
2013

480 TAKUMA KIMURA

where D is a diagonal matrix whose diagonal elements are di,

di =

0, yi ≥ xi, y

∗
i ≥ x∗

i ,

1, yi ≤ xi, y
∗
i ≤ x∗

i ,
min(xi, yi)−min(x∗

i , y
∗
i)− xi + x∗

i

yi − y∗i − xi + x∗
i

, otherwise.

(1.3)

Moreover, we have di ∈ [0, 1]. It is known that M is a P-matrix if and only if I −D +DM
is nonsingular for any diagonal matrix D =diag(d) with d ∈ [0, 1]n [3]. Consequently, Chen
and Xiang proposed,

∥x− x∗∥p ≤ βp(M)∥r(x)∥p, (1.4)

where
βp(M) = max

d∈[0,1]n
∥(I −D +DM)−1∥p.

For some special matrices, we can compute βp(M) easily, for example, if M is an M-matrix
then βp(M) = ∥M−1∥p. Moreover, Chen and Xiang proved that (1.4) is sharper than the
Mathias-Pang error bound [6] when p = ∞. However, for general P-matrix, we do not have
simple upper bound for βp(M).

In this paper, we propose an algorithm to compute lower and upper bounds for the exact
solution of LCP where M is a P-matrix. Specifically, we compute two vectors x∗ and x∗

such that

x∗ ≤ x∗ ≤ x∗,

where x∗ is the exact solution of (1.1). This method is based on the equation (1.2), interval
arithmetic and rounding mode controlled computations [5, 11].

In section 2, we consider interval arithmetics and rounding mode controlled computa-
tions. In section 3, we discuss verification method and iteration scheme. Some numerical
results are discussed in section 4.

2 Interval Arithmetics and Rounding Mode Controlled Computa-
tions

In this paper, we use the interval arithmetic to control computational errors arising from
each calculation.

Let IR = {[a, b] | a ≤ b, a, b ∈ R} denote the set of intervals. The set of n-dimensional
interval vectors and the set of n×n interval matrices are denoted by IRn and IRn×n. In this
paper, we denote boldface for intervals in which the lower and upper bounds are denoted
by underscore and overscore respectively. For example, an interval matrix A ∈ IRn×n has
interval elements,

Aij ≡ [Aij , Aij] = {Aij ∈ R |Aij ≤ Aij ≤ Aij} ∈ IR, i, j = 1, · · · , n.

The mid point and the radius of an interval a can be defined as

mid(a) = (a+ a)/2, rad(a) = (a− a)/2.

The range of minimum and maximum of two intervals a and b are defined as

min(a, b) = {min(a, b) | a ∈ a, b ∈ b},
max(a, b) = {max(a, b) | a ∈ a, b ∈ b}.

VALIDATED SOLUTIONS FOR P-MATRIX LCP 481

An interval matrix A ∈ IRn×n is called nonsingular if any matrices included in A are
nonsingular. We denote the solution set of an interval linear systems Ax = b by,

S(A,b) := {x | Ax = b, A ∈ A, b ∈ b}.

If A ∈ IRn×n is nonsingular and b ∈ IRn is bounded, then the interval hull of S(A,b) exists
and is defined as

Σ(A,b) = [inf S(A,b), supS(A,b)] ∈ IRn,

where ”inf” and ”sup” are taken componentwise. In this paper, x = Σ(A,b) is called the
solution of Ax = b.

To compute error bounds, we should take the roundoff errors into account. By utilizing
the rounding mode controlled computations, we can compute the interval enclosing the exact
result of floating point arithmetic.

In the following, for each calculation, we consider the intervals enclosing the exact result.
For example, considering the round off error, we cannot compute exact value of r(x), but
we can set r(x) be an interval vector computed by rounding mode controlled computations
such that r(x) ∈ r(x).

For more details of interval arithmetic, interval linear system and rounding mode con-
trolled computations, see, e.g., [5, 10, 11, 7].

