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control variables at each iteration in an attempt to continually reduce the performance
index. One advantage of direct methods is that it is usually easier to produce a good initial
control guess, which typically results in a more robust optimization method. A drawback
to direct methods is that convergence to the solution may be slower compared to indirect
methods. Betts [3] used the direct transcription method to solve a transfer from Earth
to Mars including a swing by of the planets Venus, recognizing its effectiveness in solving
trajectory optimization problems. Also in 1994, using accumulated velocity change to replace
the time-of-flight and to account for propellant mass loss, Alfano and Thorne [1] developed
some simple graphical/anlytical tools to determine the minimum elapsed time and associated
fuel of a constant-thrust vehicle for circle-to-circle coplanar transfers. Scheel and Conway [13]
developed a parallel Runge-Kutta method for solving low-thrust orbit transfers. Tang and
Conway [14] used the method of collocation with nonlinear programming to determine the
minimum-time, low-thrust interplanetary transfer trajectories. Kluever and Pierson [11]
used a “hybrid” direct/indirect method to solve the minimum-fuel Earth-Moon transfer to
a polar lunar orbit for a low-thrust spacecraft. Herman and Conway [6] solved the low-
thrust orbit transfer using collocation based on high-order Gauss-Lobatto quadrature rules.
Thorne and Hall [15] used the shooting method to solve the minimum time orbit transfer
problem with continuous thrust. Kluever [10] developed a direct optimization method and
utilized it to compute a wide range of optimal low-thrust interplanetary trajectories. Herman
and Conway [7] used the method of collocation with nonlinear programming to determine
the minimum-fuel, low-thrust, Earth-Moon orbit transfer. Herman and Spencer [8] used
a trajectory optimization technique based upon higher-order collocation to solve optimal,
low-thrust, Earth orbit transfer problems. Chen and Sheu [5] used parametric method and
second-order gradient method to solve minimum fuel low-thrust coplanar orbit transfer.

This paper presents a new computational method for obtaining minimum-fuel low-thrust
non-coplanar orbit transfer. Our method is based on control parametrization technique and
time scaling transform. We employ a piecewise constant approximation of control to derive
a class of approximate optimization problems. To solve these approximate problems using
conventional optimization algorithms, the gradients of the objective function with respect to
the decision parameters are derived. Finally, we use our algorithm to solve the minimum-fuel
low-thrust non-coplanar orbit transfer problem.

2 Problem Formulation

2.1 Dynamics of Motion

In this subsection, the geocentric inertial coordinate system is used to describe the motion
of the spacecraft. The origin of the geocentric system is at the Earth’s center, and the
fundamental plane of this system is the original orbital plane which is defined as the x-y
plane. The positive x axis points in the direction of initial position vector, and the y axis
is 90◦ in the direction of motion from the x axis. The z axis is thus orthogonal to the
original orbital plane. The unit vectors which lie along the x, y, and z axes are i, j and
k, respectively. For convenience of derivation, a moving coordinate system is attached onto
the spacecraft. Let er be the unit vector in the position vector r direction, eθ and eϕ the
unit vectors in the direction of increasing the range angle θ and the out-of-plane angle ϕ,
respectively, as shown in Figure 1. The direction of thrust, as shown in Figure 2, where φ
and τ both are in-plane and the out-of-plane thrust control angles of the spacecraft, then
the equations of motion for the spacecraft can be derived as follows [4]:
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Figure 1: Coordinate system
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ṙ = u

θ̇ =
v

r cosϕ

ϕ̇ =
w

r

u̇ =
v2

r
+

w2

r
− µ

r2
+

T sinφ cos τ

m

v̇ = −uv

r
+

vw tanϕ

r
+

T cosφ cos τ

m

ẇ = −uw

r
− v2 tanϕ

r
+

T sin τ

m

ṁ = − T

g0isp

(2.1)

where r is the radial distance from the center of Earth to the spacecraft, u, v and w the
speed component, respectively, m the mass of the spacecraft. In the above equations, the
thrust T is assumed to be constant, φ (−π < φ ≤ π) and τ (−π/2 ≤ τ ≤ π/2) are the control
variables. Also, µ is the gravitational parameter of the Earth, isp the specific impulse, and
g0 the gravitational acceleration on the Earth’s surface.

