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presented a nonlinear Lagrangian method generated by a Löwner operator associated with
Log-Sigmoid function for nonconvex semidefinite programming. Mostafa [20] introduced an
SQP method globalized using line search for solving certain NSDP problem originating from
discrete-time output feedback control systems.

Optimal control problems or design optimization problems are characterized from general
nonlinear optimization problems by the fact that the unknown variable is partitioned into
two components, one represents the state variable and the other represents the control or the
design variable. In this work we consider two NSDPs which are derived from the static output
feedback design problem for discrete-time systems. The two NSDP problems are related to
each other and have several properties in common. We attempt to highlight the similarities
and differences between the two problems. Moreover, we compare the performance of the
proposed SQP augmented Lagrangian method globalized by using trust region for the two
problems numerically. In order to see the significance of the proposed SQP augmented
Lagrangian approach we compare this method numerically with Newton’s method globalized
by line search [15] applied on particular formulation of the design problem.

This article is organized as follows. In the next section the output feedback design
problem is stated and its relationship with the considered NSDP problems are discussed. In
Section 3 first and second-order derivatives of the problems functions are obtained and the
optimality conditions are discussed. The augmented Lagrangian SQP method globalized by
using trust region is introduced in Section 4. Section 5 is devoted to test the performance of
the augmented Lagrangian SQP trust method on the considered NSDP problems numerically
through several test problems from the literature. Finally we end by a conclusion.

Notations: Throughout the paper ∥ · ∥ denotes the Frobenius norm defined as ∥G∥ =√
⟨G,G⟩, where ⟨·, ·⟩ is the inner product defined by ⟨G1, G2⟩ = Tr(GT

1 G2) for G1, G2 ∈
Rm×n and Tr (·) is the trace operator. For matrix G ∈ Rn×n the notations G ≻ 0 and
G ≽ 0 denote that G is strictly positive definite and positive semi-definite, respectively. For
function f(X) the notations fX(X)∆X and fXX(X)(∆X,∆X) denote the first and second
order directional derivatives of f at X in the direction of ∆X.

2 Output Feedback Design and NSDP Formulation

An important class of nonlinear semi-definite programming problems can be derived from the
static output feedback (SOF) design problem for continuous or discrete-time systems. The
SOF design problem for discrete-time systems is stated as follows; for the SOF problem we
refer to the two surveys [15,25] and later references among them [12–14,17–19,23]. Consider
the linear time-invariant control system with the following state-space realization:

xk+1 = Axk +Buk,

yk = Cxk, (2.1)

where xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny denote the state, the control input and the
measured output vectors, respectively. Furthermore, A,B,C are given constant matrices of
appropriate dimensions.

The following assumption is often imposed on the initial state vector to remove the
dependency of the problem on x0.

Assumption 2.1. Assume that x0 is a random variable uniformly distributed on the unit
sphere with E[x0] = 0, where E[·] is the expected value.

The following SOF control law is often used to close the system:

uk = Fyk, (2.2)
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where F ∈ Rnu×ny denotes the unknown SOF gain matrix that has to be determined by a
suitable numerical procedure. By substituting the control law (2.2) into the control system
(2.1) the closed loop counterpart has the following form:

xk = A(F )xk−1 = A(F )k x0, (2.3)

where A(F ) := A+BFC is the augmented closed-loop matrix.
For an objective function let us consider the following quadratic cost function, which is

to be minimized subject to the system (2.1):

J(F ) = E
[ ∞∑
k=0

(
xT
kQxk + uT

kRuk

)]
, (2.4)

where Q ∈ Rnx×nx and R ∈ Rnu×nu are given constant weight matrices.

Assumption 2.2. We assume that A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx are given
constant matrices; Q ∈ Rnx×nx , R ∈ Rnu×nu and V ∈ Rnx×nx are given symmetric and
positive definite matrices.

The above optimal control problem can be restated as an optimization problem. It
is well-known approach in systems and control literature to formulate the above optimal
control problem as a matrix optimization problem; see e.g. [15]. We give the derivation for
completeness. By substituting xk of (2.3) into the control law uk = Fyk = FCxk and then
substituting both of xk and uk into the objective function (2.4) we obtain

J(F ) = E[xT
0 K(F )x0] = Tr (K(F )E[x0x

T
0 ]) = Tr (K(F )V ),

where

K(F ) =
∞∑
k=0

(A(F )T )k Q(F )A(F )k

is the exact solution of the following discrete Lyapunov equation

K(F ) = A(F )TK(F )A(F ) +Q(F ), (2.5)

where Q(F ) := Q+CTFTRFC. Moreover, V = E[x0x
T
0 ] ∈ Rnx×nx is the covariance matrix

which is assumed to be positive definite; see [15]. In order to have unique solution for (2.5)
one must choose F from the following set of stabilizing output feedback gains:

Ds = {F ∈ Rnu×ny : ρ(A(F )) < 1}, (2.6)

where ρ(·) is the spectral radius.
Consequently, the static output feedback problem can be written as follows:

(P1) min
F∈Ds

Tr(K(F )V ),

where F is considered as an independent variable and K(F ) solves the discrete Lyapunov
equation (2.5).

An equivalent formulation of P1 is the following optimization problem; see below:

(P2) min
F∈Ds

Tr(L(F )Q(F )),
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where L(F ) solves the discrete Lyapunov equation:

L(F ) = A(F )L(F )A(F )T + V. (2.7)

The two problems P1 and P2 have been studied by many authors; see e.g. the above
mentioned citations. The objective functions of the problems P1 and P2 are equal as shown
in the following lemma.

Lemma 2.3. Let F ∈ Ds and let K(F ) and L(F ) be solutions of the discrete Lyapunov
equations (2.5) and (2.7), respectively. Then

Tr(L(F )Q(F )) = Tr(K(F )V ).

Proof. Let us rewrite (2.5) and (2.7) as:

Q(F ) = K(F )−A(F )TK(F )A(F )

V = L(F )−A(F )L(F )A(F )T ,

where K(F ) and L(F ) solutions of the discrete Lyapunov equations (2.5) and (2.7) are
symmetric. Pre-multiplying the first equation by L(F ) and the second one by K(F ) then
applying the trace operator give:

Tr(L(F )Q(F )) = Tr(L(F )K(F )− L(F )A(F )TK(F )A(F ))

= Tr(L(F )K(F ))− Tr(L(F )A(F )TK(F )A(F ))

= Tr(K(F )L(F ))− Tr(K(F )A(F )L(F )A(F )T )

= Tr(K(F )V ),

where the property Tr(M1M2) = Tr(M2M1) is used for any two matrices M1,M2 of appro-
priate dimensions.

Note that the objective functions of P1 and P2 are shown to be equal under the assump-
tion that K(F ) and L(F ) are solutions of discrete Lyapunov equations.

The following theorem provides an equivalence between the asymptotic stability of the
control system (2.1) and coupled conditions on positive definiteness; see e.g. [4, Theorem
4.1.3] for the proof.