Here, we consider a numerical verification method based on (1.2).
When we have two vectors d and d such that d ≤ d ≤ d, we can compute two matrices

K and K such that
K ≤ I −D +DM ≤ K,

by using the interval computations.
We can set

K = I +D(M − I). (2.1)

It is easy to show that
I +D(M − I) j I −D+DM,

and Since di ∈ [0, 1], we can set di = 0 and di = 1.
If K is nonsingular and we can find a solution e0 = Σ(K, r(x)) then, e0 is an error bound

such that
x− x∗ ∈ e0.

Considering a special case of the verification method for NCP proposed by Alefeld and
Wang [1], above mentioned error bound also can be obtained. In [1], the authors remarked
that MATLAB functions ”intervalhull.m” developed by Rohn and ”veryfylss.m” by Rump
can compute e0.

3 Iteration Scheme for Verification

In this section, we consider an algorithm to compute validated solutions for P-matrix LCP.
We assume that an error bound e0 is given. e0 satisfies

x∗ ∈ x− e0, y∗ ∈ y −Me0,

where y is an interval vector such that y ≤ Mx+ q ≤ y. From x∗ ≥ 0 and y∗ ≥ 0, we have

x∗ ∈ max(0, x− e0), y∗ ∈ max(0, y −Me0).

482 TAKUMA KIMURA

3.1 Initial Error Bound

Let d0 = [0, 1]n, D0 = diag(d0) and K0 = I +D0(M − I). From (1.2), we have

r(x) ∈ K0(x− x∗).

If we can find a solution,

e0 = Σ(K0, r(x)), (3.1)

then we have an initial error bound e0. If we cannot solve (3.1), we can employ other
methods. For example, Cottle, Pang and Stone (Exercises 5.11.20 in [3]) introduced

∥x− x∗∥2 ≤ 1 + ∥M∥2
λ1(M̃)

∥r(x)∥2 ≤ e0, (3.2)

where M is a positive definite matrix, M̃ = (M + MT)/2, and λ1(M̃) is the smallest
eigenvalue of M̃ . (3.2) implies that

−e0 ≤ x− x∗ ≤ e0,

then we can set e0 = [e0, e0], where e0 = −e0.

3.2 Reduced Problem

Now, we can check the relations between x,y,x∗,y∗. If we find an index i satisfies
x∗
i < y∗

i
or x∗

i > y∗i , we can remove the variable xi and consider a smaller problem.
Let a (universal) index set N = {1, · · · , n}, support index sets I = {i |x∗

i ̸< y∗
i
} and

J = {i |x∗
i ̸> y∗i }. Let MIJ denote the submatrix of M with rows indexed by I, columns

by J . Note that if M is a P-matrix then MII is a P-matrix. The subvector of x and q
indexed by I are denoted by xI and qI .

Here, we consider the P-matrix LCP (1.1) with Ic ̸= ∅.

Lemma 3.1. If Ic ̸= ∅, then (1.1) can be rewritten as P-matrix LCP,{
min (xI , MIIxI + qI) = 0, (3.3a)

xIc = 0. (3.3b)

Proof. Clearly we have x∗
i = 0 for i ∈ Ic. Therefore, (1.1) can be reformulated as following

system,
min (xI , MIIxI + qI) = 0, (3.4a)

MIcIxI + qIc ≥ 0, (3.4b)

xIc = 0, (3.4c)

Since MII is a P-matrix, (3.4a) has a unique solution xI . Therefore, we can remove the
constraint (3.4b).

Considering the computational cost, the numerical verification for the reduced problem
(3.3) is more easily performed than (1.1).

Moreover, if Ic∪J c = N , then (1.1) can be rewritten as linear systems. Clearly we have
(Mx∗ + q)i = 0 for i ∈ J c. Ic ∪J c = N implies that I ⊆ J c. From Lemma 3.1 and above,
we obtain following result.

