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The EPEC models play a very important role in many fields such as engineering design,
economic equilibria, multi-leader-followers game, etc.; see for instance [3, 9, 11, 16, 18] for
applications in studying the strategic behavior of generating firms in deregulated electricity
markets and [5, 22, 21] for applications in economics such as forward-spot markets and
moral-hazard problems. Optimality conditions for EPECs are studied in [8, 15, 17] and
approximation methods are studied in [4, 11, 13, 10, 22], respectively. In particular, Hu
[10] presents a diagonalization method that solves sequentially parametric MPECs of each
player until an approximation equilibrium point is found. Su [22] proposes a sequential
nonlinear equilibrium method that is based on a relaxation technique in [20]. The works
[4, 11, 13] consider an approach that reformulates the strong Nash stationarity conditions
[11] for EPECs as a mixed equilibrium system.

As is known to us, since MPECs are highly nonconvex, there are several kinds of sta-
tionarities defined for MPECs, in which popular stationarities include Clarke stationarity
(C-stationarity), Mordukhovich stationarity (M-stationarity), Bouligand stationarity (B-
stationarity), and strong stationarity (S-stationarity). Among these stationarities, the S-
stationarity is most favorable. However, by the examples given in [14], M-stationary or
C-stationary points may be better than S-stationary points in some cases and hence it is
necessary to study the M-/C-stationarity systems. The purpose of this paper is to develop
effective algorithms for solving various stationarity systems for the EPEC (1.1). As one
can see in Section 2, since the C-/M-/S-stationarity systems involve some unknown index
sets, we cannot solve these systems directly. Our strategy is similar to the recent work
[14]. That is, we reformulate the stationarity systems as constrained equations and then
propose a numerical algorithm to solve the equations. The main difference with [14] is that,
by making use of a projection operator and an Armijo line search technique, the algorithm
presented in this paper is globally and superlinearly convergent, whereas the algorithm given
in [14] is locally and superlinearly convergent. Our numerical experience shows that the new
algorithm performs quite well.

The following notation will be used later on. We denote by ∥ · ∥ the Euclidean vector
norm and by Bδ(x) := {y ∈ ℜn | ∥y−x∥ < δ} the open ball centered at x with radius δ > 0.
For a point x ∈ ℜn and a closed set X ⊆ ℜn, dist(x,X) denotes the distance from x to X
and PX(x) := {s ∈ X| ∥s − x∥ = dist(x,X)} denotes the projection of x onto X. For a
mapping F : ℜn → ℜl and a vector x ∈ ℜn, ∇F (x) stands for the transposed Jacobian of F
at x. In addition, for two vectors x and y, min(x, y) is taken componentwise.

2 Stationarities and Reformulations

Let Fk be the feasible region of MPEC(x−k) for each k ∈ {1, . . . , N} and F be the feasible
region of the EPEC (1.1), i.e.,

F := {(x, y) | (xk, y) ∈ Fk, k = 1, . . . , N}.

To facilitate the notation, we define the following index sets for a given (x∗, y∗) ∈ F :

Ik∗g := { i | gki (x∗, y∗) = 0}, k = 1, . . . , N,

I∗ := { i | Gi(x
∗, y∗) = 0 < Hi(x

∗, y∗)},
J ∗ := { i | Gi(x

∗, y∗) = 0 = Hi(x
∗, y∗)},

K∗ := { i | Gi(x
∗, y∗) > 0 = Hi(x

∗, y∗)}.



GLOBAL ALGORITHM FOR SOLVING STATIONARY POINTS FOR EPEC 445

Obviously, {I∗,J ∗,K∗} is a partition of {1, 2, . . . ,m}. For each k = 1, . . . , N , the standard
Lagrangian of MPEC(x−k) is defined by

Lk(x, y, λk, µk, αk, βk, ζk) := θk(x, y) + gk(x, y)Tλk + hk(x, y)Tµk

−G(x, y)Tαk −H(x, y)Tβk + ζkG(x, y)TH(x, y)

and the MPEC-Lagrangian of MPEC(x−k) is defined by

Lk(x, y, λk, µk, uk, vk) := θk(x, y) + gk(x, y)Tλk + hk(x, y)Tµ−G(x, y)Tuk −H(x, y)T vk.

