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The paper is organized as follows. In Section 2, we present the constrained vector set-
valued optimization problem, the associated perturbed problem, the penalty problem, some
definitions and notations which will be used in the subsequent sections. In Section 3, we
establish equivalence between local calmness and local exact penalization. In Section 4,
equivalences between several types of calmness and exact penalization will be derived. In
Section 5, we give some necessary and/or sufficient conditions for various notions of (local)
calmness.

2 Problems, Definitions and Notations

In this section, we present the constrained vector set-valued optimization problem, its asso-
ciated perturbed problem, the penalty problem, related definitions and notations which will
be used in the subsequent sections.

Let X, Y and Z be normed spaces, X1 ⊂ X be a nonempty and closed set, C ⊂ Y be
a nontrivial, closed and convex cone with nonempty interior intC. Y is ordered by C, i.e.,
for any y1, y2 ∈ Y , y1 ≤C y2 if and only if y2 − y1 ∈ C. Fix an e ∈ intC. Let D ⊂ Z be a
closed and convex cone. Let F : X1 → 2Y \{∅} be a set-valued map and G : X1 → 2Z\{∅}
be a nonempty-compact-valued map.

Consider the following constrained vector set-valued optimization problem:
(CVSO) C −min F (x) s.t. x ∈ X1, G(x) ∩ −D ̸= ∅.
Denote by

X0 := {x ∈ X1 : G(x) ∩ −D ̸= ∅}

the feasible set of (CVSO).
Throughout the paper, we always assume that X0 ̸= ∅.

Definition 2.1. (i) (x̄, ȳ) ∈ X0 × F (x̄) is said to be a local (weakly) efficient solution pair
of (CVSO) iff there exists a neighbourhood U of x̄ such that

[F (x)− {ȳ}] ∩ −C\{0} = ∅, ∀x ∈ X0 ∩ U (resp. [F (x)− {ȳ}] ∩ −intC = ∅, ∀x ∈ X0 ∩ U);

(ii) x̄ ∈ X0 is said to be a local (weakly) efficient solution of (CVSO) iff there exists
ȳ ∈ F (x̄) such that (x̄, ȳ) is a local (weakly) efficient solution pair of (CVSO);

(iii) (x̄, ȳ) ∈ X0 × F (x̄) is said to be a (weakly) efficient solution pair of (CVSO) iff

[F (x)− {ȳ}] ∩ −C\{0} = ∅,∀x ∈ X0 (resp. [F (x)− {ȳ}] ∩ −intC = ∅, ∀x ∈ X0).

In this case, ȳ is called a (weakly) efficient point of (CVSO);
(iv) x̄ ∈ X0 is said to be a (weakly) efficient solution of (CVSO) iff there exists ȳ ∈ F (x̄)

such that (x̄, ȳ) is a (weakly) efficient solution pair of (CVSO).

It is obvious that a (weakly) efficient solution (pair) is a local (weakly) efficient solution
(pair) and an efficient solution (pair) (point) is a weakly efficient solution (pair) (point).

In this paper, two imaginary points −∞,+∞ will be used. By +∞, we mean that
y ≤C +∞ for any y ∈ Y while −∞ means that −∞ ≤C y for any point y ∈ Y .

Let Y1 ⊂ Y . ȳ ∈ Y is said to be an infimum point of Y1 iff
(I) for ȳ ∈ Y , if (i) y − ȳ /∈ −C\{0}, ∀y ∈ Y1 and (ii) there exists a sequence {yn} ⊂ Y1

such that yn → ȳ;
(II) for ȳ = −∞, if there exist sequences {yn} ⊂ Y1 and {tn} ⊂ R1

+ with tn → +∞ such
that yn ≤C −tne;

(III) for ȳ = +∞, if Y1 = ∅.
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Denote by infY1 the set of all infimum points of Y1. Let V1 denote the set of all infimum
points of (CVSO), i.e., V1 = infF (X0). Denote by V2 and V3 the sets of efficient points,
weakly efficient points of (CSVO), respectively. Clearly, V2 ⊂ V3 and V2 ⊂ V1.

Let z ∈ Z. Consider the following perturbed problem of (CVSO):
(CV SOz) inf F (x) s.t. x ∈ X1, G(x) ∩ (−D + {z}) ̸= ∅.
Denote by Xz and Vi(z), i = 1, 2, 3 the feasible set and sets of infimum points, efficient

points and weakly efficient points of (CV SOz), respectively.
Clearly, Vi(0) = Vi, i = 1, 2, 3.
Let σ : R1

+ → R1
+ ∪ {+∞} be a proper, nondecreasing, upper semicontinuous function

satisfying argmin(σ) = {0}.

