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essential solutions follows from the lower semicontinuity of solution mappings, and implies
the existence of essential solution set in Section 2. In Section 3, the characterization of
essential solutions is presented. Furthermore, we obtain the sufficient conditions for lower
semicontinuity and closedness of solution mappings. The model considered in this paper
contains some optimization problems as special cases. In section 4, we give some corollaries
of our main results as applications for some special cases.

2 Preliminaries

Let (X, dX), (Λ, dΛ) be metric spaces and (Y, ∥ · ∥), (Z, ∥ · ∥) be Banach spaces. For ε > 0,
BX(x, ε) and BY (y, ε) denote the ε-neighborhood of x ∈ X and y ∈ Y , respectively, i.e.,

BX(x, ε) = {x′ ∈ X : dX(x, x′) < ε}

and
BY (y, ε) = {y′ ∈ Y : ∥y − y′∥ < ε}.

Given a closed convex pointed cone C ⊂ Z with a nonempty interior, the partial order
≼C (≺C) in Z is defined as z ≼C z′ (z ≺C z′) if and only if z′ − z ∈ C ( z′ − z ∈ intC,
respectively) for z, z′ ∈ Z. Let h be Hausdorff metric on the collection Φ of all nonempty
closed subsets of Y , which is defined as

h(A,B) := max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}, ∀A,B ∈ Φ,

where d(a,B) = infb∈B ∥a − b∥ and d(A, b) = infa∈A ∥a − b∥. It follows from [13, Theorem
4.3.8] that (Φ, h) is a complete metric space. For ε > 0, Bh(A, ε) denotes the ε-neighborhood
of A ∈ Φ, i.e.,

Bh(A, ε) = {B ∈ Φ : h(A,B) < ε}.

We consider the following parametric vector optimization problems:

(V P ) min
≼C

f(x, λ)

s.t. g(x) ∈ K,

where f : X × Λ → Z and g : X → Y are continuous mappings and K ∈ Φ. We discuss the
stability of solutions of (VP), and regard λ and K as the parameters to be perturbed in the
present paper. Denote the product parameter space by Λ× Φ with the metric defined as

ρ((λ,A), (λ′, A′)) = max{dΛ(λ, λ′), h(A,A′)}, ∀(λ,A), (λ′, A′) ∈ Λ× Φ.

For ε > 0, Bρ((λ,A), ε) denotes the ε-neighborhood of (λ,A) ∈ Λ× Φ, i.e.,

Bρ((λ,A), ε) = {(λ′, A′) ∈ Λ× Φ : ρ((λ′, A′), (λ,A)) < ε}.

Denote the parametric vector optimization problem (VP) by (λ,K). Let

F (K) = {x ∈ X : g(x) ∈ K}

be the feasible set of (λ,K).
A point x̄ ∈ F (K) is called a solution of (λ,K) if there is no x ∈ F (K) such that

f(x, λ) ≼C f(x̄, λ) and f(x, λ) ̸= f(x̄, λ). A point x̄ ∈ F (K) is called a weak solution of
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(λ,K) if there is no x ∈ F (K) such that f(x, λ) ≺C f(x̄, λ). Denote the solution set by
S(λ,K) and the weak solution set by Sw(λ,K) for (λ,K) ∈ Λ× Φ.

This paper deals with the stability of (V P ) on the domain of S, defined as

domS = {(λ,K) ∈ Λ× Φ : S(λ,K) ̸= ∅}.

Associated with the parameter space Λ × Φ, we consider the set-valued mappings F :
Φ → 2X and S : Λ×Φ → 2X , where 2X denotes the collection of all nonempty subsets of X.
The stability of parametric vector optimization problems (λ,K) can be transformed to the
continuity and variational properties of the feasible mapping F and the solution mapping
S.

A mapping g : X → Y is said to be open whenever the image of any open set in X is an
open set in Y .

Let T : X → 2Y be a set-valued mapping. We now recall some well-known definitions.
(i) T is upper semicontinuous (usc for brevity) at x ∈ X if for every open set V ⊂ Y

containing T (x), there exists an open neighborhood U of x such that T (x) ⊂ V for all x ∈ U .
(ii) T is said to be lower semicontinuous (lsc for brevity) at x ∈ X if for any open

set V ⊂ Y satisfying V ∩ T (x) ̸= ∅, there exists an open neighborhood U of x such that
V ∩ T (x) ̸= ∅ for all x ∈ U . It is well known that T is lsc at x ∈ X if and only if for any
sequence xn ∈ X converging to x and any y ∈ T (x) there exist yn ∈ T (xn) for all n such
that yn → y.

