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A GAUSS-NEWTON-BASED BFGS METHOD FOR
SYMMETRIC NONLINEAR LEAST SQUARES PROBLEMS*

WEILJUN ZHOU

Abstract: In this paper, based on the special structure of the Hessian of the problem, we propose a
derivative-free BFGS method for symmetric nonlinear systems which may be inconsistent (i.e., nonzero
residual). It is an extension of the Gauss-Newton-based BFGS method (GN-BFGS) presented by Li and
Fukushima [SIAM J. Numer. Anal., 37 (1999), pp. 152-172] for symmetric nonlinear equations (i.e., zero
residual case). The proposed method converges globally and superlinearly for both zero residual and nonzero
residual problems by utilizing a new approximate norm descent line search. The preliminary numerical results
are reported to show its efficiency for nonzero residual problems.

Key words: symmetric nonlinear least squares, BFGS method, line search, global convergence, superlinear
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Introduction

The purpose of the paper is to extend the Gauss-Newton-based BFGS (GN-BFGS) method
proposed by Li and Fukushima [8] for symmetric nonlinear equations

F(z)=0 (1.1)

to the following symmetric nonlinear least squares problem
1
min f() = 5 |F@)P, =€ R, (1.2)

where F': R™ — R™ is a continuously differentiable mapping whose Jacobian J(x) = F’(x)
is symmetric, i.e., J(z) = J(x)?. The problem (1.2) is called zero residual if F(z*) = 0 for
z* € R". Otherwise, it is called nonzero residual. The model (1.2) covers many practical
problems such as data fitting, parameter estimation, the KKT system of unconstrained
optimization problem and the saddle point problem [8, 11, 13, 14, 16].

The BFGS method is one of the most efficient quasi-Newton methods for solving opti-
mization, nonlinear equations and nonlinear least squares [4, 6, 11, 16, 17]. In this paper,
we mainly investigate derivative-free (i.e., without using the exact derivative) BFGS type
methods, please see [7, 6, 10, 15] and references therein for other methods.
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Research Institute of Philosophies and Social Sciences in Hunan Universities, and The Key Project of the
Scientific Research Fund of the Hunan Provincial Education Department.
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In the past four decades, there has been significant progress in the theoretical study on
BFGS type methods for solving nonlinear equations, nonlinear least squares and nonlinear
optimization, especially in the local convergence analysis, see the survey papers [10, 15], the
book [12] and references therein.

However, the study on global convergence of derivative-free BFGS type methods with
line searches for (1.2) is very fewer [7] (for trust region case, see [3]). To the authors’s
knowledge, so far, there mainly have been two globally convergent BFGS type methods
for nonlinear equations (1.1). One is the Gauss-Newton-based BFGS (GN-BFGS) method
proposed by Li and Fukushima [8], which globally converges by using an approximate norm
descent line search and was extended to norm descent case by Gu etc. [5]. Another is the
hyperplane projection BFGS method presented by Zhou and Li [17], which possesses global
convergence under the condition that the system of nonlinear equations is monotone.

Since the GN-BFGS method is based on the Gauss-Newton method, it may inherit
some disadvantages of the Gauss-Newton method, for examples, (i) It only uses the first
order information of the underlying system, which may lead to its poor performance for
large residual problems [1, 12]; (ii) Its global convergence requires the assumption that
the Jacobian is uniformly nonsingular; (iii) Its iterative matrix is an approximation to the
Gauss-Newton iterative matrix, which easily leads that the direction-finding subproblem is
badly conditioned for some problems.

In this paper, by using the special structure of the Hessian of the problem (1.2), we
propose a new derivative-free BFGS method with global and superlinear convergence, which
can overcome some shortcomings of the GN-BFGS method above mentioned. The proposed
method can be regarded as an extension of the GN-BFGS method from zero residual case
to nonzero residual case.

The paper is organized as follows. In the next section, we present the new BFGS method
and prove its global convergence using a new approximate norm descent line search. In
Section 3, we show its superlinear convergence. In Section 4, we discuss some extensions
of the proposed method. In Section 5, we report some preliminary numerical results. In
Section 6, we discuss some conclusions.

