them based on 12 BFs.

For the training data, models for RCMARS have a smaller variance, but a lower accuracy
than CMARS, which is consistent with our expectation. However, we have unexpected
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Table 1: Parameter estimates and the model performances for the training data.

U, v ±3 ±3/2 ±3/4 ±3/6 ±3/8 ±3/10 zero
RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS CMARS

α0 -0.053 0.013 0.135 0.139 0.151 0.139 0.110

α1 0.078 0.050 -0.040 -0.051 -0.065 -0.063 -0.061

α2 0.008 0.016 0.009 0.010 0.006 -0.006 -0.024

α3 -0.045 -0.059 -0.091 -0.103 -0.119 -0.138 -0.139

α4 -0,021 -0.101 -0.175 -0.166 -0.164 -0.163 -0.155

α5 0.000 -0.058 -0.113 -0.117 -0.122 -0.124 -0.118

α6 0.031 0.052 0.066 0.063 0.063 0.072 0.085

α7 0.054 0.016 -0.018 -0.011 -0.013 -0.007 0.008

α8 0.216 0.451 0.497 0.470 0.473 0.474 0.453

α9 -0.003 -0.008 -0.013 -0.007 -0.021 -0.001 0.082

α10 0.001 0.001 0.002 0.002 0.002 0.004 -0.024

α11 -0.002 -0.018 -0.031 -0.022 -0.013 -0.007 -0.066

α12 -0.005 -0.005 -0.004 -0.004 0.006 0.012 0.038

σ2 0.028 0.057 0.085 0.085 0.092 0.101 0.165
AAE 0.735 0.707 0.678 0.673 0.662 0.656 0.627

RMSE 1.175 1.121 1.078 1.070 1.052 1.037 0.999

results for the testing data.

Table 2: Parameter estimates and the model performances for the testing data.

U, v ±3 ±3/2 ±3/4 ±3/6 ±3/8 ±3/10 zero
RCMARS RCMARS RCMARS RCMARS RCMARS RCMARS CMARS

σ2 0.005 0.006 0.005 0.005 0.005 0.006 0.012
AAE 0.830 0.831 0.818 0.818 0.812 0.814 0.825

RMSE 1.156 1.163 1.146 1.145 1.138 1.145 0.168

For the testing data and for some suitable uncertainty values, RCMARS produced more
accurate model with a smaller variance than CMARS, which can be seen in Table 2. This
is mainly due to the randomness involved in the input-output variables. According to the
above results we can say that RCMARS can be a more accurate model with a smaller
variance than CMARS.

5 Conclusion and Further Studies

Some models assume that the returns follow a multivariate normal distribution. For example,
Markowitz model assumes that the first two moments of the distribution suffice to completely
describe the distribution of the asset returns and the characteristics of the different portfolios.
But in the real life, these models are too simplistic, leading to parameter instability [17],
because of the increased uncertainty after the recent crises. In order to get reliable results
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of volatility or risk of the investment, we have to incorporate this uncertainty into the
model [10].

It is well known that the variance and standard deviation are especially useful measures
of risk for the variables that are normally distributed or for those that can be represented
by normal distribution. This distribution is very useful in finance because the returns for
many assets and, hence, the indexes tend to be normally distributed, which makes variance
and standard deviation practical measures of the uncertainty associated with investment
returns, credit defaults, etc..

In our study, we employ a regression algorithm called RCMARS with training data and
check the results using testing data. For the training data, RCMARS models show a smaller
variance, but a lower accuracy than CMARS, which is consistent with our expectation,
because we expect to see that the variation of the parameter estimates and, hence, the
variation of accuracy measures, will be much less than that of CMARS. However, for the
testing data, there were unexpected results because for some uncertainty values, RCMARS
produced a more accurate model with a smaller variance than CMARS. As a result, we can
say that RCMARS has been more accurate model with, what is very important, a smaller
variance than CMARS. From the financial point of view we may deduce that RCMARS
models can give more accurate strategies to implement with a relatively low risk.

Above we indicated that in this study, we used normally distributed data. As a future
project, we will develop a model that will successfully work with other types of distributions.
We also had to divide the training data set into two parts, because of the capacity problems
of the computer. In future, we will use different computational methods, such as parallel
computing, to overcome this difficulty. Moreover, we will test the RCMARS performance
on different data, taken from inside and outside of financial market sector.

In all of our future studies, we go on facing the complexity of our model and trying to
turn all model-free, e.g., trial-and-error, sides of our treatment, into a model-based form.
In particular, we plan to reinterpret the parametric bound

⌣

M as another state variable
(unknown), including it into the objective function also. Herewith, we would still remain in
our “conic” setting of CQP. This would lead to another support and strengthening of the
model-basedness of our approach and would make it even more rigorous mathematically.
Modern continuous and global optimization will certainly be a key-technology for this. We
can also diversify our optimization by differentiating between different values of the penalty
parameters. This would lead to further control variables.
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