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individual rectangles without waste attached. However, a guillotine cutting signifies the one
from an edge of the rectangle to the opposite edge. A guillotine cutting which is applied
n times is referred to as an n-stage guillotine cutting. For a two-stage guillotine cutting
problem (i.e. n = 2), horizontal cuts are applied in the first stage, and then vertical cuts are
applied in the second stage. Regarding a three-stage guillotine cutting problem (i.e. n = 3),
the same operations in the two stages aforementioned are performed and then horizontal cuts
are adopted in the third stage. Figures2 illustrates examples of two-stage and three-stage
guillotine cutting problems. In the former problem, three strips are produced via horizontal
cuts in the first stage, and all items are segregated for each strip via vertical cuts in the
second stage. In the latter problem, two strips are generated by means of horizontal cuts in
the first stage, and stacks are separated for each strip through vertical cuts in the second
stage. Finally, all items and waste are partitioned via horizontal cuts in the last stage.

In order to separate items from waste, trimming (i.e. further horizontal cuts) may be
used after the last stage. Accordingly, both two-stage and three-stage problems can be
categorized to two different cases, (i) non-trimming (i.e. exact case) and (ii) trimming (i.e.
non-exact case), as portrayed in Figure 3. Suppose that there are 13 and 23 items packed in
bins for the two-stage and three-stage problems, respectively. Since trimming is not allowed
for the two-stage exact case shown in Figure 3(a), the height of each item in the same shelf
must be identical. However, such restriction is not applied in the non-exact case shown in
Figure 3(b), and consequently the height of each item in the same shelf can be different.
Similarly, as trimming is not permitted for the three-stage exact case shown in Figure 3(c),
the width of each item in the same stack must be equivalent. Nevertheless, this rule is not
used in the non-exact case shown in Figure 3(d) and therefore the width of each item in the
same stack can be distinct. Note that the leftmost item in each shelf is also a stack which
determines the height of the shelf.

The possible search methods to solve bin packing problems as a type of combinatorial
optimization problems are exact methods, heuristics methods and meta-heuristics methods
[16, 17, 4, 22]. Although exact methods guarantee that an optimal solution can be found, the
difficulty of obtaining an optimal solution increases drastically if the problem size increases.
Thus, for large instances, using heuristics or meta-heuristics methods may be seen as a more
appropriate alternative when the goal is to attain a good-quality solution in a reasonable
amount of time.

In this study, the Single Bin Size Bin Packing Problem (SBSBPP) [23] with two-stage
guillotine cutting, trimming (i.e. non-exact case) and fixed orientation items is considered.
Also, a new efficient algorithm called combined local search heuristics which comprise two
local search heuristics, Variable Neighborhood Descent (VND) and Random Neighbor Selec-
tion (RNS), is designed and proposed to improve a solution given by a constructive heuristic
(CH). CH contains a number of simple procedures for constructing a solution by packing
items into bins with the use of a defined item packing sequence. Different combinations of
criteria for packing items into existing shelves and bins must be set before CH is imple-
mented. Then, CH is executed M times to obtain M solutions where M is the total number
of combinations of criteria. The best of M solutions is chosen as the initial (current) solu-
tion, and only the corresponding combination of criteria will be employed when the VND
and RNS are subsequently implemented. VND and RNS embrace three deterministic neigh-
borhood structures called swap adjacent item types, swap adjacent item subsequences, and
reverse item subsequences and three random neighbor selection operators called cut-and-
paste, split, and swap blocks, respectively. These neighborhood structures and neighbor
selection operators are all adopted to try to enhance the quality of the current solution by
modifying the current item packing sequence. After a new sequence is obtained, the CH is
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executed again to generate a new solution. If the new solution outperforms the current so-
lution, the current solution is replaced by the new. Otherwise, the current solution remains
unchanged.

This paper is organized as follows. Section 2 offers a literature review of different heuris-
tics used in solving various bin packing problems. Sections 3 and 4 provide the details of the
CH, and VND and RNS respectively. Sections 5 and 6 present the computational results
and discussions, and conclusions respectively.

2 Literature Review

Some related work about application of heuristics to solve bin packing problems and about
local search heuristics to solve other problems will be presented as follows.