Theorem 2.4 ([4, Theorem 4.1.3]). Let A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx be given
matrices. Then an F ∈ Ds exists if and only if there exist P ∈ Rnx×nx and F ∈ Rnu×ny

such that (P, F ) ∈ Fs, where

Fs = {(P, F ) : P ≻ 0, P −A(F )TPA(F ) ≻ 0}. (2.8)

According to Theorem 2.4 and by considering K and F for the problem P1, respectively,
L and F for the problem P2 to be independent variables then we have the following couple
of NSDP problems:

(P3) :

{
min
K,F

J(K) = Tr(KV )

s. t. h(K,F ) = 0, K ≻ 0, g(K,F ) ≻ 0.
(2.9)
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and

(P4) :

{
min
L,F

J(L,F ) = Tr(LQ(F ))

s. t. h̃(L,F ) = 0, L ≻ 0, g̃(L,F ) ≻ 0.
(2.10)

where h, h̃, g, g̃ : Rnx×nx × Rnu×ny → Rnx×nx are nonlinear matrix functions defined by:

h(K,F ) = A(F )TKA(F )−K +Q(F ) (2.11)

g(K,F ) = K −A(F )TKA(F ) (2.12)

h̃(L,F ) = A(F )LA(F )T − L+ V (2.13)

g̃(L,F ) = L−A(F )LA(F )T , (2.14)

where A(F ) and Q(F ) are as defined above.
Obviously the NSDPs P3 and P4 are generalizations of the problems P1 and P2, respec-

tively. On the other hand, the equivalence between the stability condition (2.6) and the
positive definite constraints in (2.8) provides a convenient way to fulfill such constraints in
the numerical algorithm. For example, we might follow one of the following two alternatives
to handle the positive definite constraints. First, we can equivalently solve P3 or P4 as an
equality constrained problem in an interior-point framework as considered in [10]; e.g. the
NSDP P4 can be reformulated as:

min
L,F

ϕµ(L,F ) = J(L,F )− µ
[
log(det(L)) + log(det(g̃(L,F )))] s.t. h̃(L,F ) = 0, (2.15)

where µ > 0 is given barrier parameter. The second alternative is to replace the positive
definite constraints (2.8) by the stability condition (2.6) and fulfill such condition within the
numerical algorithm explicitly; see e.g. [19].

3 Derivatives and Optimality Conditions

In order to observe the relationship between both NSDP problems P3 and P4 more we will
compare the resulting systems of the Karush–Kuhn–Tucker (KKT) necessary optimality
conditions for both problems. First, let us define the Lagrangian functions associated with
the two problems:

ℓ(K,F,U, Z1, Z2) = Tr(KV ) + Tr(UTh(K,F )) + Tr(ZT
1 K) + Tr(ZT

2 g(K,F )), (3.1)

ℓ̃(L,F, Ũ , Z̃1, Z̃2) = Tr(L(Q+ CTFTRFC)) + Tr(ŨT h̃(L,F ))

+ Tr(Z̃T
1 L) + Tr(Z̃T

2 g̃(L,F )). (3.2)

where U,Z1, Z2, Ũ , Z̃1, Z̃2 ∈ Rnx×nx are the Lagrange multipliers matrices associated with
the constraints of the two problems.

Derivatives of ℓ and h are obtained in the next lemma. Similarly one can obtain the
derivatives of ℓ̃ and h̃.

Lemma 3.1. Consider the NSDP problem P3. The objective and the constraint functions
are twice continuously differentiable. Moreover, the first-order directional derivatives of the



516 E.M.E. MOSTAFA, H.G. ISMAIL AND N.F. Al-AFANDI

Lagrangian function (3.1) at (K,F,U, Z1, Z2) applied in the directions ∆K ∈ Rnx×nx and
∆F ∈ Rnu×ny are given by:

ℓK(·)∆K = Tr
(
∆K(V + Z1 + Z2 − U +A(F )(U − Z2)A(F )T )

)
ℓF (·)∆F = 2Tr

(
(BTKA(F )(U − Z2) +RFCU)CT∆FT

)
and the second-order directional derivatives of ℓ are given by:

ℓKK(·)(∆K,∆K) = 0

ℓKF (·)(∆K,∆F ) = 2Tr(BT∆KA(F )(U − Z2)C
T∆FT )

= ℓFK(·)(∆F,∆K)

ℓFF (·)(∆F,∆F ) = 2Tr((BTKB∆FC(U − Z2) +R∆FCU)CT∆FT ).

Moreover, the directional derivatives of h are:

hK(·)∆K = A(F )T∆KA(F )−∆K

hF (·)∆F = CT∆FT (BTKA(F ) +RFC) + (BTKA(F ) +RFC)T∆FC. (3.3)

Proof. By using directional derivatives and differentiating ℓ and h with respect to their
arguments the above derivatives are obtained.

The next theorem states the KKT optimality conditions of the problem P3.

Theorem 3.2 (See e.g. [2, Sec. 5]). Suppose that (K̄, F̄ ) is a local minimizer for the NSDP
problem (2.9) and let (2.9) be regular at (K̄, F̄ ). Then there exist Lagrange multipliers
Ū , Z̄1, Z̄2 ∈ Rnx×nx such that at (K̄, F̄ , Ū , Z̄1, Z̄2) the following conditions are satisfied:

A(F̄ )(Ū − Z̄2)A(F̄ )T − Ū + Z̄2 + Z̄1 + V = 0 (3.4)

2 (BT K̄A(F̄ )(Ū − Z̄2) +RF̄CŪ)CT = 0 (3.5)

A(F̄ )T K̄A(F̄ )− K̄ +Q(F̄ ) = 0 (3.6)

Tr(K̄T Z̄1) = 0, Tr(g(K̄, F̄ )T Z̄2) = 0 (3.7)

K̄ ≻ 0, g(K̄, F̄ ) ≻ 0, Z̄1 ≽ 0, Z̄2 ≽ 0. (3.8)

Proof. From Lemma 3.1 and by applying the KKT conditions on the derivatives ℓK , ℓF and
ℓU then (3.4)–(3.6) are, respectively, obtained. Moreover, (3.7) represents the complementar-
ity condition and (3.8) represents feasibility with respect to the semi-definite constraints.

Similarly for the problem P4 we have the following result.