Definition 2.1. A strategy (x∗, y∗) ∈ F is called a global (local) equilibrium point if, for
each k = 1, . . . , N , (x∗,k, y∗) is a global (local) optimal solution of MPEC(x∗,−k).

Since each MPEC(x−k) is a nonconvex optimization problem, it is generally difficult
to get a global equilibrium point. As in standard nonlinear programming theory, we may
consider stationarity conditions for EPECs. Based on the MPEC theory, we define the
stationarity for the EPEC (1.1) as follows:

Definition 2.2. A strategy (x∗, y∗) ∈ F is called a weakly stationary point of the EPEC
(1.1) if there exist multipliers (λ, µ, u, v) ∈ ℜp ×ℜq ×ℜmN ×ℜmN satisfying

k = 1, . . . , N :



∇xkLk(x∗, y∗, λk, µk, uk, vk) = 0,
∇yLk(x∗, y∗, λk, µk, uk, vk) = 0,
min(λk,−gk(x∗, y∗)) = 0,
hk(x∗, y∗) = 0,
min(G(x∗, y∗),H(x∗, y∗)) = 0,
uk
iGi(x

∗, y∗) = 0, i = 1, . . . ,m,
vki Hi(x

∗, y∗) = 0, i = 1, . . . ,m.

(2.1)

A strategy (x∗, y∗) ∈ F is called a Clarke stationary point or C-stationary point of the EPEC
(1.1) if there exist multipliers (λ, µ, u, v) ∈ ℜp ×ℜq ×ℜmN ×ℜmN satisfying (2.1) and

uk
i v

k
i ≥ 0, i ∈ J ∗, k = 1, . . . , N. (2.2)

A strategy (x∗, y∗) ∈ F is called a Mordukhovich stationary point or M-stationary point of
the EPEC (1.1) if there exist multipliers (λ, µ, u, v) ∈ ℜp×ℜq×ℜmN ×ℜmN satisfying (2.1)
and

either uk
i v

k
i = 0 or uk

i > 0, vki > 0, i ∈ J ∗, k = 1, . . . , N. (2.3)

A strategy (x∗, y∗) ∈ F is called a strongly stationary point or S-stationary point of the
EPEC (1.1) if there exist multipliers (λ, µ, u, v) ∈ ℜp × ℜq × ℜmN × ℜmN satisfying (2.1)
and

uk
i ≥ 0, vki ≥ 0, i ∈ J ∗, k = 1, . . . , N. (2.4)

The relations among the above stationarities can be stated as follows:

S-stationarity =⇒ M-stationarity =⇒ C-stationarity =⇒ weak stationarity .

Although the B-stationarity in sense of [19] is a very good candidate for an optimal solution of
EPECs, it is difficult to solve [19]. In fact, the B-stationarity is weaker than the S-stationarity
but stronger than the M-stationarity [7]. Thus, we can approximate a B-stationary point
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by solving the M-stationarity system or S-stationarity system. Therefore, we concentrate
on the C-/M-/S-stationarity systems in this paper.

Note that the C-/M-/S-stationarity systems contain an unknown index set J ∗. There-
fore, we cannot apply the developed algorithms in standard nonlinear programming theory
to solve these systems directly. From [14], we can obtain the following result immediately.