VALIDATED SOLUTIONS FOR P-MATRIX LCP 483

Corollary 3.2. If Ic ∪ J c = N then (1.1) is equivalent to the following linear system,{
MIIxI + qI = 0, (3.5a)

xIc = 0. (3.5b)

There is much discussion on validated solutions of the linear systems (e.g. [5, 8, 7]). In
this case, we will easily obtain the solution of (3.5) by using validated solvers for linear
systems.

3.3 Updated Error Bounds

Considering the detail of (1.3), we have

di =

0, yi ≥ xi, y
∗
i ≥ x∗

i ,

1, yi ≤ xi, y
∗
i ≤ x∗

i ,
x∗
i

yi − xi + x∗
i

, yi ≥ xi, y
∗
i ≤ x∗

i ,

yi − xi

yi − y∗i − xi
, yi ≤ xi, y

∗
i ≥ x∗

i .

Now, we can check the relations between x,y,x∗,y∗. Therefore, we can set

di =

0, y
i
≥ xi, y

∗
i
≥ x∗

i ,

1, yi ≤ xi, y
∗
i ≤ x∗

i ,
x∗
i

yi − xi + x∗
i

, y
i
≥ xi, y

∗
i ≤ x∗

i ,

yi − xi

yi − y∗
i − xi

, yi ≤ xi, y
∗
i
≥ x∗

i ,

yi − xi

yi − y∗
i − xi

∪ 1, yi ≤ xi, 0 ̸∈ yi − y∗
i − xi,

x∗
i

yi − xi + x∗
i

∪ 0, y
i
≥ xi, 0 ̸∈ yi − xi + x∗

i ,

x∗
i

yi − xi + x∗
i

∪ 1, y∗i ≤ x∗
i , 0 ̸∈ yi − xi + x∗

i ,

yi − xi

yi − y∗
i − xi

∪ 0, y∗
i
≥ x∗

i , 0 ̸∈ yi − y∗
i − xi,

[0, 1] , otherwise,

(3.6)

such that d ∈ d. Then we can set new K by (2.1) and compute new error bound e by solving
Ke = r(x).

3.4 Iterative Method

Since d0 and new d satisfies that

d ∈ d0, d ∈ d,

we have

d ∈ d1 ≡ d ∩ d0.

484 TAKUMA KIMURA

Moreover, we have
x− x∗ ∈ e1 ≡ e ∩ e0.

Therefore, we can compute interval vectors dk and ek such that

d ∈ dk j dk−1 j · · · j d1 j d0 = [0, 1]n,

x− x∗ ∈ ek j ek−1 j · · · j e1 j e0.

Based on the above-mentioned, we propose the following algorithm to verify the solutions
of P-matrix LCP.

Algorithm 1.

Step 0

Input M, q, approximate solution x and maxiter.

Compute an initial error bound e0.

Set d0 = [0, 1]n, y = Mx+ q, x∗ = max(0, x− e0), y∗ = max(0, y −Me0), r = min(x,Mx+
q), N = {1, · · · , n}, I0 = {i |x∗

i ̸< y∗
i
}, J0 = {i |x∗

i ̸> y∗i } and an iteration counter
k = 0.

If I0c ̸= ∅ then goto Step 1, else Step 2.

Step 1

If Ikc ∪ Jk
c = N then return x∗ by solving (3.5).

Set x∗
i = 0, eki = xi and dk

i = 0 for i ∈ Ikc. Compute y∗ = y∗ ∩ (y −Mek) and then
goto Step 2.

Step 2

If k = maxiter, return x∗ and warning message.

Set k = k + 1.

Set d by (3.6).

Set dk = d ∩ dk−1. If dk = dk−1, then return x∗.

Set K = I + diag(dk)(M − I).

Solve Ke = r. If failed to solve it, return x∗.

Set ek = e ∩ ek−1. If ek = ek−1, then return x∗.

Set x∗ = x∗ ∩ (x− ek), y∗ = y∗ ∩ (y −Mek).