The following studies are the ones using various heuristic methods to tackle various bin
packing problems. Four heuristic algorithms, Finite next-fit (FNF), Finite first-fit (FFF),
Finite best-strip (FBS), and Finite bottom-left (FBL), were proposed by Berkey and Wang
[1] to attack the two-dimensional guillotine bin packing problem without allowing item
rotations: (i) FNF is a level-oriented next-fit heuristic that packs directly into finite bins,
(ii) FFF is a level-oriented first-fit heuristic that packs directly into finite bins, (iii) FBS is
a best-fit heuristic that is similar to hybrid first-fit, which is a two-step algorithm in which
the pieces are packed into an infinite height-strip and the strip is divided into blocks, which
are then packed into finite bins, and (iv) FBL is a bottom-left approach which packs directly
into finite bins.

A new hybrid heuristic algorithm called hybrid first fit (HFF) was suggested by Chung
et al. [6] to cope with two dimensional bin packing problems. Creating a strip packing for
the set of rectangular items by utilizing the first-fit decreasing height heuristic algorithm is
the first step of HFF. Then, a collection of blocks of non-increasing heights, each of which
comprises a subset of rectangular items, is obtained. These blocks can be viewed as a new
collection of rectangles and the first-fit decreasing heuristic algorithm can be adopted to
pack those blocks into the bins.

A new heuristic based on a best-fit algorithm was proposed by Hayek et al. [12] to deal
with the two-dimensional bin packing problem with free cutting and item rotations. In an
iteration of the heuristic, a list of unpacked items and a list containing all the maximal
areas available in the opened bin are considered at each stage of packing an item. Also, the
decisions of determining an item to be packed and maximal area are made at each step of
item packing.

The floor-ceiling algorithm was conceived by Lodi et al. [14] to attack the two-dimensional
guillotine bin packing problem with item rotations. This algorithm used a special packing
strategy that items are packed not only from left to right while their bottom edges touch
the floor level, but also from right to left while their top edges touch the ceiling level, that
is, the horizontal line drawn on the top of the tallest item packed on the floor.

Heuristic algorithms and a meta-heuristic approach, tabu search, were proposed by Lodi
et al. [15] to solve each of four variants of two-dimensional bin packing problems. These
four variants are: (i) the items cannot be rotated and guillotine cutting is required, (ii) the
items may be rotated and guillotine cutting is required, (iii) the items cannot be rotated and
cutting is free, and (iv) the items may be rotated and cutting is free. The first two heuristic
algorithms for the first two variants rely on the idea that shelf packings are determined by
solving a series of 0-1 knapsack problems. The heuristic algorithm for the third variant is
based on the idea of exploiting the feasibility of non-guillotine patterns by packing the items
into the bins in alternate directions, i.e., from left to right, then from right to left in the
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lowest possible position, and so on. The last one relies on the idea that the first item is
always packed in the bottom-left corner of a bin and each subsequent item is packed in a
so-called normal position, i.e., with its bottom edge touching either the bottom of the bin
or the top edge of another item, and with its left edge touching either the left edge of the
bin or the right edge of another item. Moreover, the feature of the proposed tabu search
is the use of a unified parametric neighborhood, whose size and structure are dynamically
varied during the search.

A set-covering-based heuristic was suggested by Monaci and Toth [20] to tackle the two-
dimensional bin packing problem with free cutting and without allowing item rotations.
Greedy procedures and fast constructive heuristic algorithms were used to generate a small
subset of columns rather than the entire set in the first phase of the proposed approach.
Then, a Lagrangian-based heuristic algorithm was used to solve the associated set-covering
instance in the second phase.

A newly proposed heuristic method named HBP was proposed by Boschetti and Mingozzi
[3] to deal with the two-dimensional bin packing problems with three various cases, (i) some
items can be rotated by 90 ° and cutting is free, (ii) the items are oriented and cutting is
free, and (iii) the items may be rotated by 90 ° and cutting is free. The idea of the heuristic
approach is that the items are ordered by using a given criterion, and then allocated by
considering a bin at the time. When no more items can be allocated to the current bin, this
bin is closed and a new one is opened. The process stops when all items are allocated. This
procedure is then repeated with changing the order of the items.

The work related to VND will be reviewed as follows. Pan et al. [21] proposed a discrete
particle swarm optimization algorithm with VND to solve the no-wait flowshop scheduling
problem with both makespan and total flowtime criteria. Two different neighborhood struc-
tures named“ Swap” and“ Insert”were adopted in the VND. The former one means
two jobs are swapped while the latter one means a job is removed from one dimension and
inserted into another dimension.