Theorem 2.3. For any (x∗, y∗) ∈ F , we have the following statements:

(i) Conditions (2.1) and (2.2) are equivalent to

(2.1) and uk
i v

k
i ≥ 0, i = 1, . . . ,m, k = 1, . . . , N. (2.5)

(ii) Conditions (2.1) and (2.3) are equivalent to

(2.1) and uk
i v

k
i ≥ 0, max{uk

i , v
k
i } ≥ 0, i = 1, . . . ,m, k = 1, . . . , N. (2.6)

(iii) Conditions (2.1) and (2.4) are equivalent to

k = 1, . . . , N :



∇xkLk(x∗, y∗, λk, µk, αk, βk, ζk) = 0,
∇yL

k(x∗, y∗, λk, µk, αk, βk, ζk) = 0,
min(λk,−gk(x∗, y∗)) = 0,
hk(x∗, y∗) = 0,
min(G(x∗, y∗), αk) = 0,
min(H(x∗, y∗), βk) = 0,
G(x∗, y∗)TH(x∗, y∗) = 0.

(2.7)

Theorem 2.3 indicates that we can remove the unknown index set J ∗ from (2.2)–(2.4)
and hence we may develop fast numerical algorithms to solve these stationarity systems
directly. In what follows, for simplicity, we denote

g(x, y) :=

 g1(x, y)
...

gN (x, y)

 , h(x, y) :=

 h1(x, y)
...

hN (x, y)

 ,

ΠG(x, y) :=

 G(x, y)
...

G(x, y)

 , ΠH(x, y) :=

 H(x, y)
...

H(x, y)

 ,

L(x, y, λ, µ, u, v) :=


∇x1L1(x, y, λ1, µ1, u1, v1)
∇yL1(x, y, λ1, µ1, u1, v1)

...
∇xNLN (x, y, λN , µN , uN , vN )
∇yLN (x, y, λN , µN , uN , vN )

 ,

L(x, y, λ, µ, α, β, ζ) :=


∇x1L1(x, y, λ1, µ1, α1, β1, ζ1)
∇yL

1(x, y, λ1, µ1, α1, β1, ζ1)
...

∇xNLN (x, y, λN , µN , αN , βN , ζN )
∇yL

N (x, y, λN , µN , αN , βN , ζN )

 .

Then, the systems (2.5)–(2.7) can be rewritten as the following formulations, where ◦ means
the Hadamard product:
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(a) C-stationarity: 
L(x, y, λ, µ, u, v) = 0,
min(G(x, y),H(x, y)) = 0,
min(λ,−g(x, y)) = 0, h(x, y) = 0,
u ◦ΠG(x, y) = 0, v ◦ΠH(x, y) = 0,
u ◦ v ≥ 0.

(b) M-stationarity: 
L(x, y, λ, µ, u, v) = 0,
min(G(x, y),H(x, y)) = 0,
min(λ,−g(x, y)) = 0, h(x, y) = 0,
u ◦ΠG(x, y) = 0, v ◦ΠH(x, y) = 0,
u ◦ v ≥ 0, max(u, v) ≥ 0.

(c) S-stationarity: 
L(x, y, λ, µ, α, β, ζ) = 0,
min(λ,−g(x, y)) = 0, h(x, y) = 0,
min(ΠG(x, y), α) = 0, min(ΠH(x, y), β) = 0,
G(x, y)TH(x, y) = 0.

By introducing some slack and auxiliary variables, the above systems can be reformulated
as smooth constrained equations in the form

F (w) = 0, w ∈W, (2.8)

where F is a smooth mapping and the constraint set W := {w ∈ ℜr | wi ≥ 0, i ∈ I} with
I to be a fixed index set. Specifically, F and W in (2.8) have the following form, where
Πz2 := (z2, . . . , z2) and Πz3 := (z3, . . . , z3):

(a’) C-stationarity:

F (x, y, s, z1, z2, z3, λ, µ, u, v) :=



L(x, y, λ, µ, u, v)
λT z1

z1 + g(x, y)
h(x, y)

z2 −G(x, y)
z3 −H(x, y)

zT2 z3
u ◦Πz2

v ◦Πz3

s− u ◦ v


(2.9)

and

W :=
{
(x, y, s, z1, z2, z3, λ, µ, u, v)

∣∣∣ s ≥ 0; zi ≥ 0(1 ≤ i ≤ 3);λ ≥ 0
}
. (2.10)
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(b’) M-stationarity:

F (x, y, s1, s2, s3, s4, z1, z2, z3, λ, µ, u, v) :=



L(x, y, λ, µ, u, v)
λT z1

z1 + g(x, y)
h(x, y)

z2 −G(x, y)
z3 −H(x, y)

zT2 z3
u ◦Πz2

v ◦Πz3

s1 − u ◦ v
sT3 s4

s2 − s3 − u
s2 − s4 − v



(2.11)

and

W :=
{
(x, y, s1, s2, s3, s4, z1, z2, z3, λ, µ, u, v)

∣∣∣si ≥ 0(1 ≤ i ≤ 4); zi ≥ 0(1 ≤ i ≤ 3);λ ≥ 0
}
.

(2.12)

(c’) S-stationarity:

F (x, y, z1, z2, z3, λ, µ, α, β, ζ) :=



L(x, y, λ, µ, α, β, ζ)
λT z1

z1 + g(x, y)
h(x, y)

z2 −G(x, y)
z3 −H(x, y)

zT2 z3
αTΠz2

βTΠz3


(2.13)

and

W :=
{
(x, y, z1, z2, z3, λ, µ, α, β, ζ)

∣∣∣ zi ≥ 0(1 ≤ i ≤ 3);λ ≥ 0;α ≥ 0;β ≥ 0
}
. (2.14)

In the next section, we focus on developing effective algorithms for solving these constrained
equations.

3 Algorithms for Constrained Equations

Consider the constrained equation

F (w) = 0, w ∈W, (3.1)

where F : ℜr → ℜν is a differentiable function and W is a nonempty closed and convex
subset of ℜr. Denote by W ∗ the solution set of (3.1).

Obviously, solving the constrained equation (3.1) is equivalent to solving the constrained
optimization problem

min θ(w) :=
1

2
∥F (w)∥2 (3.2)

s.t. w ∈W.
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Lin et al. [14] present the following Levenberg-Marquardt method for solving problem (3.1):

LM Algorithm:

Step 1: Choose w0 ∈W , η > 0, and set k := 0.

Step 2: If F (wk) = 0, then stop. Otherwise, set ηk := η∥F (wk)∥ and solve the problem

min θk(d) :=
1

2
∥F (wk) +∇F (wk)T d∥2 + ηk

2
∥d∥2 (3.3)

s.t. wk + d ∈W

to get dk.

Step 3: If dk = 0, then stop. Otherwise, let wk+1 = wk +dk, k := k+1, and go to Step 2.

Note that, since (3.3) is a strongly convex program, the iteration is well-defined. The
following assumption is the same as assumed in [14]:

Assumption 3.1. There exist some w∗ ∈W ∗ and positive constants {c, δ, γ} with δ ∈ (0, 1]
and γ ∈ [ 12 , 2) such that

(A1) both F and ∇F are Lipschitz continuous in B2δ(w∗) with Lipschitz constant L;

(A2) there holds

cdist 1/γ(w,W ∗) ≤ ∥F (w)∥, w ∈ Bδ(w∗) ∩W. (3.4)

We make a few comments on Assumption 3.1. Since we assume that the involved func-
tions are twice differentiable and their derivatives are locally Lipshitzian, the assumption
(A1) holds immediately. The assumption (A2) is actually a local error bound condition and
it generally requires some kind of regularity; see [14] for some sufficient conditions for (A2)
to hold.

The main convergence result of the LM algorithm can be stated as follows.

Theorem 3.2 ([14]). Let {wk} be a sequence generated by the LM algorithm. Suppose
that Assumption 3.1 holds with γ > 2

3 . Then there exist δ0 > 0 and κ > 0 such that, if
w0 ∈ Bδ0(w∗), there holds

dist(wk+1,W ∗) ≤ κdist τ (wk,W ∗) (3.5)

for each k, where τ := 2γ
2−γ > 1, and {wk} ⊆ Bδ(w∗) converges superlinearly to a solution

of (3.1), where δ is given in Assumption 3.1 .

