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In the past four decades, there has been significant progress in the theoretical study on
BFGS type methods for solving nonlinear equations, nonlinear least squares and nonlinear
optimization, especially in the local convergence analysis, see the survey papers [10, 15], the
book [12] and references therein.

However, the study on global convergence of derivative-free BFGS type methods with
line searches for (1.2) is very fewer [7] (for trust region case, see [3]). To the authors’s
knowledge, so far, there mainly have been two globally convergent BFGS type methods
for nonlinear equations (1.1). One is the Gauss-Newton-based BFGS (GN-BFGS) method
proposed by Li and Fukushima [8], which globally converges by using an approximate norm
descent line search and was extended to norm descent case by Gu etc. [5]. Another is the
hyperplane projection BFGS method presented by Zhou and Li [17], which possesses global
convergence under the condition that the system of nonlinear equations is monotone.

Since the GN-BFGS method is based on the Gauss-Newton method, it may inherit
some disadvantages of the Gauss-Newton method, for examples, (i) It only uses the first
order information of the underlying system, which may lead to its poor performance for
large residual problems [1, 12]; (ii) Its global convergence requires the assumption that
the Jacobian is uniformly nonsingular; (iii) Its iterative matrix is an approximation to the
Gauss-Newton iterative matrix, which easily leads that the direction-finding subproblem is
badly conditioned for some problems.

In this paper, by using the special structure of the Hessian of the problem (1.2), we
propose a new derivative-free BFGS method with global and superlinear convergence, which
can overcome some shortcomings of the GN-BFGS method above mentioned. The proposed
method can be regarded as an extension of the GN-BFGS method from zero residual case
to nonzero residual case.

The paper is organized as follows. In the next section, we present the new BFGS method
and prove its global convergence using a new approximate norm descent line search. In
Section 3, we show its superlinear convergence. In Section 4, we discuss some extensions
of the proposed method. In Section 5, we report some preliminary numerical results. In
Section 6, we discuss some conclusions.

2 Algorithm and Global Convergence

In this section, we first simply recall the GN-BFGS method [8] for nonlinear equations (1.1).
Throughout the paper, we denote

Fk = F (xk), Jk = J(xk), sk = xk+1 − xk.

At each iteration, the GN-BFGS method [8] produces the search direction dk by the linear
equations

Bkd = −g̃k,

where

g̃k =
F (xk + αk−1Fk)− Fk

αk−1
, (2.1)

αk−1 is the stepsize given by the following approximate norm descent line search, that is,
αk = max{1, r1, r2, · · · } with α = ri satisfying

f(xk + αdk)− f(xk) ≤ −σ1∥αdk∥2 − σ2α
2f(xk) + ϵkf(xk), (2.2)
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where σ1 and σ2 are two given positive constants, and {ϵk} is given by (2.10) below. More-
over, the matrix Bk is updated by the BFGS formula

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

γkγ
T
k

γT
k sk

,

where
γk = F (xk + δk)− Fk, δk = Fk+1 − Fk. (2.3)

It is easy to see that if ∥sk∥ is small, then by symmetry, we have

Bk+1sk = γk ≈ JT
k+1Jk+1sk, (2.4)

which is the reason why this method is called the Gauss-Newton-based BFGS method.
It is clear that the gradient and the Hessian of the problem (1.2) are given by

∇f(x) = J(x)TF (x), ∇2f(x) = J(x)TJ(x) +
n∑

i=1

Fi(x)∇2Fi(x), (2.5)

where F = (F1, · · · , Fn)
T is twice continuously differentiable. Let xk be the current iterate,

by [12, (7.5.5) on Page 379], we know

∇2f(xk+1)sk ≈ ŷk , JT
k+1Jk+1sk + (Jk+1 − Jk)

TFk+1. (2.6)

Denote

ḡk+1 , F (xk+1 + ∥sk∥2Fk+1)− Fk+1

∥sk∥2
, ĝk+1 , F (xk + ∥sk∥2Fk+1)− Fk

∥sk∥2
. (2.7)