2.2 Terminal Conditions

The classical orbital elements i and Ω are used to specify the circular target orbit plane.
As shown in Figure 3, i is the inclination angle between the original and the target orbital
planes and Ω is the longitude of intersection of the original and the target orbital planes,
counted in the original orbital plane from the x axis. If the radius of the circular target
orbit as rf , then the final distance from the center of the Earth to the spacecraft must be

r(tf ) = rf (2.2a)

Also, for circular target orbit, the radial component of the velocity must vanish, i.e.,

u(tf ) = 0 (2.2b)
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Figure 3: Non-coplanar orbit transfer: circular target orbit

and the magnitude of the velocity must be equal to
√
µ/rf , or,

v2(tf ) + w2(tf ) =
µ

rf
(2.2c)

In addition to the above three conditions, at the final time tf , the transfer orbit must
match the specified inclination and longitude. The angular momentum for a circular orbit
is

h = r × V = rer × (veθ + weϕ) = −rweθ + rveϕ (2.3)

Accordingly, the magnitude of h is

h =
√
h · h = r

√
v2 + w2 = r

√
µ

r
=

√
rµ (2.4)

and the unit vector in h direction is

eh , h

h
=

√
r

µ
(−weθ + veϕ) (2.5)

According to the definition of i and Ω,

k · eh = cos i (2.6)

k × eh = sin ien = sin i(cosΩi+ sinΩj) (2.7)

where en is the unit vector in the ascending node direction. Substituting the following
equation

k = sinϕer + cosϕeθ (2.8)

and (2.5) into the following (2.6) leads to√
r

µ
v cosϕ = cos i or v cosϕ =

√
µ

r
cos i (2.9)

In (2.5), eh can also be represented with the inertial coordinate system

eh =

√
r

µ
[(−v sinϕ cos θ + w sin θ)i+ (−v sinϕ sin θ − w cos θ)j + (v cosϕ)k] (2.10)
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which is then substituted into (2.6) and (2.7) to obtain√
r

µ
v cosϕ = cos i (2.11a)

and√
r

µ
[(v sinϕ sin θ + w cos θ)i+ (−v sinϕ cos θ + w sin θ)j] = sin i(cosΩi+ sinΩj) (2.11b)

respectively. Compare the coefficients of i and j on both sides of the last equation gives√
r

µ
(v sinϕ sin θ + w cos θ) = sin i cosΩ (2.11c)√

r

µ
(−v sinϕ cos θ + w sin θ) = sin i sinΩ (2.11d)

It is obvious from (2.11), the three additional final conditions which must be satisfied are

v(tf ) cosϕ(tf ) =

√
µ

rf
cos i (2.12a)

v(tf ) sinϕ(tf ) sin θ(tf ) + w(tf ) cos θ(tf ) =

√
µ

rf
sin i cosΩ (2.12b)

−v(tf ) sinϕ(tf ) cos θ(tf ) + w(tf ) sin θ(tf ) =

√
µ

rf
sin i sinΩ (2.12c)

In summary, the terminal constraint conditions for the non-coplanar orbit transfer to circular
target orbit are (2.2a), (2.2b) and (2.12).