Set Ik = {i |x∗
i ̸< y∗

i
} and Jk = {i |x∗

i ̸> y∗i }.
If Ik ̸= Ik−1 or Jk ̸= Jk−1 then goto Step 1, else repeat Step 2.

The computational cost of Algorithm 1 is less than,

O1 +
(
O2 +O(n2)

)
×maxiter,

where O1 is the cost to find an approximate solution x and O2 the cost to solve Ke = r.
Usually, iterative methods like Newton-Raphson method or SQP method will be used to

find an approximate solution.
If we employ fast verification methods for linear systems, then O2 = O(n3). However,

accurate methods will require larger cost.
If approximate solution x is close to x∗, Algorithm 1 will return a shape x∗. In addition,

mid(x∗) can be more close to x∗ than x. We consider a following easy algorithm.

VALIDATED SOLUTIONS FOR P-MATRIX LCP 485

Algorithm 2.

Step 0
Input M, q, approximate solution x and find x∗.

Step 1
Set x = mid(x∗).
Find new x∗ by Algorithm 1.
If shaper x∗ is obtained, then repeat Step 1, else return x∗.

4 Numerical Experiments

The numerical testing was carried out on a PC (Intel Core i7 860 processor, 16GB of memory)
with the use of MATLAB R2010a and INTLAB 6 [10, 11].

In INTLAB, the function setround allows to change the rounding mode of the processor
and the function intval allows interval arithmetics automatically. Moreover, the function
verifylss returns an interval vector including solution set of an interval linear system. For
example,

e = verifylss(K, r),

returns the solution of Ke = r. If K includes singular matrices, verifylss will returns NaN
or Inf.

The exact solution satisfies r(x∗) = 0. 0 ∈ r(x∗) was checked by using the INTLAB
function in. If in(0, r) returns an all-ones vector, then 0 ∈ r.

In tables, CPU times are measured with MATLAB function cputime. In Tables 3-5, the
CPU time (sec.) is listed in [].

For Example 4 and 5, we compared the error bounds of proposed algorithm with other
methods. In these examples, matrices M are H-matrix with positive diagonal elements.
Then, following error bounds can be applied (Corollary 4.4 and Corollary 4.7 in [1]):

∥x− x∗∥∞ ≤ ∥Σ(JRn∆, h∆(x))∥∞ =: Elis
∆ (x), (4.1)

∥x− x∗∥p ≤ ∥⟨M⟩−1 max{Λ, ∆−1}∥p∥h∆(x)∥p =: Ebnd
∆,p (x), (4.2)

where,

h∆(x) = min{x, ∆(Mx+ q)},

JRn∆ =

{
[δi min{0, Mij}, δi max{0, Mij}], j ̸= i,

[δi Mii, 1], j = i,

⟨M⟩ is the comparison matrix of M , Λ is diagonalpart of M , ∆ = diag(δ), δi = 1/Mii. We
set

EAW := min{Elis
∆ (x), Ebnd

∆,∞(x)},

as the error bound proposed by Alefeld and Wang [1].

Moreover, the function verlcpall can be applied to estimate the error bound of LCP [9].

486 TAKUMA KIMURA

4.1 Example 1

Consider the following P-matrix (Example 5.10.4 in [3]),

M =

(
1 t
0 1

)
.

Here, we set q = (0,−1)T and consider that

min

((
x1 + tx2

x2 − 1

)
,

(
x1

x2

))
= 0.

When t ≥ 0, then we have x∗ = (0, 1)T and β∞(M) = 1 + t.
Setting x = (4, 3)T and t = 1, we have

x− x∗ = (4, 2)T , ∥x− x∗∥∞ = 4, β∞(M) = 2, ∥r(x)∥∞ = 4.

Employing error bound (1.4), we get

∥x− x∗∥∞ ≤ β∞(M)∥r(x)∥∞ = 8.

At k = 2, Algorithm 1 finds,

x∗ =

(
[0.0000, 0.8889]
[1.0000, 1.0000]

)
,

and

y∗ =

(
[1.0000, 1.8889]
[0.0000, 0.0000]

)
.