Then if ∥sk∥ is small, we have

∇f(xk+1) = JT
k+1Fk+1 ≈ ḡk+1, JT

k Fk+1 ≈ ĝk+1. (2.8)

Therefore from (2.6), (2.4), (2.7) and (2.8), we obtain

∇2f(xk+1)sk ≈ ŷk ≈ γk + ḡk+1 − ĝk+1 , zk. (2.9)

Let {ϵk} and ϵ be a given positive sequence and a positive constant satisfying

∞∑
k=0

ϵk ≤ ϵ < ∞. (2.10)

Define

gk , F (xk + ϵkFk)− Fk

ϵk
. (2.11)

Then we have gk ≈ ∇f(xk). Let µ be a given positive constant and define

yk , zk +
(
max

{
0,− zTk sk

∥sk∥2
}
+ µ∥gk∥

)
sk. (2.12)

Then we obtain a new BFGS update formula

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

yTk sk
, (2.13)
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and Bk+1sk = yk ≈ ∇2f(xk+1)sk, which shows that Bk+1 is a good approximation to the
Hessian ∇2f(xk+1).

The reason of using yk instead of zk in (2.13) is to guarantee positive definiteness of the
iterative matrix sequence {Bk}, where we utilize the MBFGS regularized technique proposed
by Li and Fukushima [9]. It is clear that yTk sk > 0, which is sufficient to guarantee positive
definiteness of Bk+1 as long as Bk is positive definite [12].

Now we present the new derivative-free BFGS method for (1.2) as follows, where we use
an approximate norm descent line search to globalize the proposed method.

Algorithm 2.1. [The derivative-free BFGS method with nonmonotone line search]

Step 0. Choose a starting point x0 ∈ Rn, an initial symmetric positive definite matrix
B0 ∈ Rn×n and several constants σ ∈ (0, 1

2 ), µ > 0 and r ∈ (0, 1). Let k := 0.

Step 1. Compute dk by solving the following linear equations

Bkd = −gk, (2.14)

where gk is defined by (2.11).

Step 2. Compute αk = max{1, r1, r2, · · · } with α = ri satisfying

f(xk + αdk)− f(xk) ≤ σαgTk dk + ϵkf(xk), (2.15)

where {ϵk} is given by (2.10).

Step 3. Set xk+1 = xk + αkdk. Update Bk by the BFGS formula (2.13), where yk is
given by (2.12).

Step 4. Let k := k + 1 and go to Step 1.

Remark 2.2. (i) In (2.14), we use gk instead of g̃k since g̃k defined by (2.1) is no longer a
good approximation to ∇f(xk) in the nonzero residual case.

(ii) The line search (2.15) is motivated by (2.2) proposed by Li and Fukushima [8], which
is an approximate norm descent line search. Although the search direction dk may be not
a descent direction of f , the line search (2.15) is well defined. In fact, as α → 0+, the
left-hand side of (2.15) goes to zero, while the right-hand side tends to the positive term
ϵkf(xk), which shows that (2.15) is satisfied for all sufficiently small α > 0.

(iii) Moreover, the line search (2.15) is different from (2.2) since the latter is only suitable
for zero residual problems. For example, the line search (2.2) implies that

lim
k→∞

αk∥Fk∥ = 0. (2.16)

Assume that the GN-BFGS method converges superlinearly for nonzero residual prob-
lem(that is, xk → x∗ and ∥F (x∗)∥ > 0), which implies that αk ≡ 1 for large k, then
(2.16) yields that 0 < ∥F (x∗)∥ = limk→∞ ∥Fk∥ = 0. This is a contradiction, which shows
that (2.2) will undermine superlinear convergence property of this method.

Define the level set
Ω = {x| f(x) ≤ eϵf(x0)}, (2.17)

where ϵ is a positive constant satisfying (2.10). Then by the same argument of Lemma 2.1
in [8], we have the following result.
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Lemma 2.3. Let the sequence {xk} be generated by Algorithm 2.1. Then the sequence
{f(xk)} converges and xk ∈ Ω for all k ≥ 0.