Lemma 3.3. Let (L̄, F̄ ) be a local minimizer for the NSDP problem P4 and let P4 be

regular at (L̄, F̄ ). Then there exist Lagrange multipliers Ũ , Z̃1, Z̃2 ∈ Rnx×nx such that at
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(L̄, F̄ , Ũ , Z̃1, Z̃2) it holds that:

A(F̄ )T (Ũ − Z̃2)A(F̄ )− Ũ + Z̃2 + Z̃1 +Q(F̄ ) = 0 (3.9)

2 (BT (Ũ − Z̃2)A(F̄ ) +RF̄C)L̄CT = 0 (3.10)

A(F̄ )L̄A(F̄ )T − L̄+ V = 0 (3.11)

Tr(L̄T Z̃1) = 0, Tr(g̃(L̄, F̄ )T Z̃2) = 0 (3.12)

L̄ ≻ 0, g̃(L̄, F̄ ) ≻ 0, Z̃1 ≽ 0, Z̃2 ≽ 0. (3.13)

Observe that, if we replace the positive definite constraints by the stability condition
F ∈ Ds and assume that F̄ ∈ Ds then the KKT system reduces to the first three equations
(3.4)–(3.6) for the problem P3 and (3.9)–(3.11) for the problem P4. Moreover, the two
systems coincide and in this case L̄ plays the role of the dual variable in the first system
while K̄ is the dual variable for the second system.

4 Augmented Lagrangian SQP Trust Region Method

We consider an SQP augmented Lagrangian method globalized by trust region for solving P3
and P4. This method is close to the method ALSQP introduced in [16] for solving different
NSDP originating from the H2/H∞ synthesis problem for continuous-time systems. In
order to simplify the presentation let us define the Lagrangian function associated with the
equality constraint of the problem (1.1) by:

ℓ(X,U) = J(X) + Tr(UTh(X)), (4.1)

where U ∈ Rn×n is the associated Lagrange multiplier. Moreover, the augmented Lagrangian
function is defined by:

Lσ(X,U) = ℓ(X,U) +
σ

2
∥h(X)∥2, (4.2)

where σ ≥ 0 is the penalty parameter.
First and second-order directional derivatives of Lσ can be obtained from the derivatives

of ℓ using the fact that:

Lσ
X(X,U)∆X = ℓX(X,U + σh(X))∆X

and

Lσ
XX(X,U)(∆X,∆X) = JXX(X)(∆X,∆X) + Tr((U + σh)ThXX(∆X,∆X))

+ σTr(hX∆XThX∆X).

The SQP augmented Lagrangian trust region method solves successively quadratic pro-
gram of the following form:

min
∆X

qk(∆X) s.t. hX(Xk)∆X + h(Xk) = 0, ∥∆X∥ ≤ δk, Xk +∆X ∈ Fs, (4.3)

where δk > 0 is the trust region radius at iteration k, Xk ∈ Rnx×nx × Rnu×ny is given and
qk(∆X) is the quadratic model of the augmented Lagrangian function (4.2) which takes the
following form:

qk(∆X) = Lσ(Xk, Uk) + Lσ
X(Xk, Uk)∆X +

1

2
Lσ

XX(Xk, Uk)(∆X,∆X). (4.4)
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In particular, by setting X = (K,F ) the constrained trust region problem corresponding
to P3 takes the following form:

min
(∆K,∆F )

qk(∆K,∆F ) s.t. hK(Kk, Fk)∆K + hF (Kk, Fk)∆F + h(Kk, Fk) = 0,

∥(∆K,∆F )∥ ≤ δk, (Kk +∆K,Fk +∆F ) ∈ Fs, (4.5)

where Kk ∈ Rnx×nx and Fk ∈ Rnu×ny are given and δk > 0 is the trust region radius at
iteration k.

Similarly by taking X = (L,F ) the constrained trust region problem corresponding to
the NSDP problem P4 will be:

min
(∆L,∆F )

q̃k(∆L,∆F ) s.t. h̃L(Lk, Fk)∆L+ h̃F (Lk, Fk)∆F + h̃(Lk, Fk) = 0,

∥(∆L,∆F )∥ ≤ δk, (Lk +∆L,Fk +∆F ) ∈ Fs, (4.6)

where Lk ∈ Rnx×nx and Fk ∈ Rnu×ny are given.
Since any of the above trust region problems may not have a solution when the current

iterate is infeasible due to inconsistent constraints; see e.g. [21], we may avoid this situation
by using the tangent space strategy with step decomposition. The trust region method
presented in [19] follows this strategy. We apply the algorithm given there for solving the
two trust region problems (4.5) and (4.6), but with replacing the regular Lagrangian function
by the augmented Lagrangian.

Throughout this section the following assumptions hold:

Assumption 4.1. We assume that:

(i) the functions J , h, h̃, g, and g̃ are twice continuously differentiable.

(ii) there exist strict feasible point X0 = (K0, F0) for P3 or X0 = (L0, F0) for P4.

(iii) the mappings hK and h̃L are invertible for given X = (K,F ) and X = (L,F ), respec-
tively.

Based on the above assumption where h−1
K and h̃−1

L are assumed to exist, we have the
following result.

Lemma 4.2. Let (X,U) ∈ Rnx×nx × Rnu×ny × Rnx×nx and ∆X ∈ Rnx×nx × Rnu×ny be
given. The range space of the operators T1 and T2, defined below, coincide with the null
spaces of the Jacobian matrices ∇hT and ∇h̃T :

T1(K,F ) = (−h−1
K (K,F )hF (K,F ), I), T2(L,F ) = (−h̃−1

L (L,F )h̃F (L,F ), I), (4.7)

where I is the identity operator.

Proof. The operators ∇Kh(K,F ) and ∇Lh̃(L,F ) are linear as well as bijective. Then both
are invertible and consequently the linearized equality constraints of the QP subproblems
(4.5) and (4.6) imply that:

∆K = −∇Kh−1(K,F )∇Fh(K,F )∆F −∇Kh−1(K,F )h(K,F )

∆L = −∇Lh̃
−1(L,F )∇F h̃(L,F )∆F −∇Lh̃

−1(L,F )h̃(L,F ).
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This leads to the following decomposition of the steps:

∆X = (∆K,∆F ) = T1(K,F )∆F +N1(K,F ), (4.8)

∆X = (∆L,∆F ) = T2(L,F )∆F +N2(L,F ), (4.9)

where

N1(K,F ) = (−h−1
K (K,F )h(K,F ), 0), N2(L,F ) = (−h̃−1

L (L,F )h̃(L,F ), 0), (4.10)

where 0 is the zero matrix.
The null space of the Jacobian ∇hT is given by:{

(∆K,∆F ) ∈ Rnx×nx+nu×ny : hK(K,F )∆K + hF (K,F )∆F = 0
}

=
{
T1(K,F )∆F, ∆F ∈ Rnu×ny

}
= R(T1(K,F )), (4.11)

where R(T1) is the range space of T1 as defined in (4.7); Similarly the null space of ∇h̃T

coincides with the range space of the operator T2.

From the step decomposition given by Lemma 4.2 the linearized equality constraints of
the QP problems (4.5) and (4.6) decompose into four linear matrix equations as given in
the following lemma.