Since Ikc ∪ Jk
c = N , it returned exact solution x∗ = ([0, 0], [1, 1])T by solving (3.5).

4.2 Example 2

Consider the following symmetric positive definite matrix (Remarks 3.12 in [1]),

M =

(
2 −1
−1 2

)
.

K given in (2.1) with d = [0, 1]n contains a singular matrix(
1 −1
−1 1

)
,

then we couldn’t solve Ke = r. However, d ⊆ (0, 1]n then K is nonsingular.
Employing error bound (3.2), we have

∥x− x∗∥2 ≤ 4∥r(x)∥2 ≡ e.

If x is sufficiently close to x∗, then (3.2) provides e such that K = I + diag(d1)(M − I) is
nonsingular.

Setting q = (−1,−1)T , then we have a unique solution x∗ = (1, 1)T .
Let x = (0.8, 1.2)T . Since x > y = (−0.6, 0.6)T , Algorithm 1 provides,

d1 =

(
[0.1593, 1.0000]
[0.0682, 1.0000]

)
,

VALIDATED SOLUTIONS FOR P-MATRIX LCP 487

and

K =

(
[1.1593, 2.0000] [-1.0000, -0.1593]
[-1.0000, -0.0682] [1.0682, 2.0000]

)
,

which is nonsingular. At k = 12, Algorithm 1 finds,

x∗ =

(
[0.8065, 1.2361]
[0.7032, 1.1862]

)
,

and

y∗ =

(
[0.0000, 0.7688]
[0.0000, 0.5657]

)
.

Since Ikc ∪ Jk
c = N , it returned exact solution x∗ = ([1, 1], [1, 1])T by solving (3.5).

4.3 Example 3. Convex hulls in the plane

Let (ui, vi) ∈ R2 be the measurement points (i = 0, 1, · · · , n + 1). We assume that
ui < ui+1 for i = 0, 1, · · · , n. We consider the convex hull of the points [3]. Let f(u) be a
ceil of convex hull and we denote xi = f(ui) − vi. The edge of convex hull contains some
points. xi = 0 implies that a point (ui, vi) is on the ceil, whereas xi > 0 implies that the
point is under the ceil. Considering the slope of the ceil,

f(ui)− f(ui−1)

ui − ui−1
>

f(ui+1)− f(ui)

ui+1 − ui
,

implies that (ui, vi) is on the ceil, whereas

f(ui)− f(ui−1)

ui − ui−1
=

f(ui+1)− f(ui)

ui+1 − ui
,

implies that (ui, vi) is under the ceil. Moreover, (u0, v0) and (un+1, vn+1) are on the ceil.
From above relations, we obtain M and q such that

Mij =

1/(ui − ui−1) + 1/(ui+1 − ui), i = 1, · · · , n, j = i,

−1/(ui − ui−1), i = 2, · · · , n, j = i− 1,

−1/(ui+1 − ui), i = 1, · · · , n− 1, j = i+ 1,

0, otherwise,

qi =
vi − vi−1

ui − ui−1
− vi+1 − vi

ui+1 − ui
, i = 1, · · · , n.

This M is an n× n symmetric positive definite matrix. By solving a LCP (1.1), we obtain
the ceil of convex hull. The floor can be obtained in a similar manner. Thus, by solving two
LCP, we can obtain the convex hull of the points.

In this example, we use random points by utilizing MATLAB function rand. To find the
approximate solutions x, we use Lemke’s method [3]. Numerical results with various n are
given in Tables 1 and 2. In Table 1, T1 and T2 means CPU times to compute approximate
solution and validated solution, respectively.