(iii) T is continuous at x ∈ X if it is both upper and lower semicontinuous at x.
(iv) T is closed at x ∈ X if for all sequences {xn} ⊂ X and {yn} ⊂ Y satisfying

lim
n→∞

xn = x, lim
n→∞

yn = y, and yn ∈ T (xn), one has y ∈ T (x).

We also say that T is usc (lsc, closed) on X if T is usc (lsc, closed, respectively) at each
x ∈ X.

Definition 2.1. A point x̄ ∈ S(λ,K) is said to be an essential solution of (λ,K) if for any
open neighborhood U of x̄ in X, there exists an open neighborhood V of (λ,K) in Λ × Φ
such that

U ∩ S(λ′,K ′) ̸= ∅, ∀(λ′,K ′) ∈ V.

Definition 2.2. A nonempty closed subset E(λ,K) of S(λ,K) is said to be an essential
solution set of (λ,K) if for any open set U ⊃ E(λ,K), there exists an open neighborhood
V of (λ,K) in Λ× Φ such that

U ∩ S(λ′,K ′) ̸= ∅, ∀(λ′,K ′) ∈ V.

Remark 2.3. 1) Note that any essential solution of (λ,K) can be arbitrarily approximated
by some solution of (λ′,K ′) when (λ′,K ′) is sufficiently close to (λ,K).

2) The notion of an essential solution set is a natural generalization of the concept of
an essential solution. A given x̄ ∈ X is an essential solution of (λ,K) if and only if the
singleton {x̄} is an essential solution set of (λ,K).

3) The solution mapping S is lsc at (λ,K) if and only if every solution x ∈ S(λ,K) is
essential.

4) The lower semicontinuity of S implies the existence of essential solutions. Further,
the existence of essential solutions implies the existence of essential solution sets.

The following example shows that the existence of essential solution set cannot ensure
the existence of essential solution.
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Example 2.4. Let Λ = Y = Z = R2,

X = K = {(x1, x2) ∈ R2 : x2 = 1− x1, 0 ≤ x1 ≤ 1},

g(x) = x, ∀x ∈ X,

f(x, λ) = x, ∀(x, λ) ∈ X × Λ,

and
C = R2

+ = {(x1, x2) ∈ R2 : 0 ≤ x1, 0 ≤ x2},

where R2 denote the real plane with Euclidean norm. Then we have

S(λ,K) = F (K) = X.

It is obvious that S(λ,K) is an essential solution set.
Now we show that every solution x̃ ∈ S(λ,K) is not a essential solution. It follows from

S(λ,K) = X and the definition of X that there exists x̄ ∈ S(λ,K) such that ∥x̃− x̄∥ > 1
4 .

Let

Kn = {(x1, x2) ∈ R2 : x2 − x̄2 = (
1

n
− 1)(x1 − x̄1), 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}

for each positive integer n. It is obvious that

(λ,Kn) → (λ,K).

However, we have
F (Kn) = S(λ,Kn) = {x̄}.

Hence x̃ is not an essential solution.

The next example shows that the existence of an essential solution does not guarantee
the lower semicontinuity of the solution mapping S.

Example 2.5. Let X = Λ = C = R+ := [0,+∞), Y = Z = R,

f(x, λ) = λx, ∀(x, λ) ∈ R+ ×R+,

g(x) = x, ∀x ∈ R+,

K0 = R+,

and
λ0 = 0.

Then we have F (K0) = R+ and S(λ0,K0) = R+.
Let λn = 1

n and Kn = K0 = R+ for each positive integer n. Then we have (λn,Kn) →
(λ0,K0), F (Kn) = Kn = R+ and S(λn,Kn) = {0}. It implies that S is not lsc at (λ0,K0).

We claim that 0 ∈ S(λ0,K0) is an essential solution of (λ0,K0). In fact, if 0 is not
an essential solution, there exist a positive real number ϵ > 0 and a sequence (λk,Kk)
converging to (λ0,K0) such that

S(λk,Kk) ∩BX(0, ϵ) = ∅, (2.1)

where λk ∈ R+, Kk ⊂ R+ for all positive integer k. Note that F (Kk) = Kk. Let ak =
minKk. Then we have ak ∈ S(λk,Kk). It follows from (2.1) that ak ≥ ϵ for each positive
integer k, in contradiction with Kk → K0.
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Example 2.6. 1) When X is a compact metric space, Z = Rm and C = Rm
+ , for the

unconstrained vector optimization problems, Xiang and Zhou [23] showed that each set of
all solutions corresponding to the same optimal values is essential under functional pertur-
bations (parametric perturbations in the present paper, correspondingly). They also gave
characterizations of an essential solution, an essential solution set and an essential compo-
nent, respectively.