Gao et al. [8] tackled the flexible job shop scheduling problem by using a hybrid genetic
algorithm. Three objectives were considered: (a) minimize the makespan of the jobs, (b)
minimize the maximal machine workload, and (c) minimize the total workload. Local search
of moving one operation and that of moving two operations were the two neighborhood
structures used in the VND. Moving an operation was achieved by deleting the operation,
searching an assignable time interval, and allocating it to that interval.

Gendron et al. [9] suggested a parallel hybrid heuristic comprising slope scaling and VND
to deal with the multicommodity capacitated location problem with balancing requirements.
The objective is to minimize the costs incurred by moving flows of commodities through
the network to satisfy the supplies at origins and the demands at destinations. The first
neighborhood structure used in the VND is the move of closing a depot and the second one
is the move of simultaneously closing a depot and opening another one.

Borgulya [2] solved the 3-boolean satisfiability problem by using three evolutionary al-
gorithms with VND. The objective is to determine the assignment of variables to satisfy all
clauses. Three neighborhood structures were proposed for the VND. The first one is bit-flip
which means a single bit (variable) is randomly flipped in the descendant. The second one
is bit-flip-flop which means that, if two variables corresponding to two randomly selected
bits have different values in the descendant, these two bits will be flipped. The last one is
bit-repair which sequentially chooses all clauses which are not satisfied yet and flips a single
uniformly selected variable in the chosen clause.

Degila and Sanso [7] dealt with the topological design problem of a yottabit-per-second
multidimensional lattice network by employing tabu search with VND. The objective is
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to find the arrangement of the edge nodes in the lattice structure to minimize the traffic
weighted mean hop distance between the origin and the destination edge nodes. There are
three neighborhood structures used in VND, (a) d-move which swaps nodes within an agile
core (AC) of the dth dimension, (b) d1 − d2 move which exchanges nodes belonging to an
AC of the d1

th dimension with those belonging to an AC of the d2
th dimension, (c) ac-move

which swaps two ACs.
Liang and Wu [13] proposed a VND algorithm to solve the redundancy allocation prob-

lem. The objective is to choose the optimal combination of components and redundancy
levels to maximize the system reliability while satisfying the system level constraints, i.e.
cost and weight constraints. Four neighborhood structures were adopted in the VND. The
first one is to simultaneously replace one type of component with a different type within
the same subsystem. The second one is to change the number of a particular component
type by either adding or subtracting one. The third one is to simultaneously delete one
component in a subsystem and add one component to another subsystem. The last one is
to simultaneously exchange components in any two subsystems.

3 Constructive Heuristic

In this section, a CH for solving the two-dimensional guillotine bin packing problems is
presented. The design of this heuristic is simple but effective and can satisfy the guillotine-
cutting constraint. The idea of the heuristic is based on sorting item types for defining an
initial packing sequence and on iteratively trying to pack items into existing shelves or bins
according to the following criteria. For the former one, the three criteria considered to sort
the item types in the descending order are: (i) by width, (ii) by height, and (iii) by area.
For the latter one, it is possible that more than one existing shelf or bin can accommodate
each item. Therefore, criteria should be established to determine which existing shelf and
bin should be selected for packing the items. The three criteria used to achieve this purpose
are: (i) minimize the residual width after packing the item, (ii) minimize the residual height
after packing the item, and (iii) minimize the residual area after packing the item. The
residual width, residual height and residual area are defined as wr −wi, hr − hi, and ar − ai
respectively where wr, hr, ar are the width, height and area of a rectangular free space
respectively and wi, hi, ai are the width, height and area of an item to be packed in the
rectangular free space respectively. Note that different criteria can be adopted for shelve
and bin selection.

The pseudo code of the CH is given in Figure 4. The first step of the heuristic is to define
a packing sequence for items by sorting the item types based on a specified criterion. Then,
iteratively, each item is packed into an existing shelf which minimizes a specified criterion.
If this is not possible, we try to pack it into a used bin which minimizes a specified criterion.
If this is not possible again, it is placed into a new bin. Finally, a solution is obtained by
running the heuristic with several sets of criteria and then selecting the best one among the
obtained solutions. The time complexity of the CH is O(N logN +M × F) where N is the
total number of item types, M is the total number of items, and F is the total number of
free rectangles in which items will be placed. All combinations of the three aforementioned
criteria were used in the experiments.