2.3 Non-coplanar Orbit Transfer

It is known that if the fuel is minimized, it is equivalent to that the final mass is maximized.
Therefore, the cost function is defined as follows:

J = −m (tf ) (2.13)

For (2.1), we introduce two new state equations

φ̇ = α (2.14)

τ̇ = β (2.15)

Let

x = [r, θ, ϕ, u, v, w, m, φ, τ ]
T

(2.16)

= [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T

and
u = [u1, u2]

T
= [α, β]

T
(2.17)

The original system dynamics (2.1) can be rewritten in the form of the non-linear system
given below

ẋ = f (x (t)) +Bu (t) (2.18)
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and

f (x) =



u
v

r cosϕ
w

r
v2

r
+

w2

r
− µ

r2
+

T sinφ cos τ

m

−uv

r
+

vw tanϕ

r
+

T cosφ cos τ

m

−uw

r
− v2 tanϕ

r
+

T sin τ

m

− T

g0isp

0

0



(2.19)

B =

[
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

]T
(2.20)

and subject to the following inequality constraints

−π < x8(t) ≤ π, − π

2
≤ x9(t) ≤

π

2
, ∀t ∈ [0, tf ] (2.21)

There are no bound on the control variable u. Let U be the set of all such controls u.
According to (2.2a), (2.2b) and (2.12), the terminal conditions are listed as

x1 (tf ) = rf
x4 (tf ) = 0

x5 (tf ) cos (x3 (tf )) =

√
µ

rf
cos i

x5 (tf ) sin (x3 (tf )) sin (x2 (tf )) + x6 (tf ) cos (x2 (tf )) =

√
µ

rf
sin i cosΩ

−x5 (tf ) sin (x3 (tf )) cos (x2 (tf )) + x6 (tf ) sin (x2 (tf )) =

√
µ

rf
sin i sinΩ

(2.22)

We may now state our minimum-fuel low-thrust non-coplanar orbit transfer problem as
follows.

Problem 2.1 (P). Given the dynamical system (2.18), find a control u ∈ U such that the
cost function (2.13) is minimized subject to the state inequality constraints (2.21) and the
terminal state constraints (2.22).

3 Computation Method

To solve Problem (P), we shall apply the control parametrization scheme [16] together with
a time scaling transform [12, 17]. The time horizon [0, tf ] is partitioned by a monotoni-
cally increasing sequence {t0, t1, · · · , tp}. Then, the control is approximated by a piecewise
constant function

up
1 (t) =

p∑
k=1

σk
1χ[tk−1,tk) (t) (3.1a)



MINIMUM-FUEL LOW-THRUST NON-COPLANAR ORBIT TRANSFER 433

up
2 (t) =

p∑
k=1

σk
2χ[tk−1,tk) (t) (3.1b)

where tk−1 ≤ tk, k = 1, . . . , p, with t0 = 0 and tp = tf , and

χI (t) =

{
1 t ∈ I
0 otherwise

(3.2)

For each j = 1, 2, and k = 1, 2, . . . , p, σk
j is a constant control parameter. Let σk =[

σ1
j , · · · , σ

p
j

]T
, and let σ =

[
(σ1)T, · · · , (σp)T

]T
Define up = [up

1, up
2]

T
. As up ∈ U , it is

clear that σ satisfies no boundedness. Let Ξ denote the set containing all such σ.
The switching times tk, 1 ≤ k ≤ p− 1, are regarded as additional decision variables. We

shall employ the time scaling transform to map these switching times into a set of fixed
time points k/p, k = 1, . . . , p− 1, on a new time horizon [0, 1]. This is easily achieved by the
differential equation

dt (s)

ds
= ϑp (s) , s ∈ [0, 1] (3.3)

with initial condition
t (0) = 0 (3.4)

where

ϑp (s) =

p∑
k=1

γkχ[ k−1
p , kp )

(s) (3.5)

Here γk ≥ 0, k = 1, . . . , p, and
p∑

k=1

γk
p

= tf (3.6)

Let γ = [γ1, . . . , γp]
T
and let Υ be the set containing all such γ.