Algorithm and Global Convergence

In this section, we first simply recall the GN-BFGS method [8] for nonlinear equations (1.1).
Throughout the paper, we denote

Fk = F(l‘k), Jk = J(l‘k), Sk = Tk4+1 — Tk-

At each iteration, the GN-BFGS method [8] produces the search direction dj by the linear
equations

Byd = —gr,

where
F 1 F) — F
Gk = (zk + op—1F%) k’ (2.1)
Qf—1

ag—1 is the stepsize given by the following approximate norm descent line search, that is,
ar = max{1,rt r? ...} with a = r? satisfying

[k + ady) — f(xr) < —orlladi||* — 020” f(2) + e f (z1), (2.2)
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where o and o3 are two given positive constants, and {e} is given by (2.10) below. More-
over, the matrix By is updated by the BFGS formula

Bisisi Br | i

Bi+1 = By —
T T '
;. Brsg Vi Sk

where
’}/k:F(:L‘k‘i‘(Sk)—Fk, 6k:Fk+1_Fk~ (23)

It is easy to see that if ||sg|| is small, then by symmetry, we have
Biy18k = Yk ~ Jih Jes 18k, (2.4)
which is the reason why this method is called the Gauss-Newton-based BFGS method.
It is clear that the gradient and the Hessian of the problem (1.2) are given by

Vi) =J (@) F@), V() =J(@)"J(z)+ ) Fi(2)V*Fia), (2.5)
i=1
where F = (Fy,--- , F,)7 is twice continuously differentiable. Let x) be the current iterate,
by [12, (7.5.5) on Page 379], we know

V2 f(zps1)sk = Ok = T Tiep1sk + (Jep1 — i) T Figr. (2.6)
Denote
G 2 F(azri + IsklPFri1) — Fega G 2 F(xy, + ||sk)* Frq1) — Fr (2.7)
i [[sk]2 o sk ’ '

Then if ||sg|| is small, we have
Vi(e1) = i1 Frn = Gk, i Freon = Grpa (2.8)
Therefore from (2.6), (2.4), (2.7) and (2.8), we obtain
V2 f(h41)sk = Gk & Y + Grt1 — Ght1 = 2k (2.9)

Let {ex} and € be a given positive sequence and a positive constant satisfying

D e <e< oo (2.10)
k=0
Define P r r
o2 (wx +erF) — Fi (2.11)
€
Then we have g ~ V f(z1). Let u be a given positive constant and define
A 21 5k
s 2 2+ (maX{O,—W}—i—qukH)sk. (2.12)
Then we obtain a new BFGS update formula
B B r
By = By — —2ok%h 2y Yk (2.13)

T T, °
s}, Brsg Vi Sk
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and Byy15k = yr ~ V2f(2)41)8k, which shows that By, is a good approximation to the
Hessian V2 f(z41)-

The reason of using y;, instead of zj in (2.13) is to guarantee positive definiteness of the
iterative matrix sequence { By }, where we utilize the MBFGS regularized technique proposed
by Li and Fukushima [9]. It is clear that y{ s, > 0, which is sufficient to guarantee positive
definiteness of By11 as long as By, is positive definite [12].

Now we present the new derivative-free BFGS method for (1.2) as follows, where we use
an approximate norm descent line search to globalize the proposed method.

Algorithm 2.1. [The derivative-free BFGS method with nonmonotone line search]

Step 0. Choose a starting point g € R™, an initial symmetric positive definite matrix
By € R™*™ and several constants o € (0,%), 4> 0 and r € (0,1). Let k := 0.

Step 1. Compute dj by solving the following linear equations
Bkd = —0k, (2.14)

where gy, is defined by (2.11).

Step 2. Compute oy = max{1,7!,72 -} with o = r? satisfying
f(:vk + adk) — f(l’k) < U()zggdk + Ekf(l'k), (2.15)

where {e;} is given by (2.10).

Step 3. Set xp+1 = xk + ard. Update By, by the BFGS formula (2.13), where y is
given by (2.12).

Step 4. Let k:= k + 1 and go to Step 1.

Remark 2.2. (i) In (2.14), we use g, instead of g, since g defined by (2.1) is no longer a
good approximation to V f(zy) in the nonzero residual case.

(ii) The line search (2.15) is motivated by (2.2) proposed by Li and Fukushima [8], which
is an approximate norm descent line search. Although the search direction d; may be not
a descent direction of f, the line search (2.15) is well defined. In fact, as o — 07, the
left-hand side of (2.15) goes to zero, while the right-hand side tends to the positive term
exf(z1), which shows that (2.15) is satisfied for all sufficiently small o > 0.