Figure 5 illustrates an example of the CH. Assume that the items are sorted by height
and four items have already been loaded into the bin. The item 5 currently being considered
can be loaded into an existing shelf (free space C or D), on the top of shelves of the bin
(free space E) or a new empty bin. The place where the item is packed depends on the
pre-selected criterion and the type of the problem tackled.
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Suppose that a two-stage problem with trimming is now being solved. In this case, only
three possible choices of empty spaces, C, D and E, are available for packing item 5. If
the criterion (i) is set, it will be packed into C to fulfil the criterion; if the criterion (ii) is
selected, it will be packed into D; if the criterion (iii) is chosen, it will be placed into D.

3.1 Solution Representation

It is crucial to realize the solution representation and evaluation function for executing the
CH and devising neighborhood structures for VND and random neighbor selection operators
for RNS. A solution is represented by a sequence of items satisfying the demand of each
item. Let us consider an example as follows. Assume that items 1, 2, 3 have demands 3, 5,
2 respectively. A feasible solution is represented by 2, 2, 2, 2, 2, 1, 1, 1, 3, 3. The first five
items of type 2 will be firstly packed. Next, three items of type 1 will be loaded, and finally
the last two items of type 3. Note that the solution representation before implementing
any neighborhood structure and random neighbor selection operator is the same as it is
afterwards. Moreover, in order to examine the quality of a solution, an evaluation function
f is required for evaluating the solution, which is given by

f = nb × ab + ob −m (3.1)

where nb is the number of used bins, ab is the area of a bin, ob is the occupied area of the
bin in solution with the smallest occupied area, and m is the number of items packed in the
same bin. While the first two terms are measured in area, the last one does not represent
an area. The reason is that the evaluation function is used to distinguish between solutions
with the same area, but it is easier to empty a bin in one solution (the solution where there
are more number of items packed in the less occupied bin) than in another one. Also, the
function can work appropriately for instances such that the widths and heights of the bins
and items are small (e.g. smaller than 0.01). In this case, the last term should be multiplied
by a constant which is less than 1 in order to ensure that a solution with a smaller number of
used bins is always better than a solution with a greater number of used bins. The rationale
behind this function is that a solution with fewer used bins always outperforms another
solution with more used bins and that if two solutions have the same number of used bins,
the solution where it is easier to empty one used bin is better than another one.

4 Combined Local Search Heuristics

Combined local search heuristics are proposed to improve a solution given by the CH, which
consist of two local search heuristics, VND and RNS. VND is a meta-heuristic proposed by
Hansen and Mladenovic [11, 10, 19]. The concept of VND is to systematically use different
neighborhood structures. The brief description of VND is given as follows. First, a set of
neighborhood structures which will be adopted in the descent is chosen and an initial solution
is found. Now, an iteration loop starts. The first neighborhood structure is used to search
the best neighbor of the current solution. If the best neighborhood solution outperforms the
current solution, the latter is replaced by the former. Otherwise, the next (second, third,
and so on) neighborhood structure is considered. Finally, the iteration loop repeats until
all neighborhood structures are used. VND used in this study embraces three neighborhood
structures named“ swap adjacent item types”,“ swap adjacent item subsequences”, and
“ reverse item subsequences”. It is a sequential VND which is different from the common
one described above, because the three neighborhood structures, arranged in the fixed order,
are implemented one by one.
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RNS is adopted in a way similar to VND. The differences between RNS and VND are
that RNS (i) impose the restriction of using all random neighbor selection operators rather
than deterministic or mixed ones, and (ii) use the fixed number of iterations to explore
better neighbor solutions for each of all neighbor selection operators. In each RNS operator,
instead of finding the best neighbor of the current solution by complete enumeration, only one
neighbor is randomly generated in each time and then compared with the current solution.
The advantage of this modification is that a large computational load is not required to
search all neighbors of the current solution, especially when the problem size is huge. RNS
adopted in this study comprises three neighbor selection operators titled“Cut-and-Paste”,
“ Split-and-Redistribute”, and“ Swap Block”. Like those in VND, these three neighbor
selection operators arranged in the fixed order are implemented one by one.