Definition 2.2. Let (x̄, ȳ) ∈ X0×F (x̄) be a local (weakly) efficient solution pair of (CVSO).
(i) (CVSO) is said to be locally σ-calm at (x̄, ȳ) iff there exists M > 0 such that for any

sequences {zn} ⊂ Z\{0} with zn → 0, {xn} ⊂ X with each xn ∈ Xzn and xn → x̄, it holds
that [

F (xn)− {ȳ}
σ(∥zn∥)

+ {Me}
]
∩ −intC = ∅;

(ii) (CVSO) is said to be locally σ-calm at x̄ iff (CVSO) is locally σ-calm at each of its
local (weakly) efficient solution pair (x̄, ȳ);

(iii) (CVSO) is said to be uniformly locally σ-calm at x̄ iff there exists M > 0 such
that for any local (weakly) efficient solution pair (x̄, ȳ), any sequences {zn} ⊂ Z\{0} with
zn → 0, {xn} ⊂ X with each xn ∈ Xzn and xn → x̄, it holds that[

F (xn)− {ȳ}
σ(∥zn∥)

+ {Me}
]
∩ −intC = ∅.

Remark 2.3. (i) Definition 2.2 does not depend on the choice of e ∈ intC.
(ii) When Y = R1, C = R1

+, σ(t) = tα, t ≥ 0, where α > 0, Definition 2.2 reduces to the
local calmness of order α defined in [14].

(iii) If F and G are single-valued and σ(t) = tα, t ≥ 0, where α > 0, Definition 2.2
reduces to the local calmness of order α defined in [15].

(iv) It is easily seen that uniform local σ-calmness at x̄ implies local σ-calmness at x̄,
which in turn implies local σ-calmness at x̄ at each (weakly) efficient solution pair (x̄, ȳ).

Definition 2.4. Let i ∈ {1, 2, 3}. (CVSO) is said to be type i uniformly σ-calm iff there
exist M > 0 and a neighbourhood W of 0 ∈ Z such that[

Vi(z)− Vi

σ(∥z∥)
+ {Me}

]
∩ −intC = ∅, ∀z ∈ W\{0}.

Remark 2.5. (i) The notion of uniform local σ-calmness of (CVSO) has nothing to do with
the choice of e ∈ intC.

(ii) When Y = R1, C = R1
+, σ(t) = tα, t ≥ 0, where α > 0, Definition 2.2 reduces to the

calmness of order α defined in [14].
(iii) If F and G are single-valued and σ(t) = tα, t ≥ 0, where α > 0, Definition 2.2

reduces to the calmness of order α defined in [15].
(iv) Type 1 uniform σ-calmness implies type 2 uniform σ-calmness and Type 3 uniform

σ-calmness implies type 2 uniform σ-calmness.
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Definition 2.6. Let i ∈ {i = 1, 2, 3}, ȳ ∈ Vi. (CVSO) is said to be type i σ-calm at ȳ iff
there exist M > 0 and a neighbourhood W of 0 ∈ Z such that[

Vi(z)− {ȳ}
σ(∥z∥)

+ {Me}
]
∩ −intC = ∅, ∀z ∈ W\{0}.

If (CVSO) is type i σ-calm at each ȳ ∈ Vi, we say that it is type i σ-calm.
It is obvious that type i uniform σ-calmness implies type i-calmness, which in turn implies

type i σ-calmness at each ȳ ∈ Vi. Moreover, similar remarks can be made on Definition 2.6
as those on Definition 2.4.

At the end of this section, we introduce the penalty problem:

(σ − PPr) inf
x∈X1

F (x) + {rσ(d(G(x),−D))e},

where r > 0 is the penalty parameter and

d(G(x),−D) = inf{∥z + d∥ : z ∈ G(x), d ∈ D}.

Denote by V σ
i (r), i = 1, 2, 3 the sets of infimum points, efficient points and weakly efficient

points of (σ − PPr), respectively.

3 Equivalence between Local Calmness and Local Exact Penaliza-
tion

In this section, we derive equivalence relations between local calmness and local exact pe-
nalization.

The following function ξ : Y → R1 will be frequently used in the sequel:

ξ(y) = min{t : te− y ∈ C}, ∀y ∈ Y.

It is known from [5] that ξ is a strictly monotone (i.e., ξ(y1) ≤ ξ(y2), ∀y1, y2 ∈ Y with y2 −
y1 ∈ C and ξ(y1) < ξ(y2), if y2 − y1 ∈ intC), positively homogeneous, subadditive, convex
and continuous function. Moreover, ξ(y) ≥ 0 iff y /∈ −intC and ξ(y+ te) = ξ(y) + t, ∀y ∈ Y
and t ∈ R1.

Theorem 3.1. Let (x̄, ȳ) ∈ X0×F (x̄) be a local (weakly) efficient solution pair of (CVSO).
Assume that there exist r0 > 0, m0 ∈ R1 and a neighbourhood U0 of x̄ such that

[F (x) + r0{σ(d(G(x),−D))e−m0e}] ∩ −intC = ∅, ∀x ∈ X1 ∩ U0. (3.1)

Then the following two statements are equivalent.
(i) (CVSO) is locally σ-calm at (x̄, ȳ);
(ii) there exists r̄ > r0 such that (x̄, ȳ) is a local (weakly) efficient solution pair to

(σ − PPr) whenever r ≥ r̄.

Proof. We prove only the case of local weakly efficient solution pair since the local efficient
solution case can be analogously proved.