(iii) Moreover, the line search (2.15) is different from (2.2) since the latter is only suitable
for zero residual problems. For example, the line search (2.2) implies that

lim ag || Fy|| = 0. (2.16)
k—o00

Assume that the GN-BFGS method converges superlinearly for nonzero residual prob-
lem(that is, xr — z* and |[F(«z*)|] > 0), which implies that o = 1 for large k, then
(2.16) yields that 0 < ||F(z*)|| = limk— oo || Fx|| = 0. This is a contradiction, which shows
that (2.2) will undermine superlinear convergence property of this method.

Define the level set
Q= {a f(x) < e Fla0)}, (2.17)

where € is a positive constant satisfying (2.10). Then by the same argument of Lemma 2.1
in [8], we have the following result.
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Lemma 2.3. Let the sequence {x} be generated by Algorithm 2.1. Then the sequence
{f(zx)} converges and x, € Q for all k > 0.
Now we make some assumptions for global convergence of Algorithm 2.1 as follows.

Assumption 2.4. (i) The level set Q is bounded.
(ii) In some neighbourhood € of Q, J(x) is Lipschitz continuous, that is, there exists a
positive constant L such that

[J(z) = JW)Il < Lllz —yll, Va,y €. (2.18)
Assumption 2.4 yields that there exist positive constants My, M> and Ly such that
[J(@)[| < My, ||F(z)|| < Ma, Vz € Q, (2.19)
1F(z) = F)ll < Lillz —yll, Yo,y €. (2.20)
Lemma 2.5. Let the sequence {1} be generated by Algorithm 2.1. Then we have

oo
Z ozkg,{dk < 0.
k=0

Proof. Tt follows from (2.15) and (2.10) directly. O

Lemma 2.6. Let Assumption 2.4 hold and the sequence {xy} be generated by Algorithm
2.1. Then there exists a positive constant C1 such that

pllglllsel® < i sk < Cullsil®.
Proof. From (2.12), we have

lesk 2 2
5 k kS 2 k| Skl
sl b wllgell ) skl > pllgwllllse |

Yl sy = 2} sp + (max {O, —
By (2.3) and (2.20), we know
1kl < Lallokll = Lall Ferr = Fll < LY sk
From (2.7), (2.19) and (2.18), we have

|Gk+1 — Gl

1 1
_ H/ J(x;Hl+t||sk||2Fk+1)Fk+1dt—/ J(xk+t||sk||2Fk+1)Fk+1dtH
0 0

IN

1

||Fk+1||/ | (@rr1 + tllskll* Frgr) — J (zr + tllsell® Fosr)]|dt
0

MsL||sg]|-

IN

Then from (2.12), (2.9), (2.3), (2.7), (2.19) and (2.20), we deduce that

yise < llywllllsel
< lall + pllgnlllsel) skl
< 2llll + 20841 = Gerall + pllgrllllsell) lswl
< Chflsil?
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holds for some positive constant C'. |

If there exists a positive constant 7p such that ||gi|| > 71 holds for all large k. Then from
Lemma 2.6, we have the following important result, which is the key to prove the global
convergence of the proposed method.

Lemma 2.7 ([2, Theorem 2.1]). Let Assumption 2.4 hold. Then there are positive constants
Bivi=1,2,3,4 such that

Billsill < |Bisill < Bzllsill, Bsllsill® < s Bisi < Ballsil? (2.21)
hold for at least [k/2] many i < k.
Lemma 2.7 implies that
Bulldll < [|Bidil| < Balldill,  Bslldsll® < df Bidi < Bal|di? (2.22)
hold for at least [k/2] many i < k.