Figure 6 depicts the pseudo code of the combined local search method. The three neigh-
borhood structures of VND are firstly executed, followed by the three RNS operators. In
the following, the details of the three neighborhood structures in VND and three neighbor
selection operators in RNS will be given.

4.1 Swap Adjacent Item Types

“ Swap adjacent item types” is aimed at swapping all items in two adjacent item types.
Figure 7 illustrates an instance of this neighborhood structure. Assume that two highlighted
adjacent item types, 2 and 4, are chosen. One item in the first type and three items in the
second type are exchanged to produce the new solution.

4.2 Swap Adjacent Item Subsequences

The mission of“ swap adjacent item subsequences” is to swap two adjacent item subse-
quences, both of which have the same size. A size parameter is used to define the size of the
neighborhood. Figure 8 portrays an instance of this neighborhood structure for the size of
the neighborhood, 2. Two shaded adjacent item subsequences (1, 3) and (3, 2) are selected
in the current solution and then swapped to produce the new solution.

4.3 Reverse Item Subsequences

The objective of“reverse item subsequences”is to reverse the order of an item subsequence
with a given size. A size parameter is used to define the size of the item subsequence. Figure
9 shows an example of this neighborhood structure for the size of the item subsequence, 3.
The item subsequence (3, 2, 4) is selected, and then their packing orders are reversed to
generate a new solution.

4.4 Cut-and-Paste

“ Cut-and-Paste”was initially proposed as a genetic operation which was applied in the
Jumping-Gene paradigm to solve multi-objective optimization problems [5]. In this imple-
mentation, the“ jumping”element is cut from an original position and pasted into a new
position of a chromosome. However, since this operation can also be used as a random
neighbor selection operator, in this study,“ Cut-and-Paste” is applied to the solution in
a way that there is only one“ jumping” segment in the solution, and the length, original
position and new position of the“jumping”segment are randomly chosen. Figure 10 depicts
an example of this neighbor selection operator. Given that the randomly generated length
is 4, the original position is 6 and the new position is 2. In other words, the highlighted
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segment (4, 2, 1, 4) is randomly selected. The segment is cut from the original position and
then pasted into the new position to complete the operation.

4.5 Split-and-Redistribute

The objective of“ Split-and-Redistribute” is to split various blocks with a given length
from the solution and redistribute them to the solution. The total number, length, original
positions, and new positions of the blocks are randomly selected and all blocks have the
same length. Figure 11 illustrates an instance of this neighbor selection operator. Suppose
that the randomly selected total number is 3, the length is 2, the original positions are 1, 5
and 10, and the new positions are 10, 1 and 5 for the three blocks respectively. That is, the
three highlighted blocks (1, 3), (3, 4), and (4, 4) are randomly chosen. These three blocks
are split and then redistributed to their new positions to acquire the new solution.

4.6 Swap Block

“Swap Block”is aimed at exchanging two different blocks with a given length in the solution.
The length and the positions of the two blocks are randomly selected and the lengths of these
two blocks are equivalent. Figure 12 portrays an example of this neighbor selection operator.
Assume that the randomly selected length is 3 and the randomly chosen positions are 4 and
8. That means that the two highlighted blocks (2, 3, 4) and (1, 4, 4) are randomly selected.
Then, these two blocks are swapped to produce the new solution.

5 Computational Results

In order to show the effectiveness of the proposed method (i.e. CH + combined local search
heuristics), it is compared with other approaches, FFF, FBS, Knapsack Packing (KP), TS
with FBS, TS with KP, CH + pure VND, and CH + pure RNS. The computational results
of the first five algorithms are obtained from the study [15] and the computer program
for these algorithms was written in FORTRAN 77 and run on a Silicon Graphics INDY
R10000sc 195MHz. The computer program for the last two algorithms and the suggested
method was written in C++ and run on a PC with 2.00 GHz Intel CoreTM 2 CPU with 1
GB memory. Six classes of instances named B&W from the Berkey and Wang study [1] and
four classes of instances named M&V from the Martello and Vigo study [18] were adopted.
Each class contains five subclasses, each of which has ten instances and therefore there are
a total of 300 instances and 200 instances respectively. Also, five values of total number of
items are considered in each class: 20, 40, 60, 80 and 100. Assume that W and H are the
bin width and height respectively, wi and hi are the width and height of item i respectively,
i = 1, 2,. . . , n, where n is the total number of items. The information of these ten classes
is given as follows:

B&W - Class I: wi and hi are uniformly and randomly generated between [1, 10], W =
H = 10.

