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where φ = 1
2ϕ

2
FB, ϕFB is the so-called Fischer-Burmeister function defined by

ϕFB(a, b) = a+ b−
√
a2 + b2 (1.3)

(or its variants), see [2, 3, 6, 7, 12,13,23]. The other way is to let

dk = −∂ψα(x
k, F (xk))/∂b− ρ[∂ψα(x

k, F (xk))/∂a], (1.4)

where

ψα(a, b) := ab+
1

2α
((a− αb)2+ − a2 + (b− αa)2+ − b2),

see [13, 18, 26, 27]. Almost all of the existing derivative-free methods in the literature are
limited to solve monotone or strongly monotone nonlinear complementarity problems. In
other words, the descent property of dk strongly depends on the monotone property of F . If
F is not monotone, then it is not known whether dk is still a descent direction of the merit
function.

Another kind of derivative-free methods for solving NCP(F ) is the quasi-Newton method
[14]. The quasi-Newton methods are globally convergent and even superlinearly convergent
if the strict complementarity holds at the solution [14]. Most existing quasi-Newton methods
are also not descent in the sense that the direction generated by the method may not be
descent for the merit function. The purpose of this paper is to develop descent derivative-
free methods for solving NCP(F ). We only consider the problem where F ′(x) is symmetric
for any x. We call this problem symmetric complementarity problem. The study in the
symmetric linear complementarity problems has received much attention in the last thirty
years, see e.g. [5,11,19,20,22,24]. Zhang and Li [28] proposed a descent BFGS type methods
for symmetric nonlinear complementarity problems. It is an extension of the norm descent
BFGS method proposed by Gu, Li, Qi and Zhou [8] for solving symmetric nonlinear equa-
tions. The method in [28] is monotone in the sense that the generated sequence of residual
functions is decreasing. It possesses global and superlinear convergence properties under
some reasonable conditions.

We develop another kind of derivative-free methods, which we call conjugate gradient
type methods, for solving symmetric nonlinear complementarity problems. The basic idea
is to extend some recently developed descent conjugate gradient methods in the solution
of optimization problem to solve some equivalent nonsmooth equation reformulation to the
NCP(F ). Due to the low storage requirement, the methods can be applied for solving
large-scale nonlinear complementarity problems. To design the method, we first reformulate
the symmetric nonlinear complementarity problems into a nonsmooth system of equations.
We then propose derivative-free conjugate gradient type methods (DFCGM) for solving the
nonsmooth equations reformulation using a similar technique to the conjugate gradient type
methods for symmetric smooth equations in [15, 16]. It should be pointed out that the
directions generated by our methods are different from (1.2) and (1.4). Under appropriate
conditions, we establish the global convergence of the proposed methods.

The remainder of the paper is organized as follows. In the next two sections, we propose
two conjugate gradient type derivative-free methods that generate descent directions for
some merit function and establish their global convergence respectively. In Section 4, we
present some numerical results to show the efficiency of the proposed methods.
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2 Two Derivative-Free Conjugate Gradient Type Algorithms

We begin this section with two descent conjugate gradient methods for solving the uncon-
strained optimization problem

min
x∈Rn

f(x),

where f : Rn → R is a continuously differentiable function.

Recently, Zhang, Zhou and Li [29] proposed a modified PRP conjugate gradient method
for solving the above problem. We call it the MPRP method. At iteration k, the MPRP
method generates a direction dk by

dk =

{
−∇f(xk) if k = 0,

−∇f(xk) + βPRP
k dk−1 − θkyk−1 if k ≥ 1,

(2.1)

where

yk−1 = ∇f(xk)−∇f(xk−1), βPRP
k =

∇f(xk)T yk−1

∥∇f(xk−1)∥2
, θk =

∇f(xk)T dk−1

∥∇f(xk−1)∥2
.

Cheng [4] proposed another modified PRP method called two-term modified PRP (TMPRP)
method in which the direction dk takes the form

dk =


−∇f(xk) if k = 0,

−∇f(xk) + βPRP
k (I − ∇f(xk)∇f(xk)T

∥∇f(xk)∥2
)dk−1 if k ≥ 1.

(2.2)

It is not difficult to see that the direction dk determined by (2.1) or (2.2) provides a
sufficient descent direction for f at xk in the sense that it satisfies

∇f(xk)T dk = −∥∇f(xk)∥2.

We are going to extend the above methods for solving a nonsmooth equation reformula-
tion to the NCP(F ). Let ϕFB : R2 → R be defined by (1.3) and ΦFB(x) = (ϕ1(x), . . . , ϕn(x))

T

with

ϕi(x) = ϕFB(xi, Fi(x)), i = 1, . . . , n.