Integrating (3.3) with initial condition (3.4), it is easy to see that

t (s) =

q−1∑
k=1

γk
p

+
γq
p

(ps− q + 1) , q = 1, . . . , p, s ∈
[
q − 1

p
,
q

p

)
. (3.7)

Clearly, t (1) = tf . The approximate control given by (3.1) in the new time horizon [0, 1]
becomes

ûp (s) = up (t (s)) =

p∑
k=1

σkχ[ k−1
p , kp )

(s) (3.8)

which has fixed switching times at s = 1/p, . . . , (p− 1) /p. Now, by using the time scaling
transform (3.3)–(3.6), the dynamic system (2.18) and (3.3) are transformed into

dx̂ (s)

ds
= f̂ (s, x̂ (s) ,σ,γ) =

[
ϑp (s)f (x (t (s)) , ûp (s))

ϑp (s)

]
(3.9)

where x̂ = [x (t (s)) , t (s)]
T
.

The cost function (2.13) yields
Ĵ = −m̂ (1) (3.10)

From (2.21) have

−π < x̂8(s) ≤ π, − π

2
≤ x̂9(s) ≤

π

2
, ∀s ∈ [0, 1] (3.11)
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and the terminal state constraints (2.22) transform into

ĝ =



x̂1 (1)− rf

x̂4 (1)

x̂5 (1) cos (x̂3 (1))−
√

µ

rf
cos i

x̂5 (1) sin (x̂3 (1)) sin (x̂2 (1)) + x̂6 (1) cos (x̂2 (1))−
√

µ

rf
sin i cosΩ

−x̂5 (1) sin (x̂3 (1)) cos (x̂2 (1)) + x̂6 (1) sin (x̂2 (1))−
√

µ

rf
sin i sinΩ

t (1)− tf


= 0 (3.12)

The original minimum-fuel low-thrust non-coplanar orbit transfer Problem (P) is now
approximated by a sequence of optimal parameter selection problems depending on p, the
number of the partition points of the time horizon [0, tf ], given below.

Problem 3.1 (P̂). Given system (3.9) on the time interval s ∈ [0, 1], find a control pa-
rameter vector σ ∈ Ξ and a switching time vector γ ∈ Υ such that the cost function
(3.10) is minimized subject to the state inequality constraints (3.11) and the terminal state
constraints (3.12).

For each p, Problem P̂ can be solved as a nonlinear optimization problem where the
cost function (3.10) is minimized subject to the state constraints (3.11) and (3.12). Existing
gradient-based optimization methods can be used to solve Problem P̂. For this, we need the
gradient formulas of the cost function and the constraint functions. The gradient formulas
of the cost function (3.10) and the state constraints (3.11) and (3.12) are given bellow.

Theorem 3.2. The gradients of the cost function Ĵ with respect to σ and γ are given by

∂Ĵ

∂σ
=

∫ 1

0

∂H0 (s, x̂ (s) ,σ,γ,λ0 (s))

∂σ
ds (3.13)

and
∂Ĵ

∂γ
=

∫ 1

0

∂H0 (s, x̂ (s) ,σ,γ,λ0 (s))

∂γ
ds (3.14)

where H0 (s, x̂ (s) ,σ,γ,λ0 (s)) is the Hamiltonian function for the cost function (3.10) given
by

H0 (s, x̂ (s) ,σ,γ,λ0 (s)) = λ0 (s)
T
ϑp (s)f (x (t (s)) ,σ, s)

and λ0 (s) is the solution of the co-state differential equation

λ̇0 (s)
T
= −∂H0 (s, x̂ (s) ,σ,γ,λ0 (s))

∂x̂
, s ∈ [0, 1]

with the boundary condition

λ0 (1)
T
=

∂[−m̂ (1)]

∂x̂ (1)

Similarly, for the state constraints we have the following theorem.
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Theorem 3.3. For each i = 1, . . . , 10, the gradients of the state constraints function ĝ with
respect to σ and γ are given by

∂ĝi
∂σ

=

∫ 1

0

∂Hi (s, x̂ (s) ,σ,γ,λi (s))

∂σ
ds (3.15)

and
∂ĝi
∂γ

=

∫ 1

0

∂Hi (s, x̂ (s) ,σ,γ,λi (s))