Lemma 4.3. Let X = (K,F ) ∈ Fs for P3 and X = (L,F ) ∈ Fs for P4 be given and let

hK and h̃L be invertible. Then the linearized equality constraints of the QP problems (4.5)
and (4.6) decompose into the following linear matrix equations:

hK(K,F )∆Kn + h(K,F ) = 0 (4.12)

hK(K,F )∆Kt + hF (K,F )∆F = 0 (4.13)

h̃L(L,F )∆Ln + h̃(L,F ) = 0 (4.14)

h̃L(L,F )∆Lt + h̃F (L,F )∆F = 0. (4.15)

Proof. From the step decomposition (4.8)–(4.9) the linearized equality constraints in (4.5)
and (4.6) can be, respectively, rewritten as:

hK(K,F )∆Kt + hF (K,F )∆F + hK(K,F )∆Kn + h(K,F ) = 0 (4.16)

h̃L(L,F )∆Lt + h̃F (L,F )∆F + h̃L(L,F )∆Ln + h̃(L,F ) = 0. (4.17)

Since T1(K,F )∆F and T2(L,F )∆F are the null spaces of the Jacobian matrices ∇hT and

∇h̃T , respectively, then according to (4.11) we have

hK(K,F )∆Kt + hF (K,F )∆F = 0, ∀ ∆F

h̃L(L,F )∆Lt + h̃F (L,F )∆F = 0 ∀ ∆F ,

that correspond to (4.13) and (4.15), respectively. Thus, (4.16) and (4.17) reduce to (4.12)
and (4.14), respectively.
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By substituting the derivatives of Lemma 3.1 in (4.12)–(4.15) these equations take the
form of discrete Lyapunov equations.

In order to solve the trust region problems (4.5) and (4.6) we use the the reduced Hessian
approach with step decomposition; see e.g. [21]. In that approach the trust region problem
decomposes into two unconstrained trust region subproblems. The first subproblem is of
the following form:

min
∥∆Kn∥≤θδk

1

2
∥hK(Kk, Fk)∆Kn + h(Kk, Fk)∥2, (4.18)

min
∥∆Ln∥≤θδk

1

2
∥h̃L(Lk, Fk)∆Ln + h̃(Lk, Fk)∥2, (4.19)

where θ ∈ (0, 1) is a parameter. An efficient way for solving these two subproblems is to
solve the linear matrix equations (4.12) and (4.14) and then scale the obtained solutions
to satisfy the trust region constraint. The resulting solutions ∆Kn and ∆Ln of the two
subproblems are called the normal steps for the two subproblems, respectively.

The tangential step components ∆Kt(∆F ) = T1(·)∆F and ∆Lt(∆F ) = T2(·)∆F depend
on the step component ∆F . Consequently, if ∆F is known in advance then ∆Kt and ∆Lt

can be obtained by solving (4.13) and (4.15), respectively. The tangential trust region
subproblems are, respectively:

min
∆F

ϕ1
k(∆F ) s.t. ∥∆F∥ ≤ δk, (Kk +∆Kn + T1(·)∆F, Fk +∆F ) ∈ Fs, (4.20)

min
∆F

ϕ2
k(∆F ) s.t. ∥∆F∥ ≤ δk, (Lk +∆Ln + T2(·)∆F, Fk +∆F ) ∈ Fs, (4.21)

where ϕ1
k(∆F ) and ϕ1

k(∆F ) are the quadratic models qk(∆K,∆F ) and q̃k(∆L,∆F ) pro-
jected into the null spaces of the Jacobian of the corresponding linearized equality con-
straints, which can be rewritten in following compact forms:

ϕ1
k(∆F ) = ⟨∆F, TT

1 ∇J + TT
1 ∇2

XXLσN1⟩+
1

2
⟨∆F , TT

1 ∇2
XXLσT1∆F ⟩ (4.22)

ϕ2
k(∆F ) = ⟨∆F, TT

2 ∇J + TT
2 ∇2

XXLσN2⟩+
1

2
⟨∆F , TT

2 ∇2
XXLσT2∆F ⟩ (4.23)

where TT
1 ∇2

XXLσT1 and TT
2 ∇2

XXLσT2 are the reduced Hessian of the augmented Lagrangian
for P3 and P4, respectively.

By applying the optimality conditions on the trust region subproblem (4.20) we obtain
the following coupled linear system of equations.

Lemma 4.4. Let (K,F,U) ∈ Fs × Rnx×nx be given. The step ∆F ∈ Rnu×ny solution of
the trust subproblem (4.20) solves the following linear matrix equation:

(BTKB +R)∆FC(U + σh(.))CT +BT∆Kt(∆F )A(F )(U + σh(.))CT

+(BTKA(F ) +RFC)∆W (∆F )CT + λ∆F = −BT∆KnA(F )(U + σh(.))CT

−(BTKA(F ) +RFC)
(
Y + (U + σh(.))

)
CT , (4.24)

where λ > 0 is the Lagrange multiplier associated with the trust region constraint and ∆Kn,
∆Kt(∆F ), U , Y and ∆W (∆F ) solve, respectively, the discrete Lyapunov equations (4.12),
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(4.13) and

U = A(F )UA(F )T + V (4.25)

Y = A(F )Y A(F )T +M1 +MT
1 (4.26)

∆W = A(F )∆WA(F )T +B∆FC(U + σh(.))A(F )T +A(F )(U + σh(.))(B∆FC)T , (4.27)

where
M1 = A(F )(U + σh)A(F )T − (U + σh) + V.

Proof. First, we form the Lagrangian function associated with the trust region constraint of
the problem (4.20):

ℓ1(∆F, λ) = ϕ1
k(∆F ) + λ(∥∆F∥2 − δ2k)

= Tr(∆Kt(∆F )M1) + 2Tr((BTKA(F ) +RFC)(U + σh)CT∆FT )

+ 2Tr(BT∆KnA(F )(U + σh)CT∆FT ) + Tr((BTKB +R)∆FC(U + σh)CT∆FT )

+ 2Tr(BT∆Kt(∆F )A(F )(U + σh)CT∆FT ) + λ(Tr(∆FT∆F )− δ2k).

By differentiating ℓ1 with respect to ∆F and applying the optimality conditions we obtain
(4.24) coupled with the discrete Lyapunov equations (4.12), (4.13), (4.25), (4.26), and (4.27).
In order to evaluate the derivative ℓ1 with respect to ∆F the following properties of the trace
operator are used:

∂

∂∆F
Tr (M1∆FM2) = MT

1 MT
2 ,

∂

∂∆F
Tr (M1∆FTM2) = M2M1,

for any given matrices M1 and M2 of appropriate dimensions. Note that for the two terms
that contain ∆Kt(∆F ) we replace ∆Kt(∆F ) solution of (4.13) by its exact value:

∆Kt(∆F ) =
∞∑
k=0

(A(F )T )k
(
CT∆FT (BTKA(F )+RFC)+(BTKA(F )+RFC)T∆FC

)
A(F )k,

(4.28)
and then perform the differentiation, e.g. the derivative of the first term in ℓ1 is carried out
as follows:

∂

∂∆F
Tr(M1∆Kt(∆F ))

=
∂

∂∆F
Tr

[
M1

∞∑
k=0

(A(F )T )k
(
CT∆FT (BTKA(F ) +RFC)

+ (BTKA(F ) +RFC)T∆FC
)
A(F )k

]
= (BTKA(F ) +RFC)

∞∑
k=0

A(F )k
(
M1 +MT

1

)
(A(F )T )k CT

= (BTKA(F ) +RFC)Y CT ,
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where

Y =
∞∑
k=0

A(F )k
(
M1 +MT

1

)
(A(F )T )k

solves the discrete Lyapunov equation (4.26).