Then problem (1.1) is reformulated as the following system of semismooth equations

ΦFB(x) = 0. (2.3)

The concept of semismoothness was introduced by Mifflin [21] and extended by Qi and
Sun [25]. The following definition is due to Qi and Sun [25].

Definition 2.1. We say that function F : Rn → Rn is semismooth at a point x ∈ Rn if it
is locally Lipschitzian at x and

lim
V ∈∂F (x+th′),h′→h,t↓0

V h′

exists for any h ∈ Rn, where ∂F (x) is the generalized Jacobian of F at x.
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Denote

Ψ(x) =
1

2
∥ΦFB(x)∥2.

It is well known that function ΦFB(x) is semismooth and Ψ(x) is smooth on Rn. Moreover,
the generalized Jacobian of ΦFB(x) satisfies

∂ΦT
FB(x) ⊆ diag(ai(x)) +∇F (x)diag(bi(x)),

where

ai(x) =

 1− xi√
x2i + F 2

i (x)
if (xi, Fi(x)) ̸= (0, 0),

1− ξi otherwise,

bi(x) =

 1− Fi(x)√
x2i + F 2

i (x)
if (xi, Fi(x)) ̸= (0, 0),

1− ηi otherwise,

where (ξi, ηi) ∈ R2, ∥(ξi, ηi)∥ ≤ 1. The gradient of the function Ψ(x) takes the form

∇Ψ(x) = V TΦFB(x), ∀V ∈ ∂ΦFB(x).

For the sake of convenience, we denote
Φ̃(x) = diag(bi(x))ΦFB(x),
p(x) = diag(ai(x))ΦFB(x),

qλ(x) = λ−1[F (x+ λΦ̃(x))− F (x)],
gλ(x) = p(x) + qλ(x).

(2.4)

It is easy to see that when λ is sufficiently small, we have qλ(x) ≈ F ′(x)Φ̃(x). If F ′(x) is
symmetric, we can use qλ(x) to approximate ∇F (x)Φ̃(x). Therefore when λ is sufficiently
small and F ′(x) = ∇F (x), we can use gλ(x) to approximate ∇Ψ(x). Based on the above
observation, we extend the MPRP method and the TMPRP method to solve the semismooth
equation reformulation (2.3) in which the search directions dk are determined by

dTT
k (λ) =

{
−gλ(x0), if k = 0,
−gλ(xk) + βk(λ)d

TT
k−1 − θk(λ)yk−1(λ), if k ≥ 1,

(2.5)

and

dTM
k (λ) =


−gλ(x0), if k = 0,

−gλ(xk) + βk(λ)(I −
gλ(xk)gλ(xk)

T

∥gλ(xk)∥2
)dTM

k−1, if k ≥ 1,
(2.6)

respectively. The parameters in (2.5) and (2.6) are given by

yk−1(λ) = gλ(xk)− gk−1, βk(λ) =
gλ(xk)

T
(gλ(xk)− gk−1)

∥gk−1∥2

and

θk(λ) =
gλ(xk)

T
dTT
k−1

∥gk−1∥2
,

gk−1 will be determined by Procedure 1.
In the latter part of the paper, without confusion, we use dk to denote either dTT

k or
dTM
k .
The following Lemma shows that when λ is sufficiently small, the search direction dk(λ)

is a descent direction of Ψ at xk.
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Lemma 2.2. Let σ1 and σ2 be positive constants, if xk is not a stationary point of the merit
function Ψ(x), then there exists a constant λ̄ > 0 depending on k such that when λ ∈ (0, λ̄),
dk(λ) satisfies

∇Ψ(xk)
T
dk(λ) < 0. (2.7)

Moreover, the inequality

Ψ(xk + λdk(λ))−Ψ(xk) ≤ −σ1∥λdk(λ)∥2 − σ2∥λΦFB(xk)∥2 (2.8)

holds for all λ > 0 sufficiently small.

Proof. It is clear that

lim
λ→0

∇Ψ(xk)
T
dk(λ) = −∥∇Ψ(xk)∥2 < 0.

This shows that (2.7) holds for all λ > 0 sufficiently small. We turn to the proof of (2.8).
Notice that

lim
λ→0

λ−1[Ψ(xk + λdk(λ))−Ψ(xk)] = lim
λ→0

∇Ψ(xk)
T
dk(λ) = −∥∇Ψ(xk)∥2 < 0.

Since
lim
λ→0

gλ(xk) = ∇Ψ(xk),

and dk(λ) is determined by (2.5) or (2.6), we have that there exists a constant l > 0 such
that ∥dk(λ)∥ ≤ l for any λ > 0 sufficiently small. Hence the right-hand side of (2.8) is o(λ).
We claim that inequality (2.8) holds for all λ > 0 sufficiently small.

The following Procedure 1 provides a way to determine a parameter λk > 0 such that
the direction dk satisfies (2.8). Procedure 2 gives a way to determine the steplength αk.