488 TAKUMA KIMURA

Table 1: Example 3. Algorithm 1.
n k ∥r(x)∥∞ ∥e0∥∞ ∥ek∥∞ n(Ik

c) ∥rad(x∗)∥∞ T1 T2

100 2 8.7e-15 3.7e-12 3.2e-14 4 2.1e-14 1.99681 0.0936
500 2 4.4e-14 3.9e-10 7.9e-12 6 5.3e-13 222.597 0.8581
1000 2 1.2e-13 3.9e-09 1.2e-11 7 1.5e-12 1752.86 14.025
1500 2 1.7e-13 1.2e-08 6.2e-10 7 7.0e-12 6149.12 37.299
2000 2 3.4e-15 3.7e-10 3.1e-11 11 7.2e-12 13830.0 75.115

Remark 4.1. In Table 1, ∥e0∥∞ means the error bound (3.2). Algorithm 1 gives sharper
error bounds than (3.2).

n(Ik
c) is the number of x∗

i = 0 found by Algorithm 1. Lemke’s method sets xi = 0 for
some i. In this example, rad(e)i can be quite small when xi = 0 and y

i
> 0.

T1 is always larger than T2. It implies the proposed algorithm for validation can be faster
than Lemke’s method for finding the approximate solution.

Table 2: Example 3. Algorithm 2
n iter ∥r(mid(x∗))∥∞ ∥ek∥∞ ∥rad(x∗)∥∞ CPU time

100 4 1.12e-16 1.66e-14 1.62e-14 0.3901
500 11 2.22e-16 3.59e-13 3.35e-13 9.0481
1000 10 2.22e-16 1.37e-12 1.36e-12 130.0112
1500 6 2.57e-16 6.33e-12 6.12e-12 224.5791
2000 6 2.50e-16 6.23e-12 6.14e-12 450.2345

Remark 4.2. Validated solutions obtained by Algorithm 2 are more accurate than Algo-
rithm 1. Moreover, residuals ∥r(mid(x∗))∥∞ are quite close to the machine epsilon.

4.4 Example 4.

Let M ∈ Rn×n with,

Mij =

c, j = i+ 1,

b+ µ sin(i/n), j = i,

a, j = i− 1,

0, otherwise,

set the exact solutions x∗ and the vector q as

x∗
i = max{0, vi − 0.5} × 1010(wi−0.5)

qi =

{
−(Mx∗)i, x∗

i > 0,

−(Mx∗)i +max{0, ṽi − 0.5} × 1010(w̃i−0.5), x∗
i = 0.

We consider four types of choose the prameters π = (µ, a, b, c):

π1 = (0, − 1, 2, − 1), π2 = (n−2, − 1.5, 2, − 0.5),
π3 = (1, − 1.5, 3, − 1.5), π4 = (n−2, − 1.5, 2.2, − 0.5).

VALIDATED SOLUTIONS FOR P-MATRIX LCP 489

This example was studied in [1] and [2].

Numerical results with n = 20, 500 are given in Tables 3 and 4. In these tables, we show
the ∞-norm of exact error and the upper bounds of ∥x−x∗∥∞ obtained by three algorithms,
Algorithm 2, EAW and verlcpall.

Table 3: Error bounds for Example 4. n = 20.
Exact Algorithm 2 EAW verlcpall

π1 2.84e-14 2.85e-14 [0.2340] 2.23e-13 [0.2184] 2.85e-14 [3683.3]
π2 1.50e-12 6.54e-12 [0.2185] 7.40e-12 [0.2652] 6.05e-11 [1704.8]
π3 9.43e-14 2.66e-13 [0.2964] 4.24e-13 [0.2344] 1.42e-13 [3553.0]
π4 9.84e-13 2.30e-12 [0.3120] 2.62e-12 [0.2496] 4.13e-11 [1994.8]

Table 4: Error bounds for Example 4. n = 500.
Exact Algorithm 2 EAW verlcpall

π1 8.44e-10 1.62e-09 [244.21] 7.75e-07 [134.25] —
π2 5.92e-10 1.59e-09 [173.78] 8.18e-09 [136.45] —
π3 5.09e-10 1.37e-09 [176.74] 5.48e-09 [136.34] —
π4 1.01e-09 1.39e-09 [182.36] 1.63e-09 [136.67] —

4.5 Example 5. Journal Bearing Problem.

Let M ∈ Rn×n with,

Mij =

−h3

i+1, j = i+ 1,

h3
i + h3

i+1, j = i,

−h3
i , j = i− 1,

0, otherwise,

and let q with,

qi = µ(hi+1 − hi),

where

hi = (1 + ε cos((i− 0.5)µπ))/
√
π.