Similarly by applying the first-order optimality conditions on the subproblem (4.21) the
following result is obtained.

Lemma 4.5. Let (L,F, Ũ) ∈ Fs ×Rnx×nx be given. The step ∆F ∈ Rnu×ny solution of the
trust subproblem (4.21) solves the following linear matrix equation:

(BT (Ũ + σh̃(.))B +R)∆FCLCT + (BT (Ũ + σh̃(.))A(F ) +RFC)∆Lt(∆F )CT

+BT∆W̃ (∆F )A(F )LCT + λ∆F = −(BT (Ũ + σh̃(.))A(F ) +RFC)
(
L+∆Ln + Ỹ

)
CT ),
(4.29)

where ∆Ln, ∆Lt(∆F ), Ũ , Ỹ and ∆W̃ (∆F ) solve, respectively, the discrete Lyapunov equa-
tions (4.14), (4.15) and

Ũ = A(F )T ŨA(F ) + h̃(L,F ) (4.30)

Ỹ = A(F )T Ỹ A(F ) +M2 +MT
2 (4.31)

∆W̃ = A(F )T∆W̃A(F ) + CT∆FT
(
BT (Ũ + σh̃(.))A(F ) +RFC

)
+
(
BT (Ũ + σh̃(.))A(F ) +RFC

)T
∆FC, (4.32)

where
M2 = A(F )T (Ũ + σh̃)A(F )− (Ũ + σh̃) +Q(F ).

We apply for solving the linear matrix equation (4.24) coupled with the discrete Lyapunov
equations (4.12), (4.13), (4.25), (4.26) and (4.27) a modified Steihaug conjugate gradient
(CG) trust region algorithm (see e.g. [21, Algorithm 4.3]). At every iteration of the CG
algorithm and for given trust-region radius δk a maximal parameter τ > 0 is calculated that
make sure that the positive definite constraint:

(Kk +∆Kn
k + T1(Kk, Fk)∆F, Fk +∆F ) ∈ Fs

is satisfied for the subproblem (4.20) and

(Lk +∆Ln
k + T2(Lk, Fk)∆F, Fk +∆F ) ∈ Fs

is satisfied for the subproblem (4.21). The Matlab function cholinc of the incomplete
Cholesky factorization is utilized to achieve that goal. The CG trust region algorithm
is stated below in which G denotes the approximate solution of (4.24) coupled with (4.12),
(4.13), (4.25), (4.26) and (4.27) while E andH denote the residual and the direction required
by the CG method, respectively.

Algorithm 4.6 (CG trust region algorithm for calculating (∆Kt,∆F ) solution of (4.20)).
Let (Kk, Fk) ∈ Fs, Uk, Yk, δk > 0 and σ > 0 be given. Let ∆Kn

k ∈ Rnx×nx be a solution of
(4.18). Set G := 0nu×ny ,

E := −BT∆KnA(F )(Uk + σhk(.))C
T − (BT

k KA(Fk) +RFkC)
(
Yk + (Uk + σhk(.))

)
CT ,
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H := E, ϵcg = 0.01 ∥E∥.
Repeat at most nu × ny.

1. Solve (4.13) and (4.27) for ∆Kt(H) and ∆W (H), respectively.

2. Calculate the curvature K = Tr(HTU(H)), where U(·) is the left hand side of (4.24).
Then set ξ = ∥E∥2/K.

3. Calculate the following parameter:

τ̃ = max
{
τ > 0 : ∥G+ τH∥ ≤ δk,Kk +∆Kn

k +∆Kt(τ)≻0, ∆S(τ) ≻ 0
}
,

such that

∆S(τ) = ∆Kt(∆F )−A(Fk +G+ τH)T∆Kt(∆F )A(Fk +G+ τH). (4.33)

4. If ξ > τ̃ or K ≤ 0, then set ∆F = G+ τ̃H, and exit; otherwise, set G+ = G+ ξH.

5. Update the residual: E+ = E − ξ U(H), and set ϵcg = min{ϵ, ∥E0∥}.

6. If ∥E+∥
∥E0∥ ≤ ϵcg, set ∆F = G+ and exit; otherwise go to the next step.

7. Compute ζ = ∥E+∥2

∥E∥2 , set H+ = E+ + ζH, and go to step 1.

End(repeat)

In step 3 of the above algorithm the maximal τ̄ is calculated as follows. For given δk, G
and H we solve for τ > 0 the scalar quadratic equation

∥G+ τ H∥2 = δ2k.

If the computed τ > 0 is such that

Kk +∆Kn
k +∆Kt(τ)≻0 and ∆S(τ) ≻ 0,

where ∆S(τ) is given by (4.33), then we set τ̄ := τ , update the step and exit the CG method.
Otherwise, we decrease τ in a backtracking loop until we reach τ̄ > 0 satisfying these positive
definite constraints. The Matlab function cholinc of the incomplete Cholesky factorization
can be used to check those positive definite constraints. According to Theorem 2.4 one can
equivalently compute τ̄ > 0 such that Fk+(G+ τ̄H) ∈ Ds, namely that fulfills ρ(A+B(Fk+
(G+ τ̄H))C) < 1.

The same algorithm is applied to solve the linear matrix equation (4.29) coupled with
the discrete Lyapunov equations (4.14), (4.15), (4.30), (4.31) and (4.32).

The update of the computed trial step by the SQP augmented Lagrangian method de-
pends on the value of the ratio rk = aredk/predk, where aredk is the actual reduction that
occurs in the merit function (chosen in our case as the augmented Lagrangian function (4.2))
and predk is the predicted reduction in the quadratic model. The two quantities for P3 are
defined by:

aredk = Lσ(Kk, Fk, Uk)− Lσ(Kk +∆K,Fk +∆F,Uk+1) (4.34)

predk = ϕ1
k(0)− ϕ1

k(∆F ) + σ
(
∥hk∥2 − ∥hk + hk

K(·)∆K + hk
F (·)∆F∥2

)
, (4.35)
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where ϕ1(∆F ) is given by (4.22). Similarly for P4 the reductions aredk and predk are:

aredk = Lσ(Lk, Fk, Ũk)− Lσ(Lk +∆L,Fk +∆F , Ũk+1) (4.36)

predk = ϕ2
k(0)− ϕ2

k(∆F ) + σ
(
∥h̃k∥2 − ∥h̃k + h̃k

L(·)∆L+ h̃k
F (·)∆F∥2

)
. (4.37)

The framework of the SQP augmented Lagrangian trust region method for solving P3 is
written in the following lines. The method stops if a KKT point is reached. Therefore it is
convenient to use the following stopping criterion:

∥∇Kℓk∥+ ∥∇F ℓ
k∥+ ∥hk∥ ≤ ϵ, (4.38)

where ϵ > 0 is the tolerance. The algorithm can be applied for solving P4 analogously.