Procedure 1. Let constant ρ ∈ (0, 1) be given. Let ik be the smallest nonnegative integer
such that (2.8) holds with λ = ρi, i = 0, 1, . . .. Let λk = ρik , qk = qλk

(xk), gk = gλk
(xk),

βk = βk(λk), dk = dk(λk).

Procedure 2. Let ik and dk be determined by Procedure 1. If ik = 0, let αk = 1.
Otherwise, let jk be the largest positive integer j ∈ {0, 1, 2, . . . , ik − 1} satisfying

Ψ(xk + ρik−jdk)−Ψ(xk) ≤ −σ1∥ρik−jdk∥2 − σ2∥ρik−jΦFB(xk)∥2.

Let αk = ρik−jk .
It follows from Lemma 2.2 that Procedures 1 and 2 are well defined. It is easy to see

from Procedure 2 that if αk ̸= 1, then the following inequality holds

Ψ(xk + ρ−1αkdk)−Ψ(xk) > −σ1∥ρ−1αkdk∥2 − σ2∥ρ−1αkΦFB(xk)∥2.

Now, we propose a derivative-free method for solving (2.3). We call it the DFCG
(Derivative-Free Conjugate Gradient type) algorithm. The steps of the algorithm are stated
as follows.

DFCG Algorithm

Step 0 Given constants σ1 > 0, σ2 > 0, ρ ∈ (0, 1) and an initial point x0 ∈ Rn. Let
k := 0.
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Step 1 Determine dk and αk by Procedure 1 and Procedure 2, respectively. Let
xk+1 = xk + αkdk.

Step 2 Let k := k + 1. Go to Step 1.

When dk is determined by dTT
k or dTM

k , we call the corresponding algorithms as Algo-
rithm 1 or Algorithm 2 respectively.

3 Global Convergence

In this section, we prove the global convergence of the DFCG Algorithm under the following
assumptions.

Assumption A

(1) The level set Ω = {x ∈ Rn | Ψ(x) ≤ Ψ(x0)} is bounded.

(2) In some neighborhood N of Ω, F ′(x) is symmetric for any x ∈ N . Moreover, F ′ is
Lipschitz continuous, namely, there exists a constant L2 > 0 such that

∥F ′(x)− F ′(y)∥ ≤ L2∥x− y∥, ∀x, y ∈ N.

Remark 3.1. (i) The assumption that the level set is bounded holds for uniform P -
function F , see [12] for details.

(ii) The condition (2) of Assumption A obviously implies that there exists a constant
L1 > 0 such that

∥F (x)− F (y)∥ ≤ L1∥x− y∥, ∀x, y ∈ N.

(iii) Since {Ψ(xk)} is decreasing, it is clear that the sequence {xk} is contained in Ω. In
addition, we get from Assumption A that there are constants γ1 > 0 and γ2 > 0 such
that

∥F (x)∥ ≤ γ1, ∥F ′(x)∥ ≤ γ2, ∀x ∈ N.

In the latter part of the paper, we always suppose that the conditions in Assumption A
hold. Without specification, we let {xk} and {dk} be the iterative sequence and the direction
sequence generated by DFCG Algorithm respectively.

The following Lemma comes from [7].

Lemma 3.2. There exists a Lipschitz constant L > 0 such that

∥∇φ(a1, b1)−∇φ(a2, b2)∥ ≤ L∥(a1, b1)− (a2, b2)∥

holds for all (a1, b1), (a2, b2) ∈ R2.

Lemma 3.3. There exist positive constants L3, L4 and L5 such that for any x, y ∈ N, the
following inequalities hold:

∥Φ̃(x)− Φ̃(y)∥ ≤ L3∥x− y∥, (3.1)

∥p(x)− p(y)∥ ≤ L4∥x− y∥, (3.2)

∥∇Ψ(x)−∇Ψ(y)∥ ≤ L5∥x− y∥. (3.3)
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Proof. Since
∂φ

∂a
(xi, Fi(x)) = (p(x))i,

∂φ

∂b
(xi, Fi(x)) = (Φ̃(x))i,

∇φ(xi, Fi(x)) = ((p(x))i, (Φ̃(x))i),

by Lemma 3.2 we have

|(Φ̃(x)− Φ̃(y))i| ≤ ∥∇φ(xi, Fi(x))−∇φ(yi, Fi(y))∥
≤ L∥(xi, Fi(x))− (yi, Fi(y))∥
≤ L(|xi − yi|+ |Fi(x)− Fi(y)|).

Combining this with the Lipschitz continuity of F we deduce that (3.1) holds. Similarly,

|(p(x)− p(y))i| ≤ ∥∇φ(xi, Fi(x))−∇φ(yi, Fi(y))∥
≤ L(|xi − yi|+ |Fi(x)− Fi(y)|).