(i) ⇒ (ii) Suppose to the contrary that (ii) does not hold. Then, there exist 0 < rn ↑ +∞,
{xn} ⊂ X1 with xn → x̄ and yn ∈ F (xn) such that

yn − ȳ + rnσ(d(G(xn),−D))e ∈ −intC. (3.2)
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From this, it is easily seen that xn /∈ X0 when n is sufficiently large. Otherwise, (x̄, ȳ)
cannot be a local weakly efficient solution pair of (CVSO). Consequently, d(G(xn),−D) ̸= 0
when n is sufficiently large. From (3.1), we have

ξ(yn) + r0σ(d(G(xn),−D)) ≥ m0

when n is sufficiently large. This together with (3.2) implies

σ(d(G(xn),−D)) <
ξ(ȳ)−m0

rn − r0
→ 0 (3.3)

as n → +∞. We assert that

0 < sn = d(G(xn),−D) → 0 (3.4)

as n → +∞. Indeed, suppose to the contrary that there exist a subsequence {nk} of {n}
and some δ > 0 such that snk

≥ δ. Then, σ(snk
) ≥ σ(δ) > 0 by the nondecreasingness of σ,

contradicting (3.4). It follows that for any 1 > ϵ > 0, there exist zn ∈ G(xn) and dn ∈ D
such that ∥zn + dn∥ ≤ (1 + ϵ)sn → 0 as n → +∞. Let z′n = zn + dn. Then

∥z′n∥ ≤ (1 + ϵ)sn → 0. (3.5)

Clearly, zn ∈ G(xn) ∩ (z′n −D), namely, xn ∈ Xz′
n
. It follows from (3.2) that

yn − ȳ

2σ(d(G(xn),−D))
+

rn
2
e ∈ −intC

when n is sufficiently large. This together with (3.4), (3.5), the nondecreasingness of σ and
the upper semicontinuity of σ at sn > 0 yields

yn − ȳ

σ(∥z′n∥)
+

rn
2
e ≤C

yn − ȳ

σ((1 + ϵ)sn)
+

rn
2
e ≤C

yn − ȳ

2σ(d(G(xn),−D))
+

rn
2
e ∈ −intC

when ϵ > 0 is so small that σ((1 + ϵ)sn) ≤ 2σ(sn), contradicting the fact that (CVSO) is
locally σ-calm at (x̄, ȳ).

(ii) ⇒ (i) Suppose to the contrary that (i) does not hold. Then, there exist 0 < Mn →
+∞, {zn} ⊂ Z\{0} with zn → 0, {xn} ⊂ X with xn ∈ Xzn , xn → x̄, and yn ∈ F (xn) such
that

yn − ȳ

σ(∥zn∥)
+Mne ∈ −intC.

Thus,
yn +Mnσ(∥zn∥)e ≤C ȳ. (3.6)

By xn ∈ Xzn , we have G(xn)∩(zn−D) ̸= ∅. That is, zn ∈ G(xn)+D. Thus, d(G(xn),−D) ≤
∥zn∥. It follows that

σ(d(G(xn),−D)) ≤ σ(∥zn∥).
This combined with (3.6) yields

yn +Mnσ((d(G(xn),−D))e ≤C ȳ. (3.7)

Clearly, d(G(xn),−D)) ̸= 0 when n is suffieciently large. Otherwise, (x̄, ȳ) cannot be a local
weakly efficient solution pair of (CVSO). It follows from (3.7) that

yn + (Mn − 1)σ(d(G(xn),−D))e− ȳ ∈ −intC

when n is sufficiently large. Therefore, (x̄, ȳ) is a local weakly efficient solution pair to
(σ − PPr), contradicting (ii). The proof is complete.
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The following example verifies the results of Theorem 3.1.

Example 3.2. Let X = X1 = Z = R1, D = R1
+, Y = R2 and C = R2

+. Let F (x) =
{(−s, s) ∈ R2 : s ≤ x}, ∀x ∈ R1, G(x) = [x3, 0], x ≤ 0; G(x) = [x3, 2x3], x > 0. Suppose that
σ(t) = t1/3, t ≥ 0. It is routine to check that (x̄, ȳ) = (0, (0, 0)) is a locally efficient solution
pair to (CSVO), condition (3.1) holds and (i) and (ii) of Theorems 3.1 hold.

The next corollary follows immediately from Theorem 3.1.

Corollary 3.3. Let x̄ ∈ X0 be a local (weakly) efficient solution pair of (CVSO). Assume
that for each local (weakly) efficient solution pair (x̄, ȳ), there exist r0(ȳ) > 0, m0(ȳ) ∈
R1 and a neighbourhood U0(ȳ) of x̄ such that (3.1) holds (with r0,m0 and U0 replaced by
r0(ȳ),m0(ȳ) and U0(ȳ), respectively).

Then the following two statements are equivalent.
(i) (CVSO) is locally σ-calm at x̄;
(ii) for each local (weakly) efficient solution pair (x̄, ȳ), there exists r̄(ȳ) > r0(ȳ) such

that (x̄, ȳ) is a local (weakly) efficient solution pair to (σ − PPr) whenever r ≥ r̄(ȳ).