B&W - Class II: wi and hi are uniformly and randomly generated between [1, 10], W =
H = 30.

B&W - Class III: wi and hi are uniformly and randomly generated between [1, 35], W
= H = 40.

B&W - Class IV: wi and hi are uniformly and randomly generated between [1, 35], W
= H = 100.
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B&W - Class V: wi and hi are uniformly and randomly generated between [1, 100], W
= H = 100.

B&W - Class VI: wi and hi are uniformly and randomly generated between [1, 100], W
= H = 300.

For the M&V instances, the items are classified into four types:

Type 1: wi is uniformly and randomly generated between [2/3W, W ], hi is uniformly
and randomly generated between [1, 1/2H ].

Type 2: wi is uniformly and randomly generated between [1, 1/2W ], hi is uniformly and
randomly generated between [2/3H, H ].

Type 3: wi is uniformly and randomly generated between [1/2W, W ], hi is uniformly
and randomly generated between [1/2H, H ].

Type 4: wi is uniformly and randomly generated between [1, 1/2W ], hi is uniformly and
randomly generated between [1, 1/2H ].

M&V - Class VII: Type 1 with probability 70%, type 2, 3, 4 with probability 10% each,
W = H = 100.

M&V - Class VIII: Type 2 with probability 70%, type 1, 3, 4 with probability 10% each,
W = H = 100.

M&V - Class IX: Type 3 with probability 70%, type 1, 2, 4 with probability 10% each,
W = H = 100.

M&V - Class X: Type 4 with probability 70%, type 1, 2, 3 with probability 10% each,
W = H = 100.

This study considered the scenario two-stage guillotine cutting, trimming (i.e. non-
exact case) and fixed orientation items. The maximum time limit for executing VND is 300
seconds. If three consecutive new solutions generated by any neighborhood structure cannot
improve the current solution, VND will terminate and RNS will start next. In addition, in
pure RNS and in the proposed method, the order of neighbor selection operators used in the
computational tests is the same as that described in the previous Section. The total number
of iterations used is 500 for each RNS operator. Since both pure RNS and the proposed
approach adopt RNS operators, 30 runs were conducted to obtain the best, average, and
worst solution in each problem of each subclass in order to allow a statistical analysis.

Table 1 shows the computational results of various approaches in terms of the ratio of
heuristic solution to lower bound for all 50 subclasses. z is a heuristic solution value and
LB is a lower bound value. The lowest ratio is bold-faced in each subclass. By comparing
the z/LB of the leftmost six methods with the best z/LB of pure RNS and the proposed
approach, it can be seen that the proposed approach is the best performer, obtaining lower
ratios in a total of 29 subclasses. By comparing the z/LB of TS with FBS to the best z/LB
of the proposed method, TS with FBS and the proposed method obtained lower ratios in a
total of 15 and 17 subclasses respectively while they acquired the same ratios in a total of
18 subclasses. It shows that the proposed method is slightly better than TS with FBS.

Furthermore, by comparing (i) the best z/LB, (ii) average z/LB and (iii) worst z/LB of
the proposed approach to those of CH + pure RNS, the proposed approach and CH + pure
RNS got lower ratios in a total of 7 and 4 subclasses respectively while they obtained the
same ratios in a total of 49 subclasses for the case (i). For the case (ii), the proposed approach
and CH + pure RNS acquired lower ratios in a total of 22 and 2 subclasses respectively while
they obtained the same ratios in a total of 36 subclasses. For the case (iii), the proposed
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approach and CH + pure RNS got lower ratios in a total of 27 and 0 subclasses respectively
while they obtained the same ratios in a total of 33 subclasses. Although the results acquired
by the proposed approach is a bit similar to those by CH + pure RNS, the combined local
search is necessary and useful because it can produce lower ratios in more subclasses than
CH + pure RNS with only small additional computational times.

Overall, the results reveal that the deterministic neighborhood structures and RNS op-
erators of the proposed approach are able to explore many different neighbor solutions that
increase the chance of finding promising solutions. The deterministic neighborhood struc-
tures in the proposed method can locate a better starting solution for the RNS operators to
further enhance the quality of the solution, and thus it has a slight improvement over both
CH + pure VND and CH + pure RNS.