∂γ
ds (3.16)

where Hi (s, x̂ (s) ,σ,γ,λi (s)) is the Hamiltonian function for the state constraints function
(3.11) and (3.12) given by

Hi (s, x̂ (s) ,σ,γ,λi (s)) = λi (s)
T
ϑp (s)f (x (t (s)) ,σ, s)

and λi (s) is the solution of the co-state differential equation

λ̇i (s)
T
= −∂Hi (s, x̂ (s) ,σ,γ,λi (s))

∂x̂
, s ∈ [0, 1]

with the boundary condition

λi (1)
T
=

∂ĝ [x̂ (1)]

∂x̂ (1)

At this stage, we see that Problem P is approximated by a sequence of optimal parameter
selection problems Problem P̂, each of which can be viewed as a mathematical programming
problem and hence can be solved by existing gradient-based optimization methods. The op-
timal control software MISER 3.3 [9] was implemented based on these ideas, where the
control is approximated by piecewise constant functions (i.e., in terms of zero order spline
basis functions) or piecewise linear functions (i.e., in terms of first order spline basis func-
tions). It is used here to solve our minimum-fuel low-thrust non-coplanar orbit transfer
problem. Intuitively, the larger the p, the closer Problem P̂ is to Problem P.

4 Numerical Simulations

To illustrate the theory more explicitly, consider that a spacecraft with initial mass m0 =
500kg is propelled with constant thrust T = 1

20m0g0, where g0 is the gravitational ac-
celeration on the Earth surface and the specific impulse isp = 600s. By referring to the
coordinate system defined in Figure 1, the initial conditions, r0 = 2 DU, θ0 = 0◦, ϕ0 = 0◦,

u0 = 0 DU/TU, v0 =
√

µ
r0
, w0 = 0 DU/TU, where DU and TU are the canonical distance

and time unit [2], respectively. Here 1 DU is defined as the length of the radius of the
Earth’s equator and 1 DU/TU is defined as the circular orbit speed with the radius of 1 DU.
From both definitions, the time units 1 TU can be derived. The final conditions, the radius
of circular target orbit set to 5 DU, the inclination angle i = 20◦ and the longitude of the
ascending node Ω = −120◦.

The scaled time interval is s ∈ [0, 1], which is partitioned into 20 equal subintervals.
Terminal time of the orbit transfer is free to vary. For comparison, we have also solved
the optimal control problem, which the cost function (2.13), system (2.18), the state in-
equality constraints (2.21) and the terminal state constraints (2.22), by both the proposed
parametrization method (PM) and the second-order gradient method (SOGM) [4]. By using
the SOGM and the PM, it is possible to obtain the optimal transfer trajectories as shown
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in Figure 4-9. In these figures, the trajectories (computed by using the second-order gra-
dient method, SOGM) are represented with the ‘solid’ lines, while the transfer trajectories
computed by the proposed parametrization method (PM) are represented with the ‘dashed’
lines.

Figure 4 shows the three-dimensional optimal transfer trajectories. The two thinner lines
represent both the original circular orbit (inner circle) and the circular target orbit. From
the figure, it is found that the transfer trajectory computed by using the PM is very close
to the optimal transfer trajectory obtained by using the SOGM.
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Figure 4: Comparison of the minimum-fuel trajectories computed by using the PM and the
SOGM