Similar to the proof of Theorem 3.1, we can prove the next theorem (see also the proof
of Theorem 4.2 in the next section).

Theorem 3.4. Let x̄ ∈ X0 be a local (weakly) efficient solution of (CVSO). Assume that
there exist r0 > 0, m0 ∈ R1 and a neighbourhood U0 of x̄ such that (3.1) holds. Further
assume that there exists M0 > 0 such that

ȳ ≤C M0e (3.8)

for any ȳ ∈ Y with (x̄, ȳ) being a local (weakly) efficient solution pair of (CVSO).
Then the following two statements are equivalent.
(i) (CVSO) is uniformly local σ-calm at x̄;
(ii) there exist r̄ > r0 and a neighbourhood U1 of x̄ such that, for any ȳ with (x̄, ȳ) being

a local (weakly) efficient solution pair, it holds that

[F (x) + rσ(d(G(x),−D))e− ȳ] ∩ −C\{0} = ∅,∀x ∈ U1 ∩X1

(resp. [F (x) + rσ(d(G(x),−D))e− ȳ] ∩ −intC = ∅, ∀x ∈ U1 ∩X1) whenever r ≥ r̄.

4 Equivalence between Calmness and Exact Penalization

In this section, we establish equivalences between (uniform) type i (i = 1, 2, 3) calmness of
(CVSO) and exact penalization of (σ − PPr).

Definition 4.1. Let z ∈ Z. (CV SOz) is said to be inf-externally stable (resp. externally
stable, weakly externally stable) iff for any x ∈ Xz and any y ∈ F (x), there exists ȳ ∈
V1(resp. V2, V3) such that ȳ ≤C y.

Theorem 4.2. Assume that (CV SOz) is inf-externally stable when ∥z∥ is sufficiently small.
Suppose that there exist r0 > 0, m0 ∈ R1 such that

[F (x) + {r0σ(d(G(x),−D))e−m0e}] ∩ −intC = ∅, ∀x ∈ X1 (4.1)

holds. Further assume that there exists M0 > 0 such that (3.8) holds for any ȳ ∈ V1. Then,
the following two statements are equivalent:

(i) (CVSO) is type 1 uniformly σ-calm;
(ii) there exists r̄ > r0 such that V1 ⊂ V σ

1 (r) whenever r ≥ r̄.
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Proof. (i) ⇒ (ii) Suppose to the contrary that (ii) does not hold. Then, there exist 0 <
rn ↑ +∞ and ȳn ∈ V1 such that ȳn /∈ V σ

1 (rn). Since ȳn ∈ V1, there exist {xn,k} ⊂
X0 and yn,k ∈ F (xn,k) such that yn,k → ȳn as k → +∞. Note that yn,k ∈ F (xn,k) +
{rnσ(d(G(xn,k),−D))e} = F (xn,k). This combined with ȳn /∈ V σ

1 (rn) yields that there exist
xn ∈ X1 and yn ∈ F (xn) such that

yn + rnσ(d(G(xn),−D))e− ȳn ∈ −C\{0}.

This together with (3.8) yields,

ξ(yn)−M0 + rnσ(d(G(xn),−D)) ≤ ξ(yn − ȳn) + rnσ(d(G(xn),−D)) ≤ 0. (4.2)

On the other hand, from (4.1), we deduce that

ξ(yn) + r0σ(d(G(xn),−D)) ≥ m0. (4.3)

It follows from (4.2) and (4.3) that

m0 −M0 + (rn − r0)σ(d(G(xn),−D)) ≤ 0.

That is,

σ(d(G(xn),−D)) <
M0 −m0

rn − r0

when n is sufficiently large. Consequently, limn→+∞ σ(d(G(xn),−D)) = 0. Hence,
limn→+∞ d(G(xn),−D) = 0. Arguing as in the proof of Theorem 3.1 (i)⇒(ii), we obtain a
sequence {z′n} ⊂ Z\{0} with xn ∈ Xz′

n
and z′n → 0 such that

yn − ȳ′n
σ(∥z′n∥)

+ rne ≤C
yn − ȳ′n

σ(d(G(xn),−D))
+ rne ∈ −C\{0}. (4.4)

By the inf-external stability of (CV SOz′
n
) (when n is sufficiently large) and yn ∈ F (xn),

xn ∈ Xz′
n
, we obtain y′n ∈ V1(z

′
n) such that y′n ≤C yn. This together with (4.4) yields

y′n − ȳ′n
σ(∥z′n∥)

+ (rn − 1)e ∈ −intC

when n is sufficiently large, contradicting (i).
(ii)⇒(i) Suppose to the contrary that (i) does not hold. Then, there exist {zn} ⊂ Z\{0}

with zn → 0, 0 < Mn → +∞, ȳn ∈ V1 and ȳ′n ∈ V1(zn) such that

ȳ′n − ȳn
σ(∥zn∥)

+Mne ∈ −intC.