Now we make some assumptions for global convergence of Algorithm 2.1 as follows.

Assumption 2.4. (i) The level set Ω is bounded.
(ii) In some neighbourhood Ω1 of Ω, J(x) is Lipschitz continuous, that is, there exists a

positive constant L such that

∥J(x)− J(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Ω1. (2.18)

Assumption 2.4 yields that there exist positive constants M1, M2 and L1 such that

∥J(x)∥ ≤ M1, ∥F (x)∥ ≤ M2, ∀x ∈ Ω1, (2.19)

∥F (x)− F (y)∥ ≤ L1∥x− y∥, ∀x, y ∈ Ω1. (2.20)

Lemma 2.5. Let the sequence {xk} be generated by Algorithm 2.1. Then we have

∞∑
k=0

αkg
T
k dk < ∞.

Proof. It follows from (2.15) and (2.10) directly. 2

Lemma 2.6. Let Assumption 2.4 hold and the sequence {xk} be generated by Algorithm
2.1. Then there exists a positive constant C1 such that

µ∥gk∥∥sk∥2 ≤ yTk sk ≤ C1∥sk∥2.

Proof. From (2.12), we have

yTk sk = zTk sk +
(
max

{
0,− zTk sk

∥sk∥2
}
+ µ∥gk∥

)
∥sk∥2 ≥ µ∥gk∥∥sk∥2.

By (2.3) and (2.20), we know

∥γk∥ ≤ L1∥δk∥ = L1∥Fk+1 − Fk∥ ≤ L2
1∥sk∥.

From (2.7), (2.19) and (2.18), we have

∥ḡk+1 − ĝk+1∥

=
∥∥∥ ∫ 1

0

J(xk+1 + t∥sk∥2Fk+1)Fk+1dt−
∫ 1

0

J(xk + t∥sk∥2Fk+1)Fk+1dt
∥∥∥

≤ ∥Fk+1∥
∫ 1

0

∥∥J(xk+1 + t∥sk∥2Fk+1)− J(xk + t∥sk∥2Fk+1)
∥∥dt

≤ M2L∥sk∥.

Then from (2.12), (2.9), (2.3), (2.7), (2.19) and (2.20), we deduce that

yTk sk ≤ ∥yk∥∥sk∥
≤

(
2∥zk∥+ µ∥gk∥∥sk∥

)
∥sk∥

≤
(
2∥γk∥+ 2∥ḡk+1 − ĝk+1∥+ µ∥gk∥∥sk∥

)
∥sk∥

≤ C1∥sk∥2
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holds for some positive constant C1. 2

If there exists a positive constant τ1 such that ∥gk∥ ≥ τ1 holds for all large k. Then from
Lemma 2.6, we have the following important result, which is the key to prove the global
convergence of the proposed method.

Lemma 2.7 ([2, Theorem 2.1]). Let Assumption 2.4 hold. Then there are positive constants
βi, i = 1, 2, 3, 4 such that

β1∥si∥ ≤ ∥Bisi∥ ≤ β2∥si∥, β3∥si∥2 ≤ sTi Bisi ≤ β4∥si∥2 (2.21)

hold for at least ⌈k/2⌉ many i ≤ k.

Lemma 2.7 implies that

β1∥di∥ ≤ ∥Bidi∥ ≤ β2∥di∥, β3∥di∥2 ≤ dTi Bidi ≤ β4∥di∥2 (2.22)

hold for at least ⌈k/2⌉ many i ≤ k.

Lemma 2.8. Let Assumption 2.4 hold and the sequence {xk} be generated by Algorithm
2.1. If αk ̸= 1, then we have

αk ≥ −(1− σ)gTk dk − L∥Fk∥2ϵk∥dk∥
C2∥dk∥2

, (2.23)

where C2 is a positive constant.

Proof. Let

Gk =

∫ 1

0

J(xk + tϵkFk)dt.