We easily deduce that (3.2) holds.
Due to

∇F (x)diag(bi(x))ΦFB(x)−∇F (y)diag(bi(y))ΦFB(y)

= ∇F (x)(diag(bi(x))ΦFB(x)− diag(bi(y))ΦFB(y)) + (∇F (x)−∇F (y))diag(bi(y))ΦFB(y)

= ∇F (x)(Φ̃(x)− Φ̃(y)) + (∇F (x)−∇F (y))diag(bi(y))ΦFB(y).

In view of the Lipschitz continuity of F ′, the boundness of F ′, (3.1) and (3.2), we deduce
that (3.3) holds.

The following Lemma is straightforward from the steps of the DFCG Algorithm.

Lemma 3.4. The sequence {Ψ(xk)} is strictly decreasing. In addition, the following in-
equalities hold:

∞∑
k=0

∥αkdk∥2 <∞,
∞∑
k=0

∥αkΦFB(xk)∥2 <∞.

Lemma 3.5. If there exists a constant ϵ > 0 such that

∥∇Ψ(xk)∥ ≥ ϵ ∀k, (3.4)

then there exists a constant M > 0 such that

∥dTT
k ∥ ≤M ∀k. (3.5)

Proof. From (2.4) we can deduce

∥gk∥ ≤ 2∥ΦFB(xk)∥+ L1∥Φ̃(xk)∥ ≤ (2L1 + 2)∥ΦFB(xk)∥ ≤ (2L1 + 2)p0, (3.6)

where p0 = ∥ΦFB(x0)∥. By (2.5), the following inequality holds:

∥dTT
k ∥ ≤ ∥ − gk∥+ 2

∥gk∥∥gk − gk−1∥∥dTT
k−1∥

∥gk−1∥2
. (3.7)
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By the mean-value theorem, there are hk, hk−1 ∈ (0, 1) such that

∥qk − qk−1∥ = ∥F ′(xk + hkλkΦ̃(xk))Φ̃(xk)− F ′(xk−1 + hk−1λk−1Φ̃(xk−1))Φ̃(xk−1)∥
≤ ∥F ′(xk + hkλkΦ̃(xk))Φ̃(xk)− F ′(xk + hkλkΦ̃(xk))Φ̃(xk−1)∥

+∥F ′(xk + hkλkΦ̃(xk))Φ̃(xk−1)− F ′(xk−1 + hk−1λk−1Φ̃(xk−1))Φ̃(xk−1)∥
≤ γ2L3∥xk − xk−1∥+ 2p0L2(∥λkΦ̃(xk)∥+ ∥λk−1Φ̃(xk−1)∥+ ∥xk − xk−1∥).

This implies

∥gk − gk−1∥ ≤ ∥p(xk)− p(xk−1)∥+ ∥qk − qk−1∥
≤ (L4 + γ2L3 + 2p0L2)∥xk − xk−1∥

+4p0L2(∥λkΦFB(xk)∥+ ∥λk−1ΦFB(xk−1)∥). (3.8)

It follows from Lemma 3.4 that

lim
k→∞

∥αkΦFB(xk)∥ = 0.

If lim supk→∞ αk > 0, then lim infk→∞ ∥ΦFB(xk)∥ = 0. Hence lim infk→∞ ∥∇Ψ(xk)∥ = 0,
which contradicts (3.4). Therefore limk→∞ αk = 0, limk→∞ λk = 0, and limk→∞ ∥gk −
∇Ψ(xk)∥ = 0. Since ∥∇Ψ(xk)∥ ≥ ϵ,∀k, there exists an integer k0 such that the following
inequality holds for all k ≥ k0:

∥gk−1∥2 ≥ 1

2
ϵ2. (3.9)

It then follows from (3.6)-(3.9) that

∥dTT
k ∥ ≤ c0 + (c1∥xk − xk−1∥+ c2∥λkΦFB(xk)∥+ c3∥λk−1ΦFB(xk−1)∥)∥dTT

k−1∥
≤ c0 + (c1∥αk−1d

TT
k−1∥+ c2∥αkΦFB(xk)∥+ c3∥αk−1ΦFB(xk−1)∥)∥dTT

k−1∥

where c0, c1, c2, c3 are positive constants. By Lemma 3.4, there exist a constant r ∈ (0, 1)
and an integer k1 with k1 > k0 such that for any k > k1,

c1∥αk−1d
TT
k−1∥+ c2∥αkΦFB(xk)∥+ c3∥αk−1ΦFB(xk−1)∥ ≤ r,

∥dTT
k ∥ ≤ c0 + r∥dTT

k−1∥ ≤ c0(1 + r + · · ·+ rk−k1−1) + rk−k1∥dTT
k1

∥ ≤ c0
1− r

+ ∥dTT
k1

∥.