Besides, Table 2 shows the computational times of various approaches. Note that the
leftmost five methods from the past studies and the remaining methods were run in different
computers with different models. Although the exact computational times of FFF, FBS,
and KP were not given by the study [15], it indicated that their computational times did
not exceed 0.5 seconds for all subclasses and thus ≤ 0.5 are shown for all subclasses for
these three algorithms. The computational times of CH + pure RNS and of the proposed
approach in each subclass are obtained by summing the total time of 30 runs per instance for
all 10 instances and then dividing the sum by 10. As FFF, FBS, KP and CH + pure VND
contain simple procedures, their computational times are short. Similarly, CH + Pure RNS
also comprises simple procedures. However, the cut-and-paste and split-and-redistribute
operations in RNS have slightly larger computational load than other operations in VND
in terms of written codes. Therefore, the computational times of CH + pure RNS are
longer than those of CH + Pure VND. It can be observed that, as expected, the proposed
method, CH + combined local search heuristics, requires longer computational time than
CH + pure VND and CH + pure RNS because both VND and RNS operators were used.
Although TS with FBS and TS with KP have the largest computational times, they were
run on a computer which is different from the one used in this paper. Thus, the proposed
algorithm cannot be compared to those two algorithms in terms of computational times and
the computational experiments cannot offer enough evidence of showing any good running-
time behavior of the proposed algorithm.

However, from a practical point of view, the usefulness of the proposed algorithm is
that the constructive heuristic, VND and RNS in the proposed algorithm are easy to be
implemented compared with procedures in other algorithms proposed in the past. Although
they are not as simple as heuristics like FBS, the quality of solutions obtained by the
proposed algorithm is better with little extra computational load. Also, good solutions can
be acquired by the proposed algorithm with reasonable and affordable computation times.

Finally, the components inside the proposed approach, CH + combined local search
heuristics, are analyzed and discussed in the following. Regarding the constructive heuristic,
among all combinations of the three mentioned criteria used in the experiments, the three
combinations, (a) the item types are sorted in the descending order of item height, (b)
minimize the residual width after packing the item to the shelf, and (c) minimize the residual
width, height or area after packing the item to the used bin, are able to generate better
solutions than other combinations. These three combinations acquire the lowest number of
used bins with the lowest function value in 312 instances out of a total of 500 instances.

Table 3 shows the averages of the total number of loop iterations executed in the VND.
Since each subclass contains ten instances, each average value is obtained by averaging the
ten values of ten instances and then rounding off. The averages of the total number of loop
iterations are ranged from 7 to 15. As these values are not large, the computational load is
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not high and thus the proposed method is efficient with short computational times.
Table 4 lists the averages of the total number of improved solutions produced by the

three different operations in the VND. Each average value is obtained by averaging the ten
values of ten instances and then rounding off. These average values are ranged from 3 to 7.
It can be observed that the three operations have similar effectiveness to improve solutions.
Even though the averages of the total number of improved solutions are not large for these
three operations, they can be used to increase the chance of improving solutions by testing
different combinations of solution components which other algorithms and operations cannot
search.

Table 5 shows the averages of the total number of improved solutions produced by the
three different operations in the RNS. Each average value is obtained by averaging the ten
values of ten instances and then rounding off. These average values are ranged from 3 to
8. All of these three operations are able to improve solutions and the operation, Cut-and-
Paste, is slightly better than the other two operations, Split-and-Redistribute and Swap
Block. The reason may be that Cut-and-Paste can search different solutions with various
order-like combinations. Again, although the averages of the total number of improved
solutions are not large for these three operations, they can be used to increase the chance
of improving solutions by testing different combinations of solution components which other
algorithms and operations cannot search.

6 Conclusions

In this paper, a new efficient algorithm named combined local search heuristics comprising
VND and RNS has been studied. The objective of employing the proposed approach is to
further improve the solution given by the CH. Three deterministic neighborhood structures
and three RNS operators were designed in the proposed approach. The quality of solutions
found by the proposed approach is quite good, as it obtains better performance ratios in
a total of 29 out of 50 subclasses, outperforming three heuristics, two tabu search meta-
heuristics and CH + pure VND. By comparing the best, average and worst results of the
proposed approach to those of CH + pure RNS, the former is more stable and robust.
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