Algorithm 4.7 (SQPaL: The SQP augmented Lagrangian trust region method). Initializa-
tion: Let (K0, F0, U0) ∈ Fs ×Rnx×nx be given starting point. Let ϵ ∈ (0, 1) be the tolerance
and 0 < c1 < c2 < 1 be given parameters. Set k := 0.
Until the convergence condition (4.38) is satisfied, do

1. Compute the normal step ∆Kn solution of the subproblem (4.18).

2. Given ∆Kn, compute the tangential step T1(·)∆F = (∆Kt(∆F ),∆F ) solution of the
subproblem (4.20) such that (Kk +∆Kn +∆Kt(∆F ), Fk +∆F ) ∈ Fs.

3. Set (∆K,∆F ) = (∆Kn, 0) + (∆Kt(∆F ),∆F ), and then compute a new multiplier
Uk+1 solution of the linear matrix equation (4.25).

4. Compute the quantities aredk and predk by using (4.34) and (4.35), respectively. Then
update the penalty parameter σ by the scheme given in [16, Algorithm 3.2].

5. Update the trust region radius and the computed trial step: Compute the ratio rk.

If rk < c1,

set δk+1 := δk/2 and (Kk+1, Fk+1) := (Kk, Fk);

Else if c1 ≤ rk < c2,

set δk+1 := δk and (Kk+1, Fk+1) = (Kk, Fk) + (∆K,∆F );

Else if rk ≥ c2,

set δk+1 := 2 δk and (Kk+1, Fk+1) = (Kk, Fk) + (∆K,∆F ).

End (If)

6. Set k := k + 1 and go to Step 1.

End (do)

Starting point In order to find feasible starting point with respect to the positive definite
constraints, i.e. (K0, F0) ∈ Fs and (L0, F0) ∈ Fs we use Theorem 2.4 for that purpose. For
P3, e.g., the feasible point (K0, F0) ∈ Fs is obtained as follows. If ρ(A) < 1, then F0

might be the zero matrix and K0 is obtained as the positive definite solution of the discrete
Lyapunov equation (3.6). In case ρ(A) ≥ 1 then F0 ∈ Ds is required. The matrix F0 ∈ Ds

can be obtained e.g. by using the method described in [17, Fstab]. Moreover, we can also
apply the parametrization approach described in [19] so that F0 = 0 can be chosen to start
the iteration sequence. The same strategy can be used to find (L0, F0) ∈ Fs as we solve P4.
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5 Numerical Results

This section is devoted to present the implementation of the method SQPaL for solving
the NSDP problems P3 and P4. It is particularly important to analyze the performance
of the method SQPaL on the two problems and to compare the achieved stationary point
of this method when applied on either of the two formulations. Moreover, the method
SQPaL applied on P3 is compared numerically with Newton’s method with line search [15]
for solving P1; we denote it for short by NLS.

The considered test problems are from the benchmark collection COMPlib [9]. All these
test problems are for continuous-time models where we use the Matlab function c2d to
convert the continuous-time system into the discrete-time counterpart, where the sampling
time period was taken ∆T = 0.1. For all test problems the constant weight matrices Q and
R and the covariance matrix V are chosen as Q = V = Inx and R = 1.5Inu . The parameters
of the trust region method have been assigned the values c1 = 1× 10−4 and c2 = 0.1. The
tolerance is chosen as ϵ = 1.0× 10−5.

In the following we consider five test problems in details. For each test problem we
list the constant data matrices A, B, and C of the discrete-time model. For each test
problem we compare the method SQPaL on the two formulations P3 and P4 with respect
to number of iterations. Moreover, the method SQPaL applied on P3 is compared vs. the
method NLS applied on the corresponding problem P1. For each test problem we follow
the procedure given at the end of the last section to compute feasible starting point with
respect to the positive definite constraints; i.e. (K0, F0) ∈ Fs and (L0, F0) ∈ Fs for P3 and
P4, respectively.

Example 5.1. The first example is the terrain following model [9, TF1]. The data matrices
for the discrete-time model are as follows:

A =



0.9048 0 0 0 0 0 0
0.0952 1.0000 0 0 0 0 0
0.0048 0.1000 1.0000 0 0 0 0

0 0 0 1.0000 0 0 0
0 0 0 0.0952 0.9048 0 0

−0.0082 0.0034 0 0.0048 0.0951 0.9997 0
0.0000 0.0002 0.0050 0 0 0 1.0000


,

B =



0.0952 0
0.0048 0
0.0002 0

0 0.0090
0 0.0004

−0.0004 0.0000
0.0000 0


, CT =



0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


.

The uncontrolled system is discrete-time Schur unstable, where ρ(A) = 1. Therefore, F0 ∈
Ds is required to find (K0, F0) ∈ Fs and (L0, F0) ∈ Fs as explained above. By using

F0 =

[
−0.9 −2.0 −0.6 −0.6
−1.9 0.0 −1.1 −1.9

]
the method SQPaL achieved the stationary points (K∗, F∗) ∈ Fs and (L∗, F∗) ∈ Fs after 10
iterations for the two problems P3 and P4, where the same F∗ and the same J∗ are obtained.
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Figure 1: Open and closed–loop systems for the terrain following model of Example 5.1.

The final SOF gain is:

F∗ =

[
−0.8803 −1.9931 −0.5817 −0.6291
−1.7402 −0.0205 −1.0863 −1.7129

]
.

On the other hand, the method NLS could not achieve the prescribed accuracy and stops
at the eleventh iteration with ||∇J(F )|| = 4.3292×10−5.

Table 1: Example 5.1: Performance of the method SQPaL for solving P3.

k Jk ∥∇Xℓk∥+ ∥hk∥ ∥hk∥ ρ(A(Fk)) δk
0 3.8803e+003 7.9575e+003 2.6354e−012 9.9221e−001 7.9575e+003
1 3.4902e+003 1.2265e+003 3.9286e−001 9.9342e−001 1.5915e+004
2 3.5961e+003 6.1220e+002 6.7903e−001 9.9274e−001 1.5915e+004
3 3.6366e+003 2.0956e+002 1.9427e−002 9.9272e−001 3.1830e+004
..
.

..

.
..
.

..

.
..
.

..