It follows that there exist xn ∈ Xzn and yn ∈ F (xn) such that

yn − ȳn
σ(∥zn∥)

+Mne ∈ −intC. (4.5)

On the other hand, by (ii), there exists r̄ > r0 such that ȳn ∈ V σ
1 (r̄). Thus,

yn + r̄σ(d(G(xn),−D))e− ȳn /∈ −C\{0}. (4.6)

Note that G(xn) ∩ (zn − D) ̸= ∅. Consequently, d(G(xn),−D) ≤ ∥zn∥. It follows that
σ(d(G(xn),−D)) ≤ σ(∥zn∥). This combined with (4.6) yields

yn + r̄σ(∥zn∥)e− ȳn /∈ −C\{0},

contradicting (4.5) when n is sufficiently large. The proof is complete.
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The following example verifies Theorem 4.2.

Example 4.3. Let X = Z = R1, D = R1
+, X1 = [−1, 1], Y = R2 and C = R2

+. Let
F (x) = {(−s, s) ∈ R2 : s ≤ x}, ∀x ∈ R1, G(x) = [x3, 0], x ≤ 0; G(x) = [x3, 2x3], x > 0.
Suppose that σ(t) = t1/3, t ≥ 0. It can be routinely checked that all the conditions and
results of Theorem 4.2 hold.

Analogous to the proof of Theorem 4.2, we can prove the next two theorems.

Theorem 4.4. Let i ∈ {2, 3}. Assume that (CV SOz) is externally stable for i = 2 and
weakly externally stable for i = 3, when ∥z∥ is sufficiently small. Suppose that there exist
r0 > 0, m0 ∈ R1 such that (4.1) holds. Further assume that there exists M0 > 0 such that
(3.8) holds for any ȳ ∈ Vi. Then, the following two statements are equivalent:

(i) (CVSO) is type i uniformly σ-calm;
(ii) there exists r̄ > r0 such that Vi ⊂ V σ

i (r) whenever r ≥ r̄.

Theorem 4.5. Let i ∈ {1, 2, 3}. Let ȳ ∈ Vi. Assume that (CV SOz) is inf-externally stable
for i = 1, externally stable for i = 2 and weakly externally stable for i = 3, when ∥z∥ is
sufficiently small. Suppose that there exist r0 > 0, m0 ∈ R1 such that (4.1) holds. Then,
the following two statements are equivalent:

(i) (CVSO) is type i σ-calm at ȳ;
(ii) there exists r̄ > r0 such that ȳ ∈ V σ

i (r) whenever r ≥ r̄.

The following corollary follows immediately from Theorem 4.5.

Corollary 4.6. Let i ∈ {1, 2, 3}. Assume that (CV SOz) is inf-externally stable for i = 1,
externally stable for i = 2 and weakly externally stable for i = 3, when ∥z∥ is sufficiently
small. Suppose that there exist r0 > 0, m0 ∈ R1 such that (4.1) holds. Then, the following
two statements are equivalent:

(i) (CVSO) is type i σ-calm;
(ii) for each ȳ ∈ Vi, there exists r̄(ȳ) > r0 such that ȳ ∈ V σ

i (r) whenever r ≥ r̄(ȳ).

5 Necessary and/or Sufficient Conditions for (Local) Calmness

In this section, we derive necessary and/or sufficient conditions for (local) σ-calmness of
(CVSO).

Let C∗ be the positive polar cone of C defined by

C∗ = {λ ∈ Y ∗ : λ(c) ≥ 0, ∀c ∈ C},

where Y ∗ is the dual space of Y . Let

C∗0 = {λ ∈ C∗ : λ(e) = 1}.

It is known from [15] that C∗0 is weak∗−compact. Moreover, from [5], we have that

ξ(y) = maxλ∈C∗0λ(y),∀y ∈ Y.

Let x̄ ∈ X0 and ȳ ∈ Y . Consider the following scalar set-valued optimization problem

(CSSO(x̄, ȳ)) min F1(x) s.t. x ∈ X1, G(x) ∩ −D ̸= ∅,
where

F1(x) = {ξ(y − ȳ) : y ∈ F (x)} = {maxλ∈C∗0λ(y − ȳ) : y ∈ F (x)}, ∀x ∈ X1. (5.1)
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Recall from [14] that x̄ ∈ X0 is called a (local) solution of (CSSO(x̄, ȳ)) with (local)
optimal value t̄ if t̄ ∈ F1(x̄) (resp. there exists a neighbourhood U of x̄) such that t̄ ≤ t,∀y ∈
F1(x), ∀x ∈ X0 (resp. t̄ ≤ t, ∀y ∈ F1(x), ∀x ∈ X0 ∩ U).

It is easily checked that (x̄, ȳ) is a (local) weakly efficient solution of (CVSO) if and only
if x̄ is a (local) solution to (CSSO(x̄, ȳ)) with (local) optimal value t̄ = 0.