Letting M = max{∥dTT
1 ∥, ∥dTT

2 ∥, . . . , ∥dTT
k1

∥, c0
1−r + ∥dTT

k1
∥}, we get (3.5).

The following theorem establishes the global convergence of Algorithm 1.

Theorem 3.6. Let {xk} be generated by Algorithm 1. We have

lim inf
k→∞

∥∇Ψ(xk)∥ = 0. (3.10)

Proof. By Lemma 3.4, we have

lim
k→∞

∥αkΦFB(xk)∥ = 0.

If lim supk→∞ αk > 0, then lim infk→∞ ∥ΦFB(xk)∥ = 0. Hence lim infk→∞ ∥∇Ψ(xk)∥ = 0.
Hence we only need to show (3.10) for the case limk→∞ αk = 0. For the sake of contradiction,
we suppose that the conclusion is not true. Then there exists a constant ε > 0 such that

∥∇Ψ(xk)∥ ≥ ε ∀k.
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It is easy to see from Procedure 2 that if αk ̸= 1, then the following inequality holds

Ψ(xk + ρ−1αkd
TT
k )−Ψ(xk) > −σ1∥ρ−1αkd

TT
k ∥2 − σ2∥ρ−1αkΦFB(xk)∥2. (3.11)

By the mean-value theorem, there exists a constant hk ∈ (0, 1) such that

Ψ(xk + ρ−1αkd
TT
k )−Ψ(xk) = ρ−1αk∇Ψ(xk + hkρ

−1αkdk)
T dTT

k

= ρ−1αk∇Ψ(xk)
T dTT

k + ρ−1αk(∇Ψ(xk + hkρ
−1αkd

TT
k )−∇Ψ(xk))

T dTT
k

≤ ρ−1αk∇Ψ(xk)
T dTT

k + L5∥ρ−1αkd
TT
k ∥2.

Substituting the last inequality into (3.11), we get

ρ−1αk(L5 + σ1)∥dTT
k ∥2 + σ2ρ

−1αk∥ΦFB(xk)∥2 > −∇Ψ(xk)
T dTT

k .

Since Lemma 3.5 implies that {dTT
k } is bounded, the last inequality yields

lim
k→∞

−∇Ψ(xk)
T dTT

k = lim
k→∞

∥∇Ψ(xk)∥2 = 0.

This leads a contradiction. The proof is complete.

The global convergence of Algorithm 2 can be obtained in a similar way. For complete-
ness, we give a proof.

Theorem 3.7. Let {xk} be generated by Algorithm 2. We have

lim inf
k→∞

∥∇Ψ(xk)∥ = 0. (3.12)

Proof. From Procedure 2, we have

lim
k→∞

∥αkΦFB(xk)∥ = 0. (3.13)

lim
k→∞

∥xk+1 − xk∥ = 0. (3.14)

If lim supk→∞ αk > 0, then (3.13) implies lim infk→∞ ∥ΦFB(xk)∥ = 0. Hence (3.12) hold.
We only need to show (3.12) for the case limk→∞ αk = 0. For the sake of contradiction, we
suppose that the conclusion is not true. Then there exists a constant ε > 0 such that

∥∇Ψ(xk)∥ ≥ ε ∀k.

Since limk→∞ αk = 0, we have

lim
k→∞

λk = 0 and lim
k→∞

∥gk −∇Ψ(xk)∥ = 0.

Hence there exists an integer k0 such that the following inequality holds for all k ≥ k0:

∥gk−1∥2 ≥ ϵ2. (3.15)

It follows from (3.8) and Lemma 3.4 that

lim
k→∞

∥gk − gk−1∥ = 0.

Combining this with (3.6) and (3.15) gives

lim
k→∞

βk = 0.
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Without loss of generality, we suppose |βk| ≤ 1
2 for all k. Since

(I − gkg
T
k

∥gk∥2
)gk = 0,

we get from (2.6)

∥dTM
k + gk∥2 = β2

k∥(I −
gkg

T
k

∥gk∥2
)(gk + dTM

k−1)∥2 ≤ β2
k∥(gk + dTM

k−1)∥2.

It implies

∥dTM
k + gk∥ ≤ |βk|∥gk + dTM

k−1∥ ≤ 1

2
(∥gk − gk−1∥+ ∥gk−1 + dTM

k−1∥).

We claim from the last inequality that the sequence {∥dTM
k + gk∥} is bounded and hence

the sequence {∥dTM
k ∥} is bounded.

If αk = 1, k is sufficiently large,

∥αkd
TM
k ∥ = ∥dTM

k ∥ ≥ ∥∇Ψ(xk)∥ ≥ ε,

which contracts with (3.14).
If αk ̸= 1, the following inequality holds:

σ1(αk/ρ)
2∥dTM

k ∥2 + σ2(αk/ρ)
2Ψ(xk) ≥ Ψ(xk)−Ψ(xk+1). (3.16)

When k is sufficiently large,

Ψ(xk+1)−Ψ(xk) = αk∇Ψ(xk + tαkd
TM
k )T dTM

k

= αk∇Ψ(xk)
T dTM

k + αk(∇Ψ(xk + tαkd
TM
k )−∇Ψ(xk))

T dTM
k

≤ −αk∥∇Ψ(xk)∥2 + L5∥αkd
TM
k ∥2. (3.17)

From (3.16) and (3.17) we obtain

αk∥dTM
k ∥ ≥ ∥∇Ψ(xk)∥2∥dTM

k ∥
(L5 + σ1/ρ2)∥dTM

k ∥2 + (σ2/ρ2)Ψ(xk)
,

Since {∥dTM
k ∥} is bounded and when k is sufficiently large ∥dTM

k ∥ ≥ ∥∇Ψ(xk)∥ ≥ ε, there
exists a constant c > 0 such that when k is sufficiently large αk∥dTM

k ∥ ≥ c, which contradicts
with (3.14). Therefore, (3.12) holds.

4 Numerical Experiments

In this section, we report some preliminary numerical experiments. We implement our
algorithm in fortran 90 and run the codes on a PC with 1.60 GHz CPU and 1.87 GB
memory. The test problems come from MCPLIB and reference [1, 9, 10]. We replace the
linear constraints of some problems in [10] and the box constraints in [1] with nonnegativity
constraints on all of the variables. Then we get the Karush-Kuhn-Tucker (KKT) conditions
which are symmetric nonlinear complementarity problems and named by MHS4, MHS5,
MHS38, MHS59, MHS62, MHS71, MHS93, MHS99, BGRS1-4, respectively. The parameters
of our algorithms have the values ρ = 0.1, σ1 = σ2 = 10−5.
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Details about the problems and the initial points are given in the Appendix. We use the
inequality ∥ΦFB(x)∥ < 10−6 as the termination criterion for both algorithms. Tables 1-4
report the numbers of the iterations and function evaluations for both algorithms, where
“−” denotes the failure of the algorithm. The column of the table has the following meaning.

Problem: the name of the problem;
Dim: the dimension of the problem;
SP: the initial point;
It1: the number of iterations for algorithm 1;
F1: the number of function evaluations for algorithm 1;
Time1: the CPU time in seconds for algorithm 1;
It2: the number of iterations for algorithm 2.
F2: the number of function evaluations for algorithm 2;

Time2: the CPU time in seconds for algorithm 2.
The numerical results show that there is no much difference between the performance of

Algorithms 1 and 2 for small problems. Algorithm 1 performs better than Algorithm 2 does
for large-scale problems. As the dimension increases, Algorithm 2 requires more CPU time
than Algorithm 1 does, that is partly due to the fact that Algorithm 2 uses much CPU time
to compute a large dimension matrix in determining direction dk at iteration k.

Table 1. Test results

Problem Dim SP It1 F1 Time1 It2 F2 Time2
Cycle 1 a 4 9 0 4 9 0

b 6 13 0 6 13 0
Billups 1 a 18 91 0 18 91 0

b 18 91 0 18 91 0
FFK 2 a 8 17 0 8 17 0

b 9 19 0 9 19 0
MHS4 2 a 4 9 0 5 11 0

b 5 11 0 12 25 0
c 8 17 0 12 25 0
d 6 13 0 12 25 0

MHS5 2 a 39 196 0 38 191 0
b 41 200 0 40 193 0
c 41 206 0 40 201 0
d 43 212 0 41 206 0

Watson4 2 a 3 11 0 4 14 0
b 1 3 0 1 3 0
c 1 3 0 1 3 0
d 1 3 0 1 3 0

MHS59 2 a 658 1317 0 659 1319 0
BGRS1 2 a 115 1036 0 77 636 0

b 136 1261 0 57 492 0
MHS62 3 a 0 1 0 0 1 0

b 2 5 0 5 11 0
c 4 9 0 11 23 0
d 4 9 0 9 19 0

MHS71 4 a 52 319 0 44 255 0
b 67 362 0 89 518 0

MHS38 4 a 3034 43076 0.015625 2311 32175 0.015625
MHS93 6 a 473 1610 0 104 481 0
MHS99 7 a 1 3 0 1 3 0

b 1 3 0 1 3 0
c 1 3 0 1 3 0
d 1 3 0 1 3 0
e 1 3 0 1 3 0
f 1 3 0 1 3 0
g 2 8 0 2 8 0
h 3 11 0 11 51 0



504 QIONG LI

Table 2. Test results for problem BGRS2

SP Dim It1 F1 Time1 It2 F2 Time2
0.1 50 3 7 0 3 7 0
0.2 50 3 7 0 3 7 0
0.1 100 2 5 0 2 5 0
0.2 100 3 7 0 3 7 0
0.1 200 1 3 0 1 3 0
0.2 200 2 5 0 2 5 0
0.1 300 1 3 0 1 3 0
0.2 300 2 5 0 2 5 0
0.1 400 1 3 0 1 3 0
0.2 400 4 16 0 3 11 0.015625

Table 3. Test results for problem BGRS3

SP Dim It1 F1 Time1 It2 F2 Time2
0.1 2000 3 7 0 3 7 1.1875
0.2 2000 4 9 0 4 9 1.765625
0.3 2000 4 9 0 4 9 1.765625
20 2000 5 18 0 5 18 2.328125
30 2000 5 18 0 5 18 2.3125
0.1 5000 3 7 0 3 7 22.21875
0.2 5000 4 9 0 4 9 33.296875
0.3 5000 4 9 0 4 9 33.09375
20 5000 5 18 0.015625 5 18 44.078125
30 5000 5 18 0.015625 5 18 43.984375
0.1 10000 3 7 0.015625 3 7 95.875
0.2 10000 4 9 0.015625 4 9 143.28125
0.3 10000 4 9 0.015625 4 9 143.71875
20 10000 5 18 0.03125 5 18 191.140625
30 10000 5 18 0.03125 5 18 190.265625
0.1 100000 3 7 0.125 - - -
0.2 100000 4 9 0.15625 - - -
0.3 100000 4 9 0.15625 - - -
20 100000 5 18 0.296875 - - -
30 100000 5 18 0.296875 - - -
0.1 500000 4 9 0.828125 - - -
0.2 500000 4 9 0.828125 - - -
0.3 500000 5 11 1.015625 - - -
20 500000 5 18 1.515625 - - -
30 500000 5 18 1.53125 - - -

Table 4. Test results for problem BGRS4

SP Dim It1 F1 Time1 It2 F2 Time2
1 300 8 17 0 8 17 0.015625
1 500 8 17 0 8 17 0.078125
1 800 8 17 0 8 17 0.359375
1 1000 8 17 0 8 17 0.62500
1 2000 8 17 0 8 17 4.078125
1 5000 8 17 0.015625 8 17 74.890625
1 6000 8 17 0.015625 8 17 100.359375
1 7000 8 17 0.015625 8 17 164.46875
1 8000 8 17 0.015625 8 17 195.015625
1 10000 8 17 0.03125 8 17 349.109375
1 50000 8 17 0.140625 - - -
1 500000 8 17 1.484375 - - -
1 1000000 8 17 2.890625 - - -
1 2000000 8 17 5.71875 - - -
1 5000000 8 17 14.28125 - - -
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Appendix The Test Problems and Initial Points

1. Problem Cycle starting point: (a) 1, (b) 2.

2. Problem Billups starting point: (a)2, (b) 2.01.

3. Problem FFK

F1(x) = 2x1 + 4x2,

F2(x) = 2x2 + 4x1.

Starting points: (a) (1, 1), (b) (2, 2).

4. Problem MHS4

F1(x) = (x1 + 1)2,

F2(x) = 1.

Starting points: (a) (0.125, 0.125), (b) (1.125, 0.125), (c) (1, 1), (d) (0.5, 0.5).

5. Problem MHS5

F1(x) = cos(x1 + x2) + x1 − x2 − 1.5,

F2(x) = cos(x1 + x2)− x1 + x2 + 2.5.

Starting point: (a) (100, 100), (b) (3, 3), (c) (10, 10), (d) (50, 50).

6. Watson4 Starting point: (a) (2.4, 2.4), (b) (2.5, 2.5), (c) (3.0, 3.0), (d) (3.5, 3.5).

7. Problem MHS59

F (1) = 3.8112 + 0.0020567× 3x21 − 4× 1.0345× 10−5 × x31
−0.030234× x2 + 2× 1.28134× 10−3 × x1x2
+2.266× 107 × 4x31x2 + 5.2375× 10−6 × 2x1x

2
2

+6.3× 10−8 × 3x21x
2
2 − 7.0× 10−10 × 3x21x

3
2

−3.405× 10−4 × x22 + 1.6638× 10−6 × x32
+0.0005× 2.8673× x2 × e0.0005x1x2 − 3.5256× 10−5 × 3x21x2,

F (2) = 6.8306− 0.030234× x1 + 1.28134× 10−3x21 + 2.266× 10−7x41
−0.25645× 2x2 + 0.0034604× 3x22 − 1.3514× 10−5 × 4x32 − 28.106

(x2+1)2

+5.2375× 10−6 × 2x21x2 + 2× 6.3× 10−8 × x31x2 − 7.0× 10−10 × 3x31x
2
2

−2× 3.405× 10−4 × x1x2 + 3× 1.6638× 10−6 × x1x
2
2

+0.0005× 2.8673× x1 × e0.0005x1x2 − 3.5256× 10−5x31.

Starting point: (a) (20, 20).

8. Problem BGRS1

f(1) = 2x31 + 2x1x2 + x22 − 21x1 − 7,

f(2) = 2x32 + 2x1x2 + x21 + x2 − 25.

Starting point: (a) (3, 1), (b) (5, 6).
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9. Problem MHS62

F (1) = 1
x1+x2+x3+0.03 − 0.09

0.09x1+x2+x3+0.03 ,

F (2) = 255
x1+x2+x3+0.03 − 255

0.09x1+x2+x3+0.03 + 280
x2+x3+0.03 − 280× 0.07

0.07x2+x3+0.03 ,

F (3) = 255
x1+x2+x3+0.03 − 255

0.09x1+x2+x3+0.03 + 280
x2+x3+0.03 − 280

0.07x2+x3+0.03

+ 290
x3+0.03 − 290× 0.13

0.13x3+0.03 .

Starting point: (a) (0,0,0), (b) (0.01,0.02,0.03), (c) (0.04,0.04,0.04), (d)(0.05,0.05,0.05).

10. Problem MHS71
F (1) = (2x1 + x2 + x3)x4,
F (2) = x1x4,
F (3) = x1x4 + 1,
F (4) = x1(x1 + x2 + x3).

Starting point: (a) (3,3,2,1), (b) (3,1,4,2).

11. Problem MHS38

F (1) = −400(x2 − x21)x1 + 2(x1 − 1),
F (2) = 200(x2 − x21) + 20.2(x2 − 1) + 19.8(x4 − 1),
F (3) = −360(x4 − x23)x3 + 2(x3 − 1),
F (4) = 180(x4 − x23) + 20.2(x4 − 1) + 19.8(x2 − 1).

Starting point: (a) (0.5,0.5,0.5,0.5).

12. Problem MHS93

F (1) = 2x1(0.0204 + 0.0607x25)x4 + (0.0187 + 0.0437x26)x3x2,
F (2) = x1(0.0204 + 0.0607x25)x4 + (0.0187 + 0.0437x26)x3(x1 + 2× 1.57x2),
F (3) = x1(0.0204 + 0.0607x25)x4 + (0.0187 + 0.0437x26)x2(x1 + 1.57x2 + x4),
F (4) = x1(0.0204 + 0.0607x25)(x1 + x2 + x3) + (0.0187 + 0.0437x26)x2x3,
F (5) = x1x4x5(x1 + x2 + x3),
F (6) = x2x3x6(x1 + 1.57x2 + x4).

Starting point: (a) (4.2, · · · , 4.2).

13. Problem MHS99

F (i) = −2
n∑

i=1

(ti+1 − ti) cos(xi)× ai × (ti+1 − ti)× (− sin(xi)), i = 1, · · · , 7,

where a1 = a2 = 50, a3 = a4 = a5 = 75, a6 = a7 = 100, t1 = 0, t2 = 25, t3 = 50,
t4 = 100, t5 = 150, t6 = 200, t7 = 290, t8 = 380.

Starting point: (a) (0.1, · · · , 0.1), (b) (0.2, · · · , 0.2), (c) (0.3, · · · , 0.3), (d) (0.5, · · · , 0.5),
(e) (1.0, · · · , 1.0), (f) (1.3, · · · , 1.3), (g) (1.4, · · · , 1.4), (h) (1.5, · · · , 1.5).

14. Problem BGRS2

F (i) = 0.4xi
e−0.2

√
0.1

∑n
i=1 x2

i√
0.1

∑n
i=1 x

2
i

+ 0.2π sin(2πxi)e
0.1

∑n
i=1 cos(2πxi), i = 1, · · · , n.
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15. Problem BGRS3

F (1) = 10π sin(2πx1)− 2(x1 − 1)(1 + 10 sin2(πx2)),
F (i) = −10π(xi−1 − 1)2 sin(2πxi)− 2(xi − 1)(1 + 10 sin2(πxi+1)), i = 2, · · · , n− 1,
F (n) = −10π(xn−1 − 1)2 sin(2πxn)− 2(xn − 1).

16. Problem BGRS4

F (1) = 3π sin(6πx1) + 2(x1 − 1)(1 + sin2(3πx2)),
F (i) = 3π(xi−1 − 1)2 sin(6πxi) + 2(xi − 1)(1 + sin2(3πxi+1)), i = 2, · · · , n− 1,
F (n) = 3π(xn−1 − 1)2 sin(6πxn) + 1 + sin2(2πxn) + 2π(xn − 1) sin(4πxn).
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