2) For the weak solution of general vector optimization problems, Peng [18] analyzed the
relationship between the existence of essential weak solutions and the stability of the weak
solutions set. He also showed that the set of all stable problems (every weak solution is
essential) is an dense Gδ subset of the set of all problems with the given topology. However,
he assumed that the decision space X is a compact metric space.

3 Main Results

First, we discuss the continuity of the feasible mapping F .

Lemma 3.1. If the mapping g : X → Y is open, then the feasible mapping F is lsc on Φ.

Proof. For any K ∈ Φ, suppose that W is an open set in X such that W ∩ F (K) ̸= ∅.
It follows from the definition of F (K) that there is x ∈ W such that g(x) ∈ K, i.e.,
g(W ) ∩K ̸= ∅. Then we can take y0 ∈ g(W ) ∩K. Noting that g(W ) is an open set in Y
since g is an open mapping, there exists a real number ϵ > 0 such that BY (y0, ϵ) ⊂ g(W ).

For every K ′ ∈ Bh(K, ϵ) ⊂ Φ, we claim that BY (y0, ϵ) ∩K ′ ̸= ∅. In fact, if there exists
K ′ ∈ Bh(K, ϵ) such that BY (y0, ϵ) ∩K ′ = ∅, we have d(y0,K

′) ≥ ϵ. Then, from y0 ∈ K, we
can deduce that h(K,K ′) ≥ ϵ, which contradict K ′ ∈ Bh(K, ϵ).

Therefore, BY (y0, ϵ) ⊂ g(W ) and BY (y0, ϵ) ∩ K ′ ̸= ∅ imply g(W ) ∩ K ′ ̸= ∅, i.e., W ∩
F (K ′) ̸= ∅. This means that F is lsc at K. The proof is complete.

The following example shows that the assumption that g is an open mapping is essential
in Lemma 3.1.

Example 3.2. Let X = Y = Z = R2,

K = R2
+,

g(x) =

{
(1, 1), x ∈ R2

+

(0, 0), x ̸∈ R2
+

,

and

Kn = {(x1, x2) ∈ R2 :
1

n
≤ x1,

1

n
≤ x2}

for each positive integer n. Note that g is not an open mapping. It is easy to check that

Kn → K,

F (K) = R2,

and
F (Kn) = R2

+.

It implies that F is not lsc at K.

Lemma 3.3. If the mapping g : X → Y is continuous, then the feasible mapping F is closed
on Φ.
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Proof. For any K ∈ Φ, let {Kn} ⊂ Φ and {xn} ⊂ X be sequences with xn ∈ F (Kn) such
that Kn → K and xn → x̄ as n → ∞. It is sufficient to show that x̄ ∈ F (K).

If x̄ ̸∈ F (K), i.e., g(x̄) ̸∈ K, there exists ϵ > 0 such that BY (g(x̄), ϵ)∩K = ∅ (since K is
closed). It follows from the continuity of g that there exists η > 0 such that

g(x) ∈ BY (g(x̄),
ϵ

2
), ∀x ∈ BX(x̄, η).

Noting that xn → x̄ and Kn → K, we have xn ∈ BX(x̄, η) and Kn ∈ Bh(K, ϵ
2 ) for suffi-

ciently large n. It follows that g(xn) ∈ BY (g(x̄),
ϵ
2 ), which implies that g(xn) ̸∈ Kn. This

contradicts xn ∈ F (Kn). The proof is complete.

For (λ,K) ∈ Λ × Φ, we say that (λ,K) satisfies the local inf-compactness condition at
x̄ ∈ X if there exists a positive real number α such that for all (λ′,K ′) ∈ Bρ((λ,K), α) and
each x ∈ BX(x̄, α), the sets

L(x, λ′,K ′) := {z ∈ F (K ′) : f(z, λ′) ≼C f(x, λ′)}

are contained in a compact subset D of X.
Now, we establish sufficient conditions for a solution to be essential.