We next employ an Armijo-type line search technique to present a global algorithm for
solving (3.1).

Global Algorithm:

Step 0: Choose w0 ∈ W , η > 0, ρ > 0, ℓ > 1, σ ∈ (0, 1), ϱ ∈ (0, 1), ς ∈ (0, 1), and set
k := 0.

Step 1: If F (wk) = 0 or wk = PW (wk − ∇θ(wk)), then stop. Otherwise, set ηk :=
η∥F (wk)∥ and solve (3.3) to get a solution dk.
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Step 2: If dk = 0, then stop.

Step 3: If dk satisfies

∥F (wk + dk)∥ ≤ ς∥F (wk)∥, (3.6)

set wk+1 := wk + dk and k := k + 1, go to Step 1.

Step 4: If dk satisfies

∇θ(wk)T dk ≤ −ρ∥dk∥ℓ, (3.7)

then compute a stepsize tk := max{ϱi| i = 0, 1, 2, . . . } such that

θ(wk + tkd
k) ≤ θ(wk) + σtk∇θ(wk)T dk, (3.8)

set wk+1 := wk + tkd
k and k := k + 1, go to Step 1. Otherwise, compute a projected

gradient stepsize tk := max{ϱi| i = 0, 1, 2, . . . } such that

θ(wk(tk)) ≤ θ(wk) + σ∇θ(wk)T (wk(tk)− wk), (3.9)

where wk(t) = PW (wk − t∇θ(wk)), set wk+1 := wk(tk) and k := k + 1, go to Step 1.

We make a few remarks on the global algorithm. First of all, since the solution dk of (3.3)
always exists uniquely and it is always a descent direction of problem (3.2), the Armijo-type
stepsize in (3.8) always exists, whereas the projected gradient stepsize in (3.9) always exists
if wk ̸= PW (wk − ∇θ(wk)). Moreover, the acceptability test (3.6) not only gives a chance
to accept the full stepsize but plays an important role in the following convergence analysis.
In addition, in Step 4, if (3.7) is not satisfied, we switch to the antigradient of the merit
function, which ensures that the search direction is sufficiently descendant.

We next show the global convergence of the global algorithm.

Theorem 3.3. Suppose that w0 ∈ W and F is continuously differentiable. Let {wk} be a
sequence generated by the global algorithm. Then any accumulation point w∗ of {wk} is a
stationary point of problem (3.2). Furthermore, if Assumption 3.1 holds at w∗ with γ ≥ 4

5 ,
then the whole sequence {wk} converges to a solution of (3.1) superlinearly with order no
less than τ := 2γ

2−γ > 1.

Proof. First of all, it is obvious that {wk} ⊆ W . Assume without loss of generality that
wk → w∗. If there exists a subsequence {wkj} such that, for each j, wkj implements the
projected gradient step (3.9), we have from [2, Proposition 2.3.3] that w∗ is a stationary
point of problem (3.2). Therefore, without loss of generality, we may assume that the global
algorithm does not implement the projected gradient step (3.9).

It is obvious that {θ(wk)} is monotonically decreasing and bounded below. Assume that
θ(wk) → a. If a = 0, then θ(w∗) = 0 by the continuity of θ. If a > 0, it means that (3.6)
holds for only finitely many times. Without loss of generality, we assume that the global
algorithm implements the Armijo-type line search (3.8) for all iterations. It follows from
(3.8) that

0← θ(wk+1)− θ(wk) ≤ σtk∇θ(wk)T dk,

from which we have tk∇θ(wk)T dk → 0. We consider the following two cases.
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(a) The sequence {tk} is bounded away from 0. It follows from Step 4 of the global
algorithm that

∥dk∥ ≤
(
− 1

ρ
∇θ(wk)T dk

) 1
ℓ → 0, k →∞.