This example arises from a finite different discretization of a free boundary problem [4].
We choose the prameters ε = 0.8 and µ = 20/n. The numerical results are given in Table 5.

Remark 4.3. In Tables 3-5, results of Algorithm 2 are more accurate than EAW . For
smaller problems, sometimes verlcpall returned accurate results, however it required huge
computational labor.

490 TAKUMA KIMURA

Table 5: Error bounds for Example 5.
n Algorithm 2 EAW verlcpall
10 3.79e-14 [0.2652] 3.74e-13 [0.1092] 3.85e-13 [6.95533]
25 9.11e-11 [0.3120] 6.55e-10 [0.4836] 7.96e-12 [35371.6]
100 1.72e-10 [1.7940] 2.21e-10 [5.4288] —
500 5.87e-09 [188.33] 1.38e-08 [135.42] —
1000 2.30e-08 [994.25] 1.12e-07 [554.69] —
1500 4.99e-08 [2588.7] 4.20e-07 [1252.7] —
2000 9.21e-08 [4414.5] 1.05e-06 [2249.7] —

Acknowledgements

I am very grateful to the two referees for their helpful comments and suggestions. I am
grateful to Professor Xiaojun Chen. She was the first person who introduced me to LCP,
and helped me to learn more on this subject which is the core of this research. I would like
to thank Professor Mitsuhiro T. Nakao and Professor Hiroshi Nakazato for giving me helpful
comments.

References

[1] G.E. Alefeld and Z. Wang, Error estimation for nonlinear complementarity problems
via linear systems with interval data, Numer. Funct. Anal. Optim. 29 (2008) 243–267.

[2] X. Chen and S. Xiang, Computation of error bounds for P-matrix linear complemen-
tarity problem, Math. Program. 106 (2006) 513–525.

[3] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem, Aca-
demic Press, San Diego, 1992.

[4] C.W. Cryer, The method of Christopherson for solving free boundary problems for
infinite journal bearings by means of finite differences, Math. Comp. 25 (1971) 435–
443.

[5] N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd Ed., SIAM,
Philadelphia, 2002.

[6] R. Mathias and J.S. Pang, Error bounds for the linear complementarity problem with
a P-matrix, Linear Algebra Appl. 132 (1990) 123–136.

[7] G. Mayer and J. Rohn, On the Applicability of the Interval Gaussian Algorithm,
Reliable Computing 4 (1998) 205–222.

[8] S. Oishi and S.M. Rump, Fast verification of solutions of matrix equations, Numer.
Math. 90 (2002) 755–773.

[9] J. Rohn, verlcpall, http://uivtx.cs.cas.cz/~rohn/matlab/verlcpall.html, 2008.

[10] S.M. Rump, Interval computations with INTLAB, Brazilian Electronic Journal on
Mathematics of Computation, 1 (1999).

VALIDATED SOLUTIONS FOR P-MATRIX LCP 491

[11] S.M. Rump, Computer-assisted proofs and Self-Validating Methods, in Handbook on
Accuracy and Reliability in Scientific Computation, B. Einarsson (ed.), SIAM, 2005,
pp. 195–240.

[12] S.M. Rump, Verified bounds for singular values, in particular for the spectral norm of
a matrix and its inverse, BIT., Online First (2010).

Manuscript received 18 April 2011
revised 9 August 2011, 9 April 2012
accepted for publication 17 July 2012

Takuma Kimura
JST CREST/ Faculty of Science and Engineering, Waseda University
Tokyo, 169-8555, Japan
E-mail address: tkimura@aoni.waseda.jp