Theorem 3.4. For (λ,K) ∈ Λ× Φ and x̄ ∈ S(λ,K), suppose that the following conditions
hold.

(i) g : X → Y is a continuous open mapping,

(ii) f : X × Λ → Z is a continuous mapping,

(iii) (λ,K) satisfies the local inf-compactness condition at x̄ and

{x ∈ F (K) : f(x, λ) = f(x̄, λ)} = {x̄}.

Then x̄ is an essential solution of (λ,K).

Proof. Suppose that x̄ is not an essential solution. Then there exist ϵ0 > 0 and a sequence
(λn,Kn) converging to (λ,K) such that

S(λn,Kn) ∩BX(x̄, ϵ0) = ∅. (3.1)

Noting that x̄ ∈ F (K) and F is lsc at K by Lemma 3.1, there exist xn ∈ F (Kn) for all n
such that xn → x̄. It follows from (3.1) that xn ̸∈ S(λn,Kn) for sufficiently large n. By the
local inf-compactness condition, the continuity of f and the closedness of F , it is easy to
check that

L(xn, λn,Kn) = {z ∈ F (Kn) : f(z, λn) ≼C f(xn, λn)}

are closed subsets of the compact set D for sufficiently large n. Consider the following vector
optimization problem

min
≼C

f(x, λn)

s.t. x ∈ L(xn, λn,Kn). (3.2)

From the compactness of L(xn, λn,Kn), the continuity of f , and [19, Theorem 3.2.7], it
follows that the solution set Sn of problem (3.2) is not empty.
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We claim that Sn ⊂ S(λn,Kn). In fact, if there exists x̂ ∈ Sn with x̂ ̸∈ S(λn,Kn), there
exist x ∈ F (Kn) such that

f(x̂, λn)− f(x, λn) ∈ C \ {0}. (3.3)

Noting that x ∈ L(xn, λn,Kn) since f(x, λn) ≼C f(x̂, λn) ≼C f(xn, λn), the inclusion
relation (3.3) contradicts x̂ ∈ Sn.

Since Sn ̸= ∅, we can take x′
n ∈ Sn ⊂ L(xn, λn,Kn) ⊂ F (Kn) for each n. Then we have

f(xn, λn)− f(x′
n, λn) ∈ C (3.4)

by the definition of L(xn, λn,Kn). Since the local inf-compactness condition implies that
x′
n belong to the compact set D for sufficiently large n, we may assume without loss of

generality that there exists x′ ∈ D such that x′
n → x′. Note that the set-valued mapping F

is closed by Lemma 3.3. Then we have x′ ∈ F (K).
Now we show that

f(x̄, λ)− f(x′, λ) ∈ C. (3.5)

If not, there exists ϵ > 0 such that

BY (f(x̄, λ)− f(x′, λ), ϵ) ∩ C = ∅

since C is nonempty and closed. It follows from the continuity of f that

f(xn, λn)− f(x′
n, λn) ̸∈ C

for all sufficiently large n, in contradiction with (3.4).
Noting that x̄ ∈ S(λ,K) and x′ ∈ F (K), the inclusion relation (3.5) implies f(x̄, λ) =

f(x′, λ). Then we have x′ = x̄ by condition (iii). It follows from x′
n → x′ that x′

n ∈ BX(x̄, ϵ0)
for sufficiently large n. On the other hand, we have x′

n ∈ Sn ⊂ S(λn,Kn). It contradicts
with (3.1). The proof is complete.

By Definition 2.1 and 2.2, every essential solution is an essential solution set itself. The
following corollary naturally holds.

Corollary 3.5. Under the assumptions of Theorem 3.4, every closed subset E(λ,K) ⊂
S(λ,K) with x̄ ∈ E(λ,K) is an essential solution set.

Applying Theorem 3.4, we directly obtain the following result by 3) of Remark 2.3.

Corollary 3.6. Let (λ,K) ∈ Λ × Φ be such that conditions (i)-(iii) of Theorem 3.4 are
satisfied for all x̄ ∈ S(λ,K). Then S is lsc at (λ,K).

Next, we establish sufficient conditions for the closedness of the weak solution mapping
Sw and the solution mapping S, respectively.

Theorem 3.7. Suppose that f : X × Λ → Z is a continuous mapping and the feasible
mapping F is lsc at K. Then the weak solution mapping Sw is closed on Λ× Φ.