(b) There exists a subsequence {tkj} converging to 0. According to the acceptance rule
of stepsize in (3.8), we have

θ(wkj + ϱ−1tkjd
kj )− θ(wkj )

ϱ−1tkj

> σ∇θ(wkj )T dkj , ∀j. (3.10)

Since {dkj} is bounded by ℓ > 1, we may assume that dkj → d∗ as j → ∞. Taking a
limit in (3.10), we have from the continuous differentiability of θ that

∇θ(w∗)T d∗ ≥ σ∇θ(w∗)T d∗,

which implies ∇θ(w∗)T d∗ ≥ 0 by 0 < σ < 1. On the other hand, if d∗ ̸= 0, it follows
from Step 4 of the global algorithm that ∇θ(w∗)T d∗ < 0, which gives a contradiction.
Thus, we have dk → d∗ = 0.

In consequence, we have from (a) and (b) that dk → 0. Since dk is the unique solution of
(3.3), we have

(∇F (wk)(F (wk) +∇F (wk)T dk) + ηkd
k)T (w − wk − dk) ≥ 0, w ∈W.

Taking a limit, we get

(∇F (w∗)F (w∗))T (w − w∗) ≥ 0, w ∈W,

which implies that w∗ is a stationary point of problem (3.2).
We next show the second part of the theorem. To this end, we first show that (3.6) holds

for each k sufficiently large. Note that Assumption 3.1 implies w∗ ∈ W ∗. Let {δ0, κ, τ} be
the constants given in Theorem 3.2. Since {wk} converges to w∗ and τγ > 1 by γ ≥ 4

5 , there

exists wk̄ ∈ Bδ0(w∗) such that

κLc−τγ∥F (wk̄)∥τγ−1 ≤ ς.

Let b0 := wk̄ and bk+1 := bk + dk, k = 0, 1, 2, . . . . It follows from Theorem 3.2 that
bk ∈ Bδ(w∗) and hence, for each k,

dist(bk+1,W ∗) ≤ κdist τ (bk,W ∗). (3.11)

It is easy to see that b̂k ∈ B2δ(w∗), where b̂k stands for some element in PW∗(bk). It follows
from Assumption 3.1 and (3.11) that, for each k,

∥F (bk+1)∥
∥F (bk)∥

≤ L∥bk+1 − b̂k+1∥
c∥bk − b̂k∥1/γ

≤ κLc−1∥bk − b̂k∥τ−1/γ

≤ κLc−τγ∥F (bk)∥τγ−1.
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It is not difficult to see that, for each k,

∥F (bk+1)∥ ≤ ς∥F (bk)∥.

From the definition of {bk} and the mathematical induction, we have

∥F (wk + dk)∥ ≤ ς∥F (wk)∥, k ≥ k̄,

which implies that the full stepsize is accepted in the global algorithm. Therefore, the global
algorithm becomes the LM algorithm when k is sufficiently large. As a result, we get the
desired results from Theorem 3.2 immediately.

We will test the global algorithm on (2.8) with the mappings F defined by (2.9), (2.11),
(2.13) and the constraint set W defined by (2.10), (2.12), (2.14) respectively.

4 Numerical Results

Now we report our numerical experience with some examples. First of all, we emphasize
that, since the EPEC (1.1) reduces to an MPEC when N = 1, the global algorithm can be
regarded as a generalization of the LM algorithm proposed for solving MPECs. In order to
compare the behavior of these two algorithms, we selected 48 MPEC examples from [6, 12].
We further tested the global algorithm on several EPECs selected from [13, 23, 24].

In our tests, the parameters are set by

η = 10−4, ρ = 10−8, p = 2.0, σ = 10−4, ϱ = 0.9, ς = 0.99995,

respectively and we terminated the iterations if one of the following conditions were satis-
fied:

• k ≥ 100;

• min{tk, ∥dk∥} ≤ 10−12;

• min{∥Φ(wk)∥, ∥wk − PW (wk −∇Ψ(wk))∥} ≤ 10−6.