Lemma 2.8. Let Assumption 2.4 hold and the sequence {x} be generated by Algorithm
2.1. If ay, # 1, then we have

—(1 = o)gi dx — L|| Fi||*ex||d |

> , 2.23
o= AT 22
where Cy is a positive constant.
Proof. Let
1
G = / J(xy + teg Fy)dt.
0
Then from (2.11) and (2.14), we have
g = Gka = —Bkdk (224)
From the line search (2.15), we get that o, £ ay,/r does not satisfy (2.15), i.e.,
flex + agdy) — f(ax) > oajgy di + e f(xr) > oajgi dr,
which means that
—oapgidy > —(f(ex + ajdy) — f(zr))
1 T
= —5(Flan+ofdi) + Fr) (F(ak + ajdy) — F)
1
= =3 (2FF (Flax + ajdi) = ) + | Flax + ahde) = Fi?)
L2
> —F(F(zy, + ofdy) — Fr) — 71||a;€dk||2, (2.25)

where the last inequality uses (2.20). From (2.24) and the symmetry of the Jacobian, we
have

FL(F (g, + agdy) — Fy)

1
= Oé?chT/ J(.%‘k-i-ta;cdk)dkdt
0

1
= o FLGydy, + o FT / (J(xk + taldy) — J(xx + teka))dkdt
0

< a9} di + || Filllde || L (o Nl di|| + €x ]| Fll)
< ajgh die + LMo||agdi]| + Loy || Fr|Pexlld ), (2.26)
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where we use (2.18) in the first inequality, and the last inequality follows from (2.19).
The inequality (2.26) together with (2.25) yield that

o > r —(1 = 0)gidr, — L|| Fy|ex || d|
= L3/2+ LM, | dx [|? '
Set Cy = w, then we get (2.23). The proof is completed. a

Now it is time for us to give the global convergence result for Algorithm 2.1.

Theorem 2.9. Let Assumption 2.4 hold and the sequence {xy} be generated by Algorithm
2.1. Then we have
likminf IV f(xk)] = 0. (2.27)
—00

Proof. 'We prove the theorem by contradiction. If (2.27) is not true, then there exist an
integer k and a positive constant 7 such that

IV f (@)l = IJF Fell > 7,k > k, (2.28)

which implies that
[Fell > 7 and  [|gkll = 7 (2.29)

hold for sufficiently large k& with some positive constant 7;. Define the index set
T = {i] (2.22) holds}. (2.30)
Then for k € T, from (2.22), (2.14), (2.11) and (2.19), we have
ldll < BT Brdll = B llgll
_ 51—1”/01 e +teka)detH
< By MiMs. (2.31)
(1) If liminfrep koo [|di|| = 0, then we deduce from (2.14) and (2.22) that
Jminf flgill < B liminf fdi] =0,

which implies that lim infy,_, ||V f(z)|| = O since Ji, = JI, {||Fx||} is bounded, limy o0 € =
0, and

1
VSOl = 1Bl = o= [ O+ teui) = ) Fice|

IN

llgkll + Leg|| Fe .

This contradicts to (2.28).
(ii) If iminfrer koo ||dr|| > 0. Then there exists a positive constant 7o such that

|| > 7, keT. (2.32)

From Lemma 2.5, we have
Jim arglrd, =0, (2.33)
—00
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which together with (2.22), (2.32) and (2.33) yields

lim oy =0. (2.34)
keT,k—o0

From Lemma 2.8, (2.10), (2.32), (2.22) and (2.19), we have, for large k € T,

—(1 - 0)gi dr — L|| Fi||*ex | di]|

o >
b Calld]?
- (1 — 0’>d£Bkdk _ LHFkH2€k
Colldy | Col|dg |l
. -0 LI
B Cs Co||dx||
> 63(1 — O')’
- 20,
which contradicts to (2.34). This finishes the proof. O

Superlinear Convergence

To prove superlinear convergence of Algorithm 2.1, we need the following assumptions.

Assumption 3.1. (I) The sequence {z} converges to z*, where V f(z*) = 0 and V2 f(x*)
is positive definite.

(IT) In some neighourhood Qs of z*, V2F;, i = 1,2,--- ,n, are Lipschitz continuous, i.e.,
there exists a positive constant Lo satisfying

|V2F;(z) — V2F;(y)|| < Lollz — ||, i=1,2,---,n,Vr,y € Q, (3.1)

where F' = (Fy,--- , F,)7T is twice continuously differentiable.
(IIT) The positive sequence {e;} satisfies

ex < p5(f(ar) — f(z")),
where pg € (0,1) is a constant.

Remark 3.2. (i) The condition (I) in Assumption 3.1 implies that z* is a strongly local
minimizer.