Proof. For any (λ,K) ∈ Λ × Φ, let (λn,Kn) ∈ Λ × Φ and xn ∈ Sw(λn,Kn) be sequences
such that (λn,Kn) → (λ,K) and xn → x as n → ∞. We only need to prove x ∈ Sw(λ,K).

We argue by contradiction. If x /∈ Sw(λ,K), there exists x̃ ∈ F (K) such that

f(x, λ)− f(x̃, λ) ∈ intC.
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Therefore, there exists a positive real number ϵ such that

BY (f(x, λ)− f(x̃, λ), ϵ) ⊂ intC.

Since the feasible mapping F is lsc at K, there is a sequence x̃n ∈ F (Kn) such that x̃n → x̃.

From the continuity of f , it follows that there exists a positive integer N such that

f(xn, λn)− f(x̃n, λn) ∈ BY (f(x, λ)− f(x̃, λ), ϵ) ⊂ intC, ∀n > N,

which contradicts xn ∈ Sw(λn,Kn). The proof is complete.

Applying Lemma 3.1, the next corollary follows directly from Theorem 3.7.

Corollary 3.8. Let f : X × Λ → Z be a continuous mapping and g : X → Y be an open
mapping. Then the weak solution mapping Sw is closed on Λ× Φ.

Theorem 3.9. For (λ,K) ∈ Λ× Φ, suppose that f : X × Λ → Z is a continuous mapping,
g : X → Y is an open mapping, and S(λ,K) = Sw(λ,K). Then the solution mapping S is
closed at (λ,K).

Proof. Let (λn,Kn) ∈ Λ × Φ and xn ∈ S(λn,Kn) ⊂ Sw(λn,Kn) be sequences such that
(λn,Kn) → (λ,K) and xn → x as n → ∞. By Corollary 3.8, Sw is closed at (λ,K). Then
x ∈ Sw(λ,K) = S(λ,K). Hence S is closed at (λ,K).

It is obvious that the local inf-compactness condition naturally holds if the space X is
compact. The following example shows that the condition (iii) is essential in Theorem 3.4.

Example 3.10. Let Λ = C = R+ = [0,+∞), X = Y = Z = R,

f(x, λ) =

{
λx, x ∈ R+, λ ∈ R+

0, x ̸∈ R+, λ ∈ R+
,

g(x) = x, ∀x ∈ R,

K0 = R,

and

λ0 = 0.

Then we have F (K0) = R and S(λ0,K0) = R.

Let λn = 1
n and Kn = K0 = R for each positive integer n. Then we have (λn,Kn) →

(λ0,K0), F (Kn) = Kn = R and S(λn,Kn) = −R+. In fact, for the problem (λ0,K0) and
the solution 1 ∈ S(λ0,K0), we have

L(x, λ0,K0) = {z ∈ F (K0) : f(z, λ0) ≼C f(x, λ0)} = R,

which implies that the problem (λ0,K0) satisfies all assumptions of Theorem 3.4 except
condition (iii). It is easy to check that the solution 1 ∈ S(λ0,K0) is not an essential solution
of (λ0,K0).
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4 Applications

Since the vector optimization problem (VP) in Section 2 contains some optimization prob-
lems as special cases, we can derive directly some consequences for these special cases from
the results of Section 3. In this section, we only discuss two special cases, i.e., scalar opti-
mization problems and cone constrained vector optimization problems.

First, we consider the following scalar optimization problems.

(P ) minφ(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

where φ : X → R and gi : X → R are continuous real functions.
Let f : X ×R → R be a continuous function such that

f(x, 0) = φ(x), ∀x ∈ X.

Definition 4.1. Given a real number λ > 0, a point x̄ ∈ X is called a (λ, f)-solution of
problem (P ) if

gi(x̄) ≤ λ, i = 1, 2, . . . ,m,

and
f(x̄, λ) ≤ f(x, λ)

for all x ∈ X satisfying gi(x) ≤ λ.

Let Λ = R, C = R+ := [0,∞) and

Kλ = λe−Rm
+ ,

where e = (1, . . . , 1) ∈ Rm.
Consider the following parametric optimization problems

(Pλ) min f(x, λ)

s.t. g(x) ∈ Kλ,

where g : X → Rm is defined as g := {g1, . . . , gm}. Then we can rewrite problem (P) as

min f(x, 0)

s.t. g(x) ∈ K0.

Denote the solution set of the parametric optimization problems (Pλ) by S(λ), the weak
solution set by Sw(λ) and the feasible set by F (λ). Thus we can write the solution set of
(P ) as S(0), the weak solution set as Sw(0) and the feasible set as F (0).