Figure 5 shows the relationship between the radial distances r and the time t, computed
by using the PM and SOGM. From the radial distances plotted in this figure, it is found
that, with the result obtained by using the SOGM as standard, the result obtained by using
the PM can characterize the optimal trajectory. The final radial distance r (tf ) all satisfies
the terminal constraint 5 DU. Figure 6 shows the relationship between the out-of-plane
angle ϕ and the time t. It is found that, the out-of-plane angles are negative all the time.
The reason is that the shortest ways to reach the target orbit are on the negative side of
z coordinate, as can be seen from the geometric relationship between the original and the
target orbit in Figure 4. From the figure, the errors of the results obtained by using the PM
are almost negligible as compared with those obtained by using the SOGM. Figure 7 shows
the relationship between the radial speed u and the time t. Obviously, from this figure it is
found that the radial speeds vanish at the terminal time. The radial speeds increase near
linearly to reach some maximum value and then decrease also near linearly. The maximum
radial speed obtained by using the SOGM is larger than the one obtained by using the
PM. Figure 8 shows the relationship between the circumferential speed v and the time t.
The velocity component v (t) increases to some maximum value shortly after the beginning,
decreases thereafter to some minimum value and then increases again in short time to satisfy
the terminal condition. The minimum circumferential speed obtained by using the SOGM
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is smaller than the one obtained by using the PM. It is observed that all the curves have
the similar pattern. Figure 9 shows the relationship between the out-of-plane speed w ant
the time t. It is found that, the out-of-plane speeds are negative all the time. It decreases
for a long period to some minimum value which is even smaller than the required value, and
then it finally increases to reach terminal constraint.

0 2 4 6 8 10 12
2

2.5

3

3.5

4

4.5

5

time (TU)

r 
(D

U
)

SOGM
PM

Figure 5: Comparison of the radial distances computed by using the PM and the SOGM

Figure 10 and 11 depict the optimal in-plane and out-of-plane thrust control angles φ
and the time t, respectively. From the two figures, it is found that the optimal thrust control
angles computed by using the PM and the SOGM have the same pattern, also satisfying the
control constraints (2.21).

To further understand the accuracy of the proposed parametrization method, terminal
conditions of the minimum-fuel low-thrust non-coplanar orbit transfer obtained by using the
PM and the SOGM are listed in Table 1.

Table 1: Comparison of the terminal conditions computed by using the PM and the SOGM

Method tf (TU) θ (tf )(
◦) ϕ (tf )(

◦) v (tf )(
DU
TU ) w (tf )(

DU
TU ) m (tf )(kg)

SOGM 11.3447 140.7527 −19.7637 0.4473 −0.0246 118.6250

PM 11.3664 141.3149 −19.7888 0.4466 −0.0231 117.9300

From the Table 1, it is observed that as compared with the fuel consumptions obtained
by using the SOGM, those obtained by using our method are only 0.14% more. The principal
result here is that only a few parameters are required to approximate the optimal transfer
trajectory well. This largely reduces the complexity of the control function as compared to
that generated by the SOGM.



438 D.-K. GU AND L.-F. SUN

0 2 4 6 8 10 12
−20

−15

−10

−5

0

time (TU)

φ 
(°

)

SOGM
PM

Figure 6: Comparison of the out-of-plane angles computed by using the PM and the SOGM
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Figure 7: Comparison of the radial speeds computed by using the PM and the SOGM
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Figure 8: Comparison of the circumferential speeds computed by using the PM and the
SOGM
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Figure 9: Comparison of the out-of-plane speeds computed by using the PM and the SOGM
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Figure 10: Comparison of the in-plane thrust control variables computed by using the PM
and the SOGM
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Figure 11: Comparison of the out-of-plane thrust control variables computed by using the
PM and the SOGM
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5 Conclusion

It is well-known that spacecraft is required to make some orbit transfers which are very fuel
consuming. Moreover, after launched, the fuel of the spacecraft can not be replenished in
the space, thus the minimum-fuel low-thrust non-coplanar orbit transfer mission have been
considered in this paper. The spherical coordinate system is used to describe the dynamics
of the spacecraft, and the terminal constraints are derived.

By using the control parametrization technique and the time scaling transform, the
optimal orbit transfer problem is approximated as an optimal parameter selection problem
which has a finite number of decision variables. Then, the optimal control software package
MISER 3.3, which is a gradient-based method, is utilized to solve such a parameter selection
problem, and an optimal control law is thus obtained. Simulation results demonstrate that
the proposed approach is highly effective.
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