Definition 5.1 ( [14]). Let x̄ ∈ X0 and ȳ ∈ Y . Consider (CSSO(x̄, ȳ)). Suppose that
x̄ ∈ X0 is a local solution to (CSSO(x̄, ȳ)) with local optimal value t̄. (CSSO(x̄, ȳ)) is said
to be locally σ-calm at x̄ iff there exists M > 0 such that for any sequences zn ∈ Z\{0}
with zn → 0, xn ∈ X with xn ∈ Xzn and xn → x̄, and tn ∈ F1(xn), there holds

tn − t̄

σ(∥zn∥)
+M ≥ 0. (5.2)

Definition 5.2 ( [14]). Let x̄ ∈ X0 and ȳ ∈ Y . Consider (CSSO(x̄, ȳ)). Suppose that
x̄ ∈ X0 is a solution to (CSSO(x̄, ȳ)) with optimal value t̄. (CSSO(x̄, ȳ)) is said to be
σ-calm iff there exist M > 0 and a neighbourhood W of 0 ∈ Z such that

v̄(z)− t̄

σ(∥z∥)
+M ≥ 0, ∀z ∈ W\{0}, (5.3)

where v̄(z) is the optimal value of the following perturbed problem of (CSSO(x̄, ȳ)):

(CV SOz(x̄, ȳ)) min F1(x) s.t. x ∈ X1, G(x) ∩ (z −D) ̸= ∅

and F1 is defined by (5.1).

Theorem 5.3. Let (x̄, ȳ) ∈ X0 × F (x̄) be a local weakly efficient solution pair to (CVSO).
Then, the following two statements are equivalent.

(i) (CVSO) is locally σ-calm at (x̄, ȳ);
(ii) (CSSO(x̄, ȳ)) is locally σ-calm at x̄ with t̄ = 0.

Proof. (i)⇒(ii) Suppose to the contrary that there exist 0 < Mn → +∞, zn ∈ Z\{0} with
zn → 0, xn ∈ Xzn with xn → x̄ and tn ∈ F1(xn) such that

tn
σ(∥zn∥)

+Mn < 0. (5.4)

Then, from tn ∈ F1(xn) and (5.4), there exists yn ∈ F (xn) such that

ξ(yn − ȳ)

σ(∥zn∥)
+Mn < 0. (5.5)

Namely,

ξ(
yn − ȳ

σ(∥zn∥)
) +Mn < 0.

It follows that
yn − ȳ

σ(∥zn∥)
+Mne ∈ −intC, (5.6)

contradicting the fact that (CVSO) is locally σ-calm at (x̄, ȳ).
(ii)⇒(i) Suppose to the contrary that there exist 0 < Mn → +∞, zn ∈ Z\{0} with

zn → 0, xn ∈ Xzn with xn → x̄ and yn ∈ F (xn) such that (5.6) holds. Then, (5.5) holds.
Let tn = ξ(yn − ȳ). Then, (5.4) holds, contradicting the fact that (CSSO(x̄, ȳ)) is locally
σ-calm at x̄ with t̄ = 0.
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The next corollary follows immediately from Theorem 5.3.

Corollary 5.4. Let x̄ ∈ X0 be a local weakly efficient solution to (CVSO). Then, (CVSO) is
locally σ-calm at x̄ if and only if for any local weakly efficient solution pair (x̄, ȳ) ∈ X0×F (x̄),
(CSSO(x̄, ȳ)) is locally σ-calm at x̄ with t̄ = 0.

The following theorems can proved analogously to Theorem 5.3.

Theorem 5.5. Let x̄ ∈ X0 be a local weakly efficient solution to (CVSO). Then, (CVSO) is
uniformly local σ-calm at x̄ if and only if there exists M > 0 such that for any local weakly
efficient solution pair (x̄, ȳ) of (CVSO), and any sequences zn ∈ Z\{0} with zn → 0, xn ∈ X
with xn ∈ Xzn and xn → x̄, and tn ∈ F1(xn), (5.2) holds with t̄ = 0.

Theorem 5.6. Let i ∈ {2, 3} and ȳ ∈ Vi with ȳ ∈ F (x̄) for some x̄ ∈ X0. Then,
(i) if (CSSO(x̄, ȳ)) is σ-calm with t̄ = 0, then (CVSO) is σ-calm at ȳ;
(ii) assume that (CV SOz) is externally stable for i = 2 and (CV SOz) is weakly externally

stable for i = 3 when ∥z∥ is sufficiently small, then the converse of (i) is also true.

The next corollary follows directly from Theorem 5.6.

Corollary 5.7. Let i ∈ {2, 3}.
(i) If for each ȳ ∈ Vi with ȳ ∈ F (x̄) and x̄ ∈ X0, (CSSO(x̄, ȳ)) is σ-calm with t̄ = 0,

then (CVSO) is type i σ-calm;
(ii) assume that (CV SOz) is externally stable for i = 2 and (CV SOz) is weakly externally

stable for i = 3 when ∥z∥ is sufficiently small, then the converse of (i) is also true.

Theorem 5.8. Let i ∈ {2, 3}.
(i) If there exist M > 0 and a neighbourhood W of 0 ∈ Z such that for any ȳ ∈ Vi with

ȳ ∈ F (x̄) and x̄ ∈ X0, (5.3) holds with t̄ = 0;
(ii) assume that (CV SOz) is externally stable for i = 2 and (CV SOz) is weakly externally

stable for i = 3 when ∥z∥ is sufficiently small, then the converse of (i) is also true.

The next proposition presents a sufficient condition for the (local) σ-calmness of (CVSO)
at its (local) weakly efficient solution pair, which is obtainable by linear scalarization.