Remark 4.2. (i) Obviously, the (λ, f)-solutions of (P ) must be solutions of problem (Pλ).
(ii) From Definition 2.1, if a point x̄ ∈ S(0) is an essential solution of (P ), there exists a

sequence of (λn, f)-solutions {xλn} such that xλn → x̄ as λn → 0.

Corollary 4.3. Suppose that g : X → R is a continuous open function, f : X × R → R is
a continuous function, (P ) satisfies the local inf-compactness condition at x̄ ∈ S(0) and x̄
is a unique solution of (P ). Then x̄ is an essential solution of (P ).
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Corollary 4.3 follows directly from Theorem 3.4. It means that any solution x̄ satisfying
the conditions of Corollary 4.3 is a stable solution of (P ).

Note that the equation Sw(λ) = S(λ) holds trivially for scalar problems. The next result
follows immediately from Theorem 3.9.

Corollary 4.4. Let f : X × R → R be a continuous mapping, g : X → R be an open
mapping and {xλn} be a sequence of (λn, f)-solutions with xλn → x̄ as λn → 0. Then x̄ is
a solution of problem (P ).

Corollary 4.4 means that we can approximate any solution of (P ) by a sequence of
(λ, f)-solutions.

Next, we consider the following cone constrained vector optimization problems

(CV P ) min
≼C

φ(x)

s.t. g(x) ≼C θ,

where φ : X → Rm and g : X → Rm are vector functions, C ⊂ Rm is a closed convex cone
with nonempty interior and θ = (0, . . . , 0) ∈ Rm.

Let f : X ×R → Rm be a continuous vector function such that

f(x, 0) = φ(x), ∀x ∈ X.

Definition 4.5. Given a real number λ > 0 and c0 ∈ C, a point x̄ ∈ X is called a (λ, c0, f)-
solution of problem (CV P ) if

g(x̄) ≼C λc0

and there is no x ∈ X with g(x) ≼C λc0 such that

f(x̄, λ)− f(x, λ) ∈ C \ {0}.

Let Λ = R and Kλ = λc0−C. Consider the following parametric cone constrained vector
optimization problems

(CV Pλ) min
≼C

f(x, λ)

s.t. g(x) ∈ Kλ.

Then we can rewrite problem (CVP) as

min
≼C

f(x, 0)

s.t. g(x) ∈ K0.

Denote the solution set of the parametric optimization problems (CV Pλ) by S(λ, c0), the
weak solution set by Sw(λ, c0) and the feasible set by F (λ, c0). Thus we can write the
solution set of (CV P ) as S(0, c0), the weak solution set as Sw(0, c0) and the feasible set as
F (0, c0).

Remark 4.6. (i) It is obvious that the (λ, c0, f)-solutions of problem (CV P ) must be
solutions of problem (CV Pλ).

(ii) From Definition 2.1, if a point x̄ ∈ S(0, c0) is an essential solution of (CV P ), there
exists a sequence of (λn, c0, f)-solutions {xλn} such that xλn → x̄ as λn → 0.
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The following results follow immediately from Theorem 3.4 and Theorem 3.9, respec-
tively.

Corollary 4.7. Suppose that g : X → R is a continuous open function, f : X ×R → Rm is
a continuous function, (CV P ) satisfies the local inf-compactness condition at x̄ ∈ S(0, c0)
and {x ∈ F (0, c0) : f(x, 0) = f(x̄, 0)} = {x̄}. Then x̄ is an essential solution of (CV P ).

Corollary 4.8. Let f : X → R be a continuous mapping, g : X → R be a open mapping
and {xλn} be a sequence of (λn, c0, f)-solutions with xλn → x̄ as λn → 0. Suppose that
Sw(0, c0) = S(0, c0). Then x̄ is a solution of problem (CV P ).
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[9] M.A. Goberna, M.A. López and M. Todorov, Stability theory for linear inequality
systems. II. Upper semicontinuity of the solution set mapping, SIAM J. Optim. 7 (1997)
1138–1151.

[10] J. H. Jiang, Essential component of the set of fixed points of the multivalued mappings
and its application to the theory of games (II), Scientia Sinica. 12 (1963) 951–964.

[11] P.S. Kenderov, Most of the optimization problems have unique solution, in Parametric
Optimization and Approximation (Oberwolfach, 1983), Internat. Schriftenreihe Numer.
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