In addition, we chose all starting points to be (10, 10, . . . , 10) with suitable dimensions.
The computational results for MPECs are reported in Tables 1–4. In the tables, Iter

denotes the number of iterations by the global algorithm or the LM algorithm, ErrObjective
denotes the error between the value of the objective function at the approximation solu-
tion and the real optimal value, and ResEquation denotes the residual of the constrained
equations at the approximation solution. From Tables 1–4, we can obtain the following
observation:

• There are 14 (30/29) test problems whose real optimal solutions were able to be ob-
tained by solving the S-stationarity (M-/C-stationarity) systems only by the global
algorithm, whereas the numbers for the LM algorithm are 14/29/29 respectively.

Based on the above observation, we may have the following conclusions:

Here we mean that the values of |ErrObjective| and min{ResEquation, ∥wk −PW (wk −∇Ψ(wk))∥} are
both less than 10−6, where the latter value can be regarded as a measure of feasibility of the current point
to the original MPEC.



GLOBAL ALGORITHM FOR SOLVING STATIONARY POINTS FOR EPEC 453

Table 1: Numerical results for MPECs

(1) To a certain extent, the global algorithm is more effective than the LM algorithm. In
particular, in our tests, the LM algorithm usually used more CPU time than the global
algorithm.

(2) Although the S-stationarity system is usually thought to be the best optimality system
in the MPEC world, it is not a good way to consider this system only. Our suggestion
is that, if it is not too expensive to solve the systems, one may solve the S-/M-/C-
stationarity systems and then choose a candidate by comparing their objective values.

The EPEC test problems in Table 5 can be found in [13]. Among these problems, ex-001
and outrata4 have equilibrium solutions, but ex-4 and outrata3 do not. The computa-
tional results are reported in Table 5, in which ApproxSolution denotes the approximation
equilibrium solution solved by the global algorithm. The results for the first 3 problems
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Table 2: Numerical results for MPECs (continued)
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Table 3: Numerical results for MPECs (continued)
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Table 4: Numerical results for MPECs (continued)



GLOBAL ALGORITHM FOR SOLVING STATIONARY POINTS FOR EPEC 457

Table 5: Numerical results for EPECs
Problems Systems Iter ApproxSolution ResEquation
ex-001 C 8 (-1.0000, -1.0000) 3.7951e-009

M 83 (-1.0000, -1.0000) 6.2172e-005
S 100 (-0.4157, 0.5134) 0.0354

ex-4 C 100 (0.4904, 0.5029) 0.7051
M 100 (0.0226, 1.0000) 0.0010
S 100 (0.0921, 1.0000) 0.0033

outrata3 C 100 (8.8731, 9.9999, -0.0001, -0.0001) 0.0851
M 100 (9.9926, 1.0000, -0.0000, -0.0000) 0.0904
S 100 (-0.0003, 0.6198, 9.9999, 0.42223) 0.5535

outrata4 C 93 (0.9117, 0.0700, 0.0978, 0.0978) 1.2678
M 100 (0.9117, 0.0700, 0.0979, 0.0978) 1.2678
S 100 (1.7061, 0.4378, 0.6678, 0.6623) 0.1546

coincide basically with our expectation, but the results for the last problem does not. Actu-
ally, the point obtained by solving the C-stationarity system is a stationary point of problem
(3.2).

We next consider an electricity market model with a three-node lossless direct current
network from [24, 23] as indicated in Figure 1. Demand occurs at each node but there

Line 2
Line 1

Line 3

Node 3

Node1

Genc 1

Node 2

Genc 2

Figure 1: A three-node example with two generators

are only two generators located in node 1 and node 2. There exists a pool operated by an
Independent System Operator (ISO), which serves as a broker and makes decisions on the
market clearing price and power transactions. The ISO leases the transmission system from
the network owners and controls the power flows in order to maintain the feasibility of the
transmission network. Given the generators’ production decisions q1 and q2, the ISO solves
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Table 6: Payoff parameters at the network
node ak bk αk βk q̄k
k=1 25 1.2 5 1 10
k=2 26.5 1.3 5 1.5 10
k=3 27.9 1.5 – – –