Then from (2.11) and (2.14), we have

gk = GkFk = −Bkdk. (2.24)

From the line search (2.15), we get that α′
k , αk/r does not satisfy (2.15), i.e.,

f(xk + α′
kdk)− f(xk) > σα′

kg
T
k dk + ϵkf(xk) > σα′

kg
T
k dk,

which means that

−σα′
kg

T
k dk > −

(
f(xk + α′

kdk)− f(xk)
)

= −1

2

(
F (xk + α′

kdk) + Fk

)T (
F (xk + α′

kdk)− Fk

)
= −1

2

(
2FT

k

(
F (xk + α′

kdk)− Fk

)
+ ∥F (xk + α′

kdk)− Fk∥2
)

≥ −FT
k

(
F (xk + α′

kdk)− Fk

)
− L2

1

2
∥α′

kdk∥2, (2.25)

where the last inequality uses (2.20). From (2.24) and the symmetry of the Jacobian, we
have

FT
k

(
F (xk + α′

kdk)− Fk

)
= α′

kF
T
k

∫ 1

0

J(xk + tα′
kdk)dkdt

= α′
kF

T
k Gkdk + α′

kF
T
k

∫ 1

0

(
J(xk + tα′

kdk)− J(xk + tϵkFk)
)
dkdt

≤ α′
kg

T
k dk + α′

k∥Fk∥∥dk∥L
(
α′
k∥dk∥+ ϵk∥Fk∥

)
≤ α′

kg
T
k dk + LM2∥α′

kdk∥2 + Lα′
k∥Fk∥2ϵk∥dk∥, (2.26)
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where we use (2.18) in the first inequality, and the last inequality follows from (2.19).
The inequality (2.26) together with (2.25) yield that

αk ≥ r

L2
1/2 + LM2

−(1− σ)gTk dk − L∥Fk∥2ϵk∥dk∥
∥dk∥2

.

Set C2 =
L2

1/2+LM2

r , then we get (2.23). The proof is completed. 2

Now it is time for us to give the global convergence result for Algorithm 2.1.

Theorem 2.9. Let Assumption 2.4 hold and the sequence {xk} be generated by Algorithm
2.1. Then we have

lim inf
k→∞

∥∇f(xk)∥ = 0. (2.27)

Proof. We prove the theorem by contradiction. If (2.27) is not true, then there exist an

integer k̂ and a positive constant τ such that

∥∇f(xk)∥ = ∥JT
k Fk∥ ≥ τ, ∀k ≥ k̂, (2.28)

which implies that
∥Fk∥ ≥ τ1 and ∥gk∥ ≥ τ1 (2.29)

hold for sufficiently large k with some positive constant τ1. Define the index set

T = {i| (2.22) holds}. (2.30)

Then for k ∈ T , from (2.22), (2.14), (2.11) and (2.19), we have

∥dk∥ ≤ β−1
1 ∥Bkdk∥ = β−1

1 ∥gk∥

= β−1
1

∥∥∥ ∫ 1

0

J(xk + tϵkFk)Fkdt
∥∥∥

≤ β−1
1 M1M2. (2.31)

(i) If lim infk∈T,k→∞ ∥dk∥ = 0, then we deduce from (2.14) and (2.22) that

lim inf
k∈T,k→∞

∥gk∥ ≤ β2 lim inf
k∈T,k→∞

∥dk∥ = 0,

which implies that lim infk→∞ ∥∇f(xk)∥ = 0 since Jk = JT
k , {∥Fk∥} is bounded, limk→∞ ϵk =

0, and

∥∇f(xk)∥ = ∥JkFk∥ =
∥∥∥gk −

∫ 1

0

(J(xk + tϵkFk)− Jk)Fkdt
∥∥∥

≤ ∥gk∥+ Lϵk∥Fk∥2.

This contradicts to (2.28).
(ii) If lim infk∈T,k→∞ ∥dk∥ > 0. Then there exists a positive constant τ2