Proposition 5.9. Suppose that there exists λ ∈ C∗0 such that x̄ is a (local) solution to the
scalar set-valued optimization problem

(CSSOλ) min Fλ(x) s.t. x ∈ X1, G(x) ∩ −D ̸= ∅,
where

Fλ(x) = {λ(y) : y ∈ F (x)}, ∀x ∈ X1. (5.7)

Then, for any ȳ ∈ F (x̄) with λ(ȳ) = inft∈Fλ(x̄)t, (x̄, ȳ) is a (local) weakly efficient solution
pair of (CVSO). Moreover, if (CSSOλ) is locally σ-calm at x̄ with (local) optimal value
t̄ = λ(ȳ), then (CVSO) is locally σ-calm at (x̄, ȳ).

Proof. It is easily shown by contradiction that for any ȳ ∈ F (x̄) with λ(ȳ) = inft∈F (x̄)t,
(x̄, ȳ) is a (local) weakly efficient solution pair of (CVSO). The rest of the proof is similar
to that of Theorem 5.3 (ii)⇒(i).

Now we consider the case when (CVSO) is convex. More specifically, we make the
following assumption.

Assumption A. X1 ⊂ X is nonempty, closed and convex, F is nonempty-valued, C-convex
on X1 (i.e., ∀x1, x2 ∈ X1, ∀θ ∈ [0, 1], θF (x1) + (1− θ)F (x2) ⊂ F (θx1 + (1− θ)x2) + C), G
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is nonempty-compact-valued and D-convex on X1 (i.e., ∀x1, x2 ∈ X1, ∀θ ∈ [0, 1], θG(x1) +
(1− θ)G(x2) ⊂ G(θx1 + (1− θ)x2) +D).

It is known from [19] that under Assumption A, X0 is convex and d(G(x),−D)) is convex
on X1.

The next lemma follows immediately from ([26], Theorem 4.1).

Lemma 5.10. Let Assumption A hold. Then, (x̄, ȳ) ∈ X0 × F (x̄) is a weakly efficient
solution pair to (CVSO) if and only if there exists λ ∈ C∗0 such that x̄ is a solution to
(CSSOλ) with optimal value λ(ȳ).

We need the following assumption.

Assumption B. The function σ : R1
+ → R1

+ ∪ {+∞} is proper, nondecreasing and convex
with argminσ = {0}.

Note that under Assumptions A and B, the set-valued map

Fr(x) := F (x) + r{σ(d(G(x),−D))e}

is C-convex on X1 for any r > 0.
The following theorem gives necessary and sufficient conditions for the local σ-calmness of

the constrained convex vector set-valued optimization problem (CVSO) at a weakly efficient
solution pair.

Theorem 5.11. Let Assumptions A and B hold and (x̄, ȳ) ∈ X0 × F (x̄).
(i) If (x̄, ȳ) is a weakly efficient solution pair and (CVSO) is locally σ-calm at (x̄, ȳ), then

there exist λ ∈ C∗0 and r̄ > 0 such that x̄ is a minimizer of the scalar set-valued function
Fλ(x) + r̄{σ(d(G(x),−D)} with optimal value λ(ȳ), where F1(x) defined by (5.7);

(ii) The converse of (i) is also true.

Proof. (i) By Theorem 3.1, there exists r̄ > 0 such that (x̄, ȳ) is a local weakly efficient
solution pair of the set-valued map Fr̄ on X1. Note that Fr̄ is C-convex on X1. Thus,
(x̄, ȳ) is a weakly efficient solution pair of the set-valued map Fr̄ on X1. Consequently,
there exists λ ∈ C∗0 such that x̄ is a minimizer of the scalar set-valued function Fλ(x) +
r̄{σ(d(G(x),−D)} with optimal value λ(ȳ).

(ii) Since x̄ ∈ X0 is a minimizer of the scalar set-valued function Fλ(x)+r̄{σ(d(G(x),−D)}
with optimal value λ(ȳ), we have

λ(ȳ) ≤ λ(y) + r̄σ(d(G(x),−D), ∀y ∈ F (x),∀x ∈ X1.

That is,

λ(y − ȳ + (r̄/λ(e))σ(d(G(x),−D)e) ≥ 0.

Hence,

y − ȳ + (r̄/λ(e))σ(d(G(x),−D)e /∈ −intC, , ∀y ∈ F (x), ∀x ∈ X1.

Consequently, (x̄, ȳ) is a weakly efficient solution pair of the set-valued map Fr̄/λ(e) on X1.
Thus, (x̄, ȳ) is a local weakly efficient solution pair of the set-valued map Fr̄/λ(e) on X1. By
Theorem 3.1, (CVSO) is locally σ-calm at (x̄, ȳ).
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Remark 5.12. It is easily seen from the proof of Theorem 5.11 (ii) that we can prove the
following conclusion without Assumptions A and B: if there exist λ ∈ C∗0 and r̄ > 0 such
that x̄ is a local minimizer of the scalar set-valued function Fλ(x)+ r̄{σ(d(G(x),−D))} with
local optimal value λ(ȳ), where Fλ(x) is defined by (5.7), then (CVSO) is locally σ-calm at
its local weakly efficient solution pair (x̄, ȳ).