the parametric problem

max
r1,r2,r3

2∑
k=1

∫ rk+qk

0

(ak − bktk) dtk +

∫ r3

0

(a3 − b3t3) dt3 −
2∑

k=1

(αkqk + βkq
2
k) (4.1)

s.t. r1 + r2 + r3 = 0,

r1 + q1 ≥ 0, r2 + q2 ≥ 0, r3 ≥ 0,

−Kl ≤ Dl1r1 +Dl2r2 +Dl3r3 ≤ Kl, l = 1, 2, 3,

whereDlk is the power transfer distribution factor (PTDF) to calculate the flows on lines; see
[24] for details. It is obvious that problem (4.1) is a convex program with linear constraints.
Let ϱ, η, and λ−, λ+ denote the Lagrange multipliers corresponding to the constraints in
problem (4.1). Then, solving problem (4.1) is equivalent to solve its KKT system

ak − bk(rk + qk)− ϱ+ ηk −
∑3

l=1 Dlk(λ
+
l − λ−

l ) = 0, k = 1, 2,

a3 − b3rk − ϱ+ η3 −
∑3

l=1 Dl3(λ
+
l − λ−

l ) = 0,
r1 + r2 + r3 = 0,
0 ≤ ηk⊥rk + qk ≥ 0 k = 1, 2, 0 ≤ η3⊥r3 ≥ 0,
0 ≤ λ−

l ⊥Kl +Dl1r1 +Dl2r2 +Dl3r3 ≥ 0, l = 1, 2, 3,
0 ≤ λ+

l ⊥Kl −Dl1r1 −Dl2r2 −Dl3r3 ≥ 0, l = 1, 2, 3.

Assume that each generator aims at maximizing its own profit and can anticipate the impact
of its production on ISO’s decision making and its competition’s response. Then, we can
formulate the generators’ optimal decision making problem as follows: For each k = 1, 2,

max
qk,rk,ϱ,η,λ

(ak − bk(rk + qk))qk − (αkqk + βkq
2
k)

s.t. 0 ≤ qk ≤ q̄k,

ak − bk(rk + qk)− ϱ+ ηk −
3∑

l=1

Dlk(λ
+
l − λ−

l ) = 0, k = 1, 2,

a3 − b3rk − ϱ+ η3 −
3∑

l=1

Dl3(λ
+
l − λ−

l ) = 0,

r1 + r2 + r3 = 0,

0 ≤ ηk⊥rk + qk ≥ 0 k = 1, 2, 0 ≤ η3⊥r3 ≥ 0,

0 ≤ λ−
l ⊥Kl +Dl1r1 +Dl2r2 +Dl3r3 ≥ 0, l = 1, 2, 3,

0 ≤ λ+
l ⊥Kl −Dl1r1 −Dl2r2 −Dl3r3 ≥ 0, l = 1, 2, 3.

The required parameters in our test come from [23] and are given in Tables 6–7 and
the computational results are reported in Table 8. From Table 8, we can observe that a C-
stationary point and an M-stationary point were obtained by solving the C-stationarity and
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Table 7: Power transfer factors at the network
node k Dlk D2k D3k

k=1 0.5 -0.5 -0.5
k=2 0.5 -0.5 0.5
Kl 5 5 5

Table 8: Numerical results for electricity market

M-stationarity systems respectively, while a stationary point of problem (3.2) was obtained
by solving the S-stationarity system.

5 Conclusions

We have reformulated the S-/M-/C-stationarity systems for the EPEC (1.1) as some equa-
tions with simple constraints and, furthermore, we have proposed a numerical algorithm for
solving these constrained equations. We have shown that the new algorithm is globally and
superlinearly convergent, whereas the LM algorithm given in the recent work [14] is locally
and superlinearly convergent. However, our computational experience indicates that, com-
pared with the LM algorithm, the global algorithm was not as fast as expected. Perhaps, it
would be different for large scale problems. We leave it as a future work.
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