.
8 3.6213e+003 4.5600e−002 6.8503e−008 9.9250e−001 1.0186e+006
9 3.6213e+003 7.2942e−005 2.8078e−008 9.9250e−001 2.0371e+006

10 3.6213e+003 2.2967e−009 4.5357e−013 9.9250e−001 4.0742e+006
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Table 1 shows the convergence behavior of the method SQPaL for solving P3. The
columns from the left to the right are the iteration counter k, the objective function Jk, the
convergence criterion ∥∇Xℓk∥+∥hk∥, the norm of the equality constraint ∥hk∥, the spectral
radius of the closed-loop system matrix ρ(A(Fk)), and the trust region radius δk.

In order to show the benefit of computing the optimal output feedback controller F∗ ∈ Ds

we have plotted the state variables of the discrete-time system for the open and closed-loop
systems. Note that this model is an open-loop unstable system. Figure 1 shows the state
variables for the open and closed-loop systems. The effect of the achieved controller can be
observed where all state variables in the second figure converge to the zero state.

Example 5.2. The second test problem represents the lateral axis dynamic for the L–1011
aircraft model [9, AC17]. The data matrices of the discrete-time model are the following:

A =


0.7385 0.0802 0.0001 −0.0027

−0.0845 0.9751 0.0035 0.0002
0.0025 −0.0258 1.0000 0.0911
0.0538 −0.4984 −0.0009 0.8277

 , B =


−0.0025
0.0001

−0.0075
−0.1459

 , CT =


0 0
0 0
1 0
0 1

 .

The uncontrolled system is discrete-time Schur stable, where ρ(A) = 0.9723 < 1. Starting
from F0 = 0 the method SQPaL requires 10 and 27 iterations to reach the stationary point
for P3 and P4, respectively. Moreover, the method NLS requires 12 iterations to converge
to the stationary point. The achieved discrete-time output feedback gain by both methods
is:

F∗ =
[
1.1736 1.7594

]
.

Table 2: Example 5.2: Performance of the method SQPaL for solving P3 (right) vs. the
method NLS for solving P1 (left).

k J(Fk) ∥∇J(Fk)∥ k J(Kk) ∥∇Xℓk∥+ ∥hk∥
0 1.0558e+003 5.5993e+003 0 1.0558e+003 5.5993e+003
1 6.8745e+002 2.4118e+003 1 7.7677e+002 3.3367e+003
2 4.6698e+002 1.0248e+003 2 4.1066e+002 1.1128e+003
3 3.3987e+002 4.3055e+002 3 3.1023e+002 4.2220e+002
.
..

.

..
.
..

.

..
.
..

.

..
10 1.9781e+002 9.7820e-002 8 1.9770e+002 1.6972e-001
11 1.9781e+002 3.8009e-004 9 1.9781e+002 6.3819e-004
12 1.9781e+002 5.7479e-009 10 1.9781e+002 6.5305e-009

Table 2 compares the method SQPaL for solving P3 vs. the method NLS for solving P1,
where fast local rate of convergence is observed.

Example 5.3. This test problem represents a transport aircraft application [9, AC9]. The
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data matrices for the discrete-time model are as follows:

A =



0.9986 0.0171 −0.0019 −0.0561 −0.0015 −0.0003 0.0013
−0.0015 0.9279 0.0923 0.0002 −0.0117 −0.0019 0.0014
0.0001 0.0073 0.9168 −0.0000 −0.1388 −0.0271 −0.0001
0.0000 0.0004 0.0958 1.0000 −0.0093 −0.0015 −0.0000

0 0 0 0 0.1353 0.0460 0
0 0 0 0 0 0.0067 0
0 0 0 0 0 0 0.9565
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0012 −0.0000 −0.0999
0.0052 0.0000 0.0001

−0.0005 −0.0000 −0.0000
−0.0000 −0.0000 −0.0000

0 0 0
0 0 0
0 0 0

0.9565 0.0004 0
−0.0004 0.9565 0

0 0 1.0000


, B =



−0.0008 0.0001 −0.0001 −0.0050
−0.0037 0.0001 0.0003 0.0000
−0.0730 −0.0000 −0.0000 −0.0000
−0.0024 −0.0000 −0.0000 −0.0000
0.4175 0 0 0
0.9933 0 0 0

0 0.0922 0 0
0 0 0.1119 0
0 0 −4.7751 0
0 0 0 0.1000


,

CT =



0.0065 1.0000 −0.0137 0 0
0.3203 0 0.1780 −13.5800 0

−0.0336 0 0.0002 0 1.0000
0 0 −0.5610 13.5800 0

−0.1032 0 −0.0373 0 0
0 0 0 0 0

−0.0065 −1.0000 0.0137 0 0
−0.0236 0 −0.0131 0 0

0 0 0 0 0
0 0 0 0 0


.

The method SQPaL requires an initial F0 ∈ Ds to obtain feasible point with respect
to the positive definite constraints, since ρ(A) = 1.0012 > 1. Having a starting point as
explained above the method SQPaL achieves the stationary point after 73 and 130 iterations
for P3 and P4, respectively, while the method NLS fails to converge. The initial and optimal
output feedback controllers are, respectively:

F0 =


0.2800 −0.3100 −0.3800 0.0157 0.5400
0.0600 0.6300 −0.0700 −0.0113 0.1900
0.0000 0.0000 0.0000 0.0001 −0.0000

−0.2100 0.9300 0.2800 −0.0085 −0.3700

 ,

F∗ =


1.5751 −0.5930 −1.1304 0.0155 0.8881

−0.7038 0.7094 0.5765 −0.0048 −0.2839
0.0063 −0.0002 0.0043 0.0002 0.0005

−2.2541 1.2479 0.8306 −0.0234 −0.7498

 .

Table 3 shows the convergence behavior of the method SQPaL for the two problems P3
and P4.
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Table 3: Example 5.3: Performance of the method SQPaL on the problems P3 and P4,
respectively.

k Jk ∥∇Xℓk∥+ ∥hk∥ k Jk ∥∇X ℓ̃k∥+ ∥h̃k∥
0 2.8065e+002 1.4437e+002 0 2.8065e+002 1.4437e+002
1 2.8054e+002 1.2017e+002 1 2.8054e+002 1.2117e+002
2 2.6552e+002 9.4544e+001 2 2.7232e+002 3.0755e+002
3 2.6655e+002 6.1488e+001 3 2.7435e+002 3.8596e+001
..
.

..

.
..
.

..

.
..
.

..