The following propositions provide sufficient conditions for the local σ-calmness of (CVSO)
at its local weakly efficient solution pair.

Proposition 5.13. Let σ satisfy that σ(t) ≥ βt, ∀t ≥ 0 for some β > 0. Let (x̄, ȳ) ∈
X0 × F (x̄). Suppose that there exist λ ∈ C∗0 and µ ∈ D∗ = {µ ∈ Z∗ : µ(d) ≥ 0, ∀d ∈ D}
such that x̄ is a local minimizer of the scalar set-valued function Fλ(x) +Gµ(x) on X1 with
local optimal value λ(ȳ), where Fλ is defined by (5.7) and

Gµ(x) := {µ(z) : z ∈ G(x)}, ∀x ∈ X1. (5.8)

Then, (x̄, ȳ) is a local weakly efficient solution pair of (CVSO) and (CVSO) is locally σ-calm
at (x̄, ȳ).

Proof. We first show that (x̄, ȳ) is a local weakly efficient solution pair of (CVSO). Otherwise,
there exist xn ∈ X0 and yn ∈ F (xn) such that xn → x̄ and yn − ȳ ∈ −intC. Therefore,

λ(yn) < λ(ȳ). (5.9)

From xn ∈ X0, we have G(xn)∩−D ̸= ∅. It follows that there exists zn ∈ G(xn)∩−D such
that

µ(zn) ≤ 0. (5.10)

From (5.9) and (5.10), we have

λ(yn) + µ(zn) < λ(ȳ),

contradicting the assumption that x̄ is a local minimizer of the scalar set-valued function
Fλ(x)+Gµ(x) on X1 with local optimal value λ(ȳ). Now we prove that x̄ is a local minimizer
of the scalar set-valued function Fλ(x) + r̄{σ(d(G(x),−D)} with local optimal value λ(ȳ),
which further implies that (x̄, ȳ) is a local weakly efficient solution pair of (CVSO) and
(CVSO) is locally σ-calm at (x̄, ȳ) by Remark 5.12. Indeed, since x̄ is a local minimizer
of the scalar set-valued function Fλ(x) +Gµ(x) on X1 with local optimal value λ(ȳ), there
exists a neighbourhood U of x̄ such that

λ(ȳ) ≤ λ(y) + µ(z),∀y ∈ F (x), z ∈ G(x), ∀x ∈ X1 ∩ U. (5.11)

By the definition of d(G(x),−D), for any ϵ > 0, there exist zϵ ∈ G(x) and dϵ ∈ D such that

d(G(x),−D) ≥ ∥zϵ + dϵ∥ − ϵ.

This combined with (5.11) and the fact that µ(dϵ) ≥ 0 yields

λ(ȳ) ≤ λ(y) + µ(zϵ)

= λ(y) + µ(zϵ + dϵ)− µ(dϵ)

≤ λ(y) + ∥µ∥∥zϵ + dϵ∥
≤ λ(y) + ∥µ∥d(G(x),−D) + ∥µ∥ϵ

≤ λ(y) +
∥µ∥
β

σ(d(G(x),−D)) + ∥µ∥ϵ,∀y ∈ F (x), ∀x ∈ X1 ∩ U.
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By the arbitrariness of ϵ > 0, we have

λ(ȳ) ≤ λ(y) +
∥µ∥
β

σ(d(G(x),−D)),∀y ∈ F (x), ∀x ∈ X1 ∩ U.

Hence, x̄ is a local minimizer of the scalar set-valued function Fλ(x) + {∥µ∥
β σ(d(G(x),−D)}

with local optimal value λ(ȳ). The proof is complete.

The next lemma follows trivially from ([26], Theorem 5.1).

Lemma 5.14. Let Assumption A hold and intD ̸= ∅. Consider (CVSO). Assume that
Slater constraint qualification holds: there exists x0 ∈ X1 such that G(x0) ∩ −intD ̸= ∅.
Suppose that (x̄, ȳ) is a weakly efficient solution pair to (CVSO). Then, there exist λ ∈ C∗0

and µ ∈ D∗ such that x̄ is a minimizer of the scalar set-valued function Fλ(x) +Gµ(x) on
X1 with optimal value λ(ȳ), where Fλ is defined by (5.7) and Gµ is defined by (5.8).

Proposition 5.15. Let Assumption A hold and σ satisfy that σ(t) ≥ βt, ∀t ≥ 0 for some
β > 0. Assume that Slater constraint qualification holds. Then, (CVSO) is locally σ calm
at each of its weakly efficient solution pair.

Proof. Suppose that (x̄, ȳ) is a weakly efficient solution pair to (CVSO). Then, by Lemma
5.14, there exist λ ∈ C∗0 and µ ∈ D∗ such that x̄ is a minimizer of the scalar set-valued
function Fλ(x) + Gµ(x) on X1 with optimal value λ(ȳ). By Proposition 5.2, (CVSO) is
locally σ-calm at (x̄, ȳ).
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