(ii) It is clear (see [2, 12]) that conditions (I)-(II) in Assumption 3.1 yield that there
exists positive constants Lg, m and M such that

1F(z) = Fy)ll < Lsllz —yll, [IJ(z) = J@W)]| < Lsllz = yl|, Vo, y € D, (3-2)
Hv2f<:r’) - VQf(y)” < L?z”‘ij - y“v Vd?,y € QQ, (33)
and ) )
gmllze =27 < flaw) = f(27) < —[IVf (@)%, (3.4)
IF(x)| <M, ||J()| <M, VYzes. (3.5)

(iii) The condition (III) in Assumption 3.1 is used to ensure the approximate precision
of gi although it seems a little strong. And this assumption implies that (2.10) still holds.



A BFGS METHOD FOR NONLINEAR LEAST SQUARES 381

Now we begin to prove that the Dennis-More condition holds step by step. We first give
the following very useful lemma.

Lemma 3.3. Let Assumption 3.1 hold. Then we have
Z |z — ¥ < 0. (3.6)
k=0
Proof. From the line search (2.15) and (2.22), for k € T, we have that
L |gi d|

(1-0) (ggdk)z 2
- + Frl* + x
G 1l TG el Frll” + ex f(2k)

f(@rg1) = flog) <

(1-0) 8, ., 200

< - o ﬂ?Hng + Tzekf(xk) + €xf(2k)

2 —Cuylgr]® + Csex (3.7)
holds for some positive constants Cy and C5, where we use ||gx| = || fol J(xp+ter By ) Frdt|| <

M? in the second inequality. (3.2) and (3.5) mean that

1
IV (k) — gnll = H/ (I + tenFi) = Ji) Frde| < Le|Ful® < Coer. (3.8)
0

holds for some positive constant Cg.

Since (3.4) holds for any sufficiently small m > 0 and the positive constant Cy is inde-
pendent of m, without loss of generality, we can choose m > 0 such that @Tm < 1. Then
(3.8) together with (3.4) yields that

F@) = 1) < 2 gl + 29 @) - il < Sl + 284, (39)
From (3.7) and (3.9), for k € T, we obtain that
Flee) = fe) < =S (fan) — (0) + 204036 + Coen
< —Cém (f(zr) = f(@%)) + Crex
holds for some positive constant C7, which implies that
flaeen) = f@7) < pu(fla) = £(27)) + Cre, (3.10)

where the positive constant p; =1 — C“Tm < 1. From (III) in Assumption 3.1, without loss
of generality, we can assume that p; + C7p§ < pg < 1 for some positive constant p, since
po,p1 € (0,1). Then we have from (3.10) and (III) in Assumption 3.1

flare) = f(@") < (oo + Coph) (flaw) = F(27)) < pa(flaw) = f(2)),  (3.11)

where pa < 1.
Moreover, from (2.15), we have

F@een) = f@") < L+ er) (fzn) — f(27)) + e f(z7), (3.12)
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which together with (III) in Assumption 3.1 implies
Fxen) = fa") < (14 wr) (fzr) — f27)), (3.13)

where wy £ e + pb f(z*). It is clear that

o0
Zwk§w<oo
k=0

holds for some positive constant w.
From (3.11) and (3.13), we have that

f(@r1) = f(2) < < II a+ Wi)) I p2(f(z0) = f(=%)
ie{1,2,- ,k\T i€T
k N
< (TT+w))es (o) — £6)
< ¢“p (flwo) — f()). (3.14)

(3.14) and (3.4) yield that

VaES -t < ST — 7@
k=0 k=0
< S VETE) TEeh
< oo
which gives (3.6). This finishes the proof. O

From conditions (I) and (IT), it is easily to get the following result [12].
Lemma 3.4. Let conditions (I) and (II) in Assumption 3.1 hold. Then
[(VF(zt1) = V(@) — V2f(z*)si

l| skl

< Ma{||wpra — 27| + [lox — 271} (3.15)

holds for some positive constant Ms.
From (2.9) and the positive definiteness of V2 f(z*), we have
2lsp >0, (3.16)

which implies that, for large k,
Yk = 2k + | gkl sk

Then we have

lyr — V2 f(2*)s]| Iz — (Vf(2ry1) — Vf(z2)]]
(B B [l skl
[(Vf(xrg1) — V() = V2F(x*)sil| n Pllge sl
skl skl

(1>

A+ A + As.
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From (3.8) and (3.2), we have
As < plVf (@)l + pllige — Vi (@r)ll < plsllay — 2% + Coer. (3.17)
Now we estimate A;. From (2.9), we have

|z — (Jrt1Fry1 — JuFi)||

A =
skl
e = (et Freqr — JeFry1) — Je(Frpr — Fr)||
(B
e = Te(Frgr — Fr) + (Get1 — Grv1) — (Jer1Frrr — JeFry1) ||
skl
o M= Jelrr = F | Ngws1 = JerrFrall | [ge+1 = JuFha ]
- llskll skl [ skl

2 By + By + Bs.
Then from (2.3), (3.2) and (3.5), we deduce that
I(F (k + 6%) — Fie) — Tk
[kl
I fy (J (xn + t8%) — Ji) St
[l sk

B, =

L3||5k||2 3
——— < L3||sg
HSkH — BH ”7

I fy (J(@rsr + tlsa 2 Far) — Jisr) Frsadt|
Il ]l
L3 || Fria Pl sell < LsM?||sll,

By

IN

and

IS (T (e + sl P Frs) — Ji) Freadt]
HSkH
LI\ Fyia|?skll < LsM?||sy |-

Bs

IN

The above three inequalities imply that there exists a positive constant M, such that
Ay < My||sgll = Mallzesr — el < Ma([|oprr — 27| + llze — 27]).

Therefore we have )
lye — V2f (@) sk
l[sk|
where Mj5 is some positive constant and

< Mgy, (3.18)

My = [[erpr — 27| 4 [log — 27 + €.

Then from (3.6) and (2.10), we have

o0
Z Mk < 00,
k=0

which implies that the following Dennis-Mofe condition holds.
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Lemma 3.5 ([2, Theorem 3.2]). Let Assumption 3.1 hold. Then we have

i VB = V2 F@))sell _ (3.19)
k—o0 IIsk]l

Moreover, the sequences {By,} and {B; '} are uniformly bounded.

From (2.14) and Lemma 3.5, we get
ldill = 1B giell < 1By lllgwll — 0.

This inequality together with the mean value theorem, (2.14) and (3.8) yields that there
exists a constant 6 € (0, 1) such that
flak +dy) = flaw) — ogi dy
1
= Vif(xx)"dy+ §d£V2f($k + Osp,)dy, — ogi, dy,

1 1 1
= (5 — U)ggdk + (Vf(:z:k) - g}c)Tdk + §g,{dk + §de2f(:ck + st)dk

= (5 - oo+ (VS () - o)

+%d{(v2f(x*) — By)dy, + %d{(v%f(xk + 0si) — V2 f(z*))dk
= (5~ o)al i+ (VFGr) — o) i + ol )

= (3 o)l Budi + ofen 1) + of [de])
< exf(wr),

where we use the fact that o € (0, %) and Lemma 3.5. From this inequality and (2.15),

we have that the unit steplength is always accepted for sufficiently large k, i.e., ap = 1 for
large k. This conclusion together with Lemma 3.5 implies the superlinear convergence of
Algorithm 2.1.

Theorem 3.6 ([12, Theorem 5.4.6]). Let Assumption 3.1 hold. Then the sequence {xy} be
generated by Algorithm 2.1 converges superlinearly, that is,

Lo ks =27
k—o00 ||l‘k - LL'*H

=0.

Extension to Norm Descent Case

From the line search (2.15) in Algorithm 2.1, we see that the sequence {f(zx)} is not
necessarily a descent sequence. In this section, we extend Algorithm 2.1 to norm descent
case in the sense that f(zx41) < f(zr),k = 0,1,2,... by utilizing the technique proposed
by Gu eta. [5].

Let a > 0 be a parameter,

F(zp + alsg1]|Fx) — F

allsp-1]

(1>

gr(a)
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and di(a) be the solution of the following nonlinear equations
Bird = —gi(a). (4.2)

Suppose that By, is positive definite. Now we give a way to determine the search direction
dj, as follows, which is motivated by that of [5].

Procedure 1. Let v € (0,1) and o > 0 be given two constants. Let i, be the smallest
nonnegative integer such that the following inequality holds with o = 1%, i =0,1,...,

Flar + adi(a)) = f(zx) < —ollady (o). (4.3)

Then let ,
di, = dj, (7““‘).