.
71 2.5455e+002 1.4834e−001 128 2.5455e+002 2.8663e−004
72 2.5455e+002 4.5868e−003 129 2.5455e+002 2.1954e−004
73 2.5455e+002 7.2132e−006 130 2.5455e+002 1.0139e−008

Example 5.4. This example is the decentralized interconnected system [9, DIS1]. The data
matrices for the discrete-time model are as follows:

A =



1.0130 −0.0044 0.0057 0.0043 0.0110 0.1989 0.0020 0.0076
−0.0514 0.9778 −0.0022 −0.0014 −0.0058 −0.0908 0.0977 −0.0040

0 0 0.9726 0.0289 0 0 0 0.0519
0 0 0 0.9675 0 0 0 0
0 0 0.0275 0.0031 0.8462 0 0 0.0084

−0.0150 0.0124 −0.0006 −0.0004 −0.0013 0.8420 0.0204 0.0010
−0.0321 0.0272 −0.0018 −0.0014 −0.0029 −0.0558 0.8341 −0.0023

0 0 0 0.0220 0 0 0 0.8205



B =



−0.0078 0.0024 0.0017 0.0001
0.0583 −0.0008 0.0014 −0.0001

0 0.0171 0 0.0007
0 0.1426 0 0
0 0.0004 0 0.0012

0.0004 −0.0001 0.0153 −0.0002
0.0010 −0.0002 0.0374 −0.0008

0 0.0017 0 0.0225


, CT =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

The uncontrolled system is discrete-time Schur stable, where ρ(A) = 0.9912 < 1. The
method SQPaL achieves the prescribed accuracy in 10 and 12 iterations for P3 and P4,
respectively. Moreover, the method NLS achieves the same SOF gain matrix F∗ after 12
iterations:

F∗ =


0.4592 −0.5589 0.0619 0.0782

−0.2417 −0.0200 −0.3875 −0.7075
−0.5865 −0.2234 −0.0984 −0.1185
−0.0406 0.0019 −0.0663 −0.0271

 .

Table 4 compares the performance of the method SQPaL for solving the problem P3 vs.
the method NLS for solving the problem P1.

Example 5.5. The current application represents a power system model [9, PSM]. The
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Table 4: Example 5.4: Performance of the method SQPaL for solving P3 (right) vs. the
method NLS for solving P1 (left).

k Jk ∥∇J(Fk)∥ k Jk ∥∇Xℓk∥+ ∥hk∥
0 5.2471e+002 2.0740e+003 0 5.2471e+002 2.0740e+003
1 3.8550e+002 1.0186e+003 1 3.1466e+002 8.9195e+002
2 2.8487e+002 4.6819e+002 2 2.2005e+002 3.0413e+002
3 2.3464e+002 2.3604e+002 3 1.8952e+002 9.9353e+001
.
..

.

..
.
..

.

..
.
..

.

..
10 1.8337e+002 3.9305e-002 8 1.8337e+002 8.1195e−003
11 1.8337e+002 2.7226e-003 9 1.8337e+002 2.4018e−005
12 1.8337e+002 6.0144e-006 10 1.8337e+002 7.4535e−011

data matrices for the discrete-time system are as follows:

A =



0.9728 0.0497 0.4143 −0.4853 0.0133 0.0001 0.0020
−0.2938 0.2793 −0.0778 0.0873 −0.0017 −0.0000 −0.0002
−0.0526 0.1556 0.7078 0.0098 −0.0001 −0.0000 −0.0000
0.0538 0.0010 0.0119 0.9734 −0.0538 −0.0010 −0.0119
0.0133 0.0001 0.0020 0.4853 0.9728 0.0497 0.4143

−0.0017 −0.0000 −0.0002 −0.0873 −0.2938 0.2793 −0.0778
−0.0001 −0.0000 −0.0000 −0.0098 −0.0526 0.1556 0.7078



B =



−0.4875 −0.0022
0.0875 0.0002
0.0098 0.0000

−0.0133 0.0133
−0.0022 −0.4875
0.0002 0.0875
0.0000 0.0098


, CT =



1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0


.

The uncontrolled system is discrete-time Schur stable, where ρ(A) = 0.9495 < 1. The
method SQPaL requires 8 and 10 iterations for solving P3 and P4, respectively, while the
method NLS needs 11 iterations to achieve the same SOF gain:

F∗ =

[
0.7065 0.0278 0.0469
0.0469 −0.0278 0.7065

]
.

Table 5 shows the convergence behavior of the method SQPaL on the two problems P3
and P4. The method performs on P3 better than P4 and it converges to the same stationary
point for both problems.

Table 7 compares the performance of the method SQPaL for solving the problem P3
vs. the method NLS for solving the problem P1 on 37 test problems from the benchmark
collection [9] with respect to number of iterations. The results show the significance of the
considered SQP augmented Lagrangian trust region approach for solving the NSDP problem
over Newton’s method applied on the particular formulation P1.

Moreover, we ran the method SQPaL on the two formulations P3 and P4 and compared
the performance in that case over 50 test problems from the benchmark [9]. Table 6 shows
the overall performance. Note that, if the method reaches the KKT point in less number of
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Table 5: Example 5.5: Performance of the method SQPaL for solving P3 and P4.

k Jk ∥∇Xℓk∥+ ∥hk∥ k Jk ∥∇X ℓ̃k∥+ ∥h̃k∥
0 9.5905e+001 3.9351e+002 0 9.5905e+001 3.9351e+002
1 5.9856e+001 1.3536e+002 1 7.8027e+001 2.3830e+002
2 4.8746e+001 5.4628e+001 2 6.7374e+001 1.5050e+002
3 4.1310e+001 1.7390e+001 3 5.8523e+001 9.4358e+001
.
..

.

..
.
..

.

..
.
..

.

..
6 4.1298e+001 2.3175e−001 8 4.1265e+001 2.8351e−001
7 4.1380e+001 6.6619e−003 9 4.1380e+001 5.3183e−003
8 4.1382e+001 2.2771e−006 10 4.1382e+001 1.3448e−006

Table 6: Comparison between the performance of the method SQPaL on the NSDP formu-
lations P3 and P4 over 50 test problems from the benchmark collection [9].

Problem P3 Problem P4

Number of wins 42 33

Total number of iterations 643 1044

Iterations average 12.86 20.88

iterations on a test problem it records win. We also report the total number of iterations
and the iteration average. We observe that the method SQPaL has better performance when
applied to solve P3 than P4. In particular, the stationary point is often reached with less
number of iterations.

6 Conclusion

In this article, an SQP augmented Lagrangian trust region method is proposed for solving
two nonlinear semidefinite programming problems originating from the static output feed-
back design problem for discrete-time systems. Both problems share similar properties in
common but differ in their structures. The proposed method SQPaL is compared vs. New-
ton’s method with line search applied on a particular formulation of the design problem.
The performance of the method SQPaL is compared numerically on the considered couple
of nonlinear semidefinite programming problems as well. Based on the considered set of test
problems the main conclusion that one can draw is that the SQP augmented Lagrangian
trust region method has better performance than Newton’s method. Moreover the method
SQPaL performs better as it solves the NSDP problem P3 than the NSDP problem P4.
Finally, the two problems P3 and P4 share similar characteristics but it is recommended to
consider the formulation P3 than P4.
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Table 7: Performance of the method SQPaL on the problem P3 vs. the method NLS on the
corresponding problem P1.
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