Moreover, if i, = 0, we take
o = 1.

It is clear that (4.3) is well defined, that is, (4.3) terminates finitely. Otherwise

0> =V f(zx)" BV f(x)) = lim flex + adi(@)) — f(zx)

a—0t (%

. 2
>~ lim_oalldu(0)]* =0,

which is a contradiction.

If i, > 0, we give the following procedure to compute the stepsize.

Procedure 2. Let iy, and di be determined by Procedure 1. Let ji be the largest integer
7 €{0,1,2,...,ip — 1} satisfying

flan +r*7dy) — fag) < —olr™di . (4.4)

Then let
ay = rikTIk,

Procedures 1 and 2 present a way to produce dj and oy simultaneously. It is easy to see
that if ay # 1, then aj, = & does not satisfy (4.3), that is,

fxy + agdy) — flog) > —o||agdi]*. (4.5)
Now we give the complete norm descent BFGS method as follows.
Algorithm 4.1 (The derivative-free BFGS method with norm descent).

Step 0. Choose a starting point o € R™, an initial symmetric positive definite matrix
By € R"*" and several constants o > 0, ||s_1]| > 0, 4 > 0 and r € (0,1). Let k:= 0.

Step 1. Compute d and «y by Procedures 1 and 2.

Step 2. Set xp11 = vk + ardi. Update By by the BFGS formula (2.13), where yy is
given by (2.12) with g = gx(r'*).

Step 3. Let k:= k + 1 and go to Step 1.
Similar to Algorithm 2.1, we can discuss the convergence properties of Algorithm 4.1.

For simplicity, we only present the global convergence of Algorithm 4.1 under Assumption
2.4 here.



386 WEIJUN ZHOU
Theorem 4.2. Let Assumption 2.4 hold. Then the sequence {xy} generated by Algorithm
4.1 converges globally in the sense that liminfy_,o ||V f(zx)| = 0.

Proof. We prove the theorem by contradiction. If the conclusion is not true, then (2.28)
and (2.29) hold. From Procedures 1 and 2, we have

D lawdil® =Y llskll* < oo, (4.6)
k=0 k=0

which implies that
lim agd, = lim ||sk|| = 0. (4.7
k—o0 k—o0

(1) If liminfrer koo [|di]| = 0, then by (4.2) and (2.22), we have

lim inf = liminf ||B < lim inf =
copuinf lloull = limnf 1 Bedell < Bz Tpninl i =0.
which implies that liminfy_,o ||V f(zg)|| = 0. This leads to a contradiction to (2.28).
(ii) If iminfrer koo ||kl > 0, then by (4.7), we know
et o M =0 s

From (4.5) and similar argument as Lemma 2.8, there exists a positive constant C; such

that . ) - )
—gldy = LIFc|seslldell _ dfBudi  LIFIPses]

oy > = = = - = , 4.9
- AT Cll? il -
which together with (4.7) and (2.22) shows that, for sufficiently large k € T,
Bs
> 3
k= 2C4
This contradicts to (4.8). The proof is then finished. 0

Numerical Experiments

In this section, we only compare the performance of the GN-BFGS method [8] with the
parameters o1 = o = 0.01, 7 = 0.5 and Algorithm 2.1 with ¢ = 0.01, » = 0.5 and y = 2
(that is, we use the unmodified BFGS update formula) in (2.13). The code was written in
Matlab 7.4. We stopped the iteration if one of the following conditions was satisfied: (i) the
total number of iterations(Iter) exceeds 100; (ii) ||gx|| < 1075.

Table 1 reports the numerical result for the large residual Trigonometric problem [1],
which is given by the following system.

e Trigonometric problem:

Fi(z) = —d; + Fi(z)?, i=1,2,...,m,

where
n
Fi(z) = —e; + E (aijsinz; + bjjcosz;), i=1,2,...,m,
j=1
where x = (71,...,2,)7, a;j, b;j are random integers in [-10,10], e; are random numbers in

[0,1], and d = (d1,da,...,d,)T = (1,2,...,m)T. In this section, we set m = n.
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Table 1: Test results for the methods with different initial points and {ey} values.

Parameters The GN-BFGS Method Algorithm 2.1
Initial Point | n | Iter llgx |l | E% | Tter llgx || | E% ||
0 10 | 100 | 7.75e+004 | 2.40e4+002 | 21 | 0.00e4-000 | 6.23e+002

0 20 | 100 | 6.71e4-006 | 7.22e4003 | 42 | 0.00e+000 | 2.43e+003
0 30 | 100 | 1.37e+007 | 7.02e+003 | 22 | 0.00e+000 | 3.65e+003
0 40 | 100 | 3.09e+-007 | 9.07e+003 | 20 | 0.00e+000 | 6.02e+003
0 50 | 100 | 7.78e+007 | 2.09e+004 | 21 | 0.00e+000 | 2.08e+004
0 100 | 100 | 3.94e+008 | 6.11e+004 | 22 | 0.00e+000 | 4.84e+004

1 nT 10 | 100 | 1.04e+005 | 2.91e4-002 | 19 | 0.00e4-000 | 7.99e+002
1 nr 20 | 100 | 5.29e+006 | 5.10e4+003 | 40 | 0.00e4-000 | 2.14e+003
1 nT 30 | 100 | 1.98e4-007 | 9.36e+003 | 22 | 0.00e4+000 | 4.75e+003
L...,n)T 40 | 100 | 5.22e4-007 | 1.90e+004 | 21 | 0.00e+000 | 1.18e+004
1 nT 50 | 100 | 7.38e+007 | 1.90e4+004 | 32 | 0.00e4000 | 1.84e+004
1 DT | 100 | 100 | 4.49e+008 | 5.37e+004 | 45 | 0.00e4+000 | 5.35e+004

0.6 0 10 | 69 | 0.00e+000 | 6.46e+002 | 27 | 0.00e-+000 | 7.22¢-+002
0.6" 0 20 | 70 | 0.00e+000 | 4.96e+003 | 21 | 0.00e+000 | 4.91e+003
0.6" 0 30 | 66 | 0.00e+000 | 8.37¢+003 | 25 | 0.00e+000 | 6.93¢+003
0.6" 0 40 | 61 | 0.00e+000 | 1.86e+004 | 21 | 0.00e4-000 | 1.71e+004
0.6" 0 50 | 67 | 0.00e+000 | 2.19¢+004 | 25 | 0.00e+000 | 1.38e+004
0.6" 0 100 | 64 | 0.00e+000 | 4.86e+004 | 35 | 0.00e+000 | 4.29e+004
0.6F | (1,...,0)T | 10 | 72 | 0.00e+000 | 2.37e+002 | 14 | 0.00e+000 | 8.89¢+002
0.6F | (1,...,1)T | 20 | 64 | 0.00e+000 | 4.66e+003 | 23 | 0.00e+000 | 2.15e+003
0.6F | (1,...,1)T | 30 | 67 | 0.00e4000 | 8.54e+003 | 43 | 0.00e+000 | 8.10e+003
0.6F | (1,...,1)T | 40 | 71 | 0.00e+000 | 1.30e+004 | 27 | 0.00e4-000 | 1.26e+004
0.6F | (1,...,1)T | 50 | 66 | 0.00e4000 | 2.56e+004 | 31 | 0.00e+000 | 2.06e+004
0.6F | (1,...,1)T | 100 | 60 | 0.00e4-000 | 6.09e+004 | 36 | 0.00e+000 | 5.54e+004

From Table 1, we can see that Algorithm 2.1 performs very well, which always converges
to some stationary point successfully. However, the GN-BFGS method diverges in the case
€ = ;713 This is not surprising since the GN-BFGS method is based on the Gauss-Newton
method and the latter easily performs badly for large residual problems [1, 12]. Moreover,
we note that the GN-BFGS method needs more iterations than Algorithm 2.1, which shows
that Algorithm 2.1 converges faster than the GN-BFGS method for this problem.

(6] Conclusions

In this paper, we propose a new derivative-free BEFGS method for symmetric nonlinear least
squares with global and superlinear convergence, which is an extension of the GN-BFGS
method [8] for symmetric nonlinear equations. The proposed method utilizes the second
order information of the problem sufficiently, which makes it perform well for the given
large residual problem. How to extend the proposed method to solve more general (non-
symmetric) nonlinear least squares and report more numerical results compared with other
methods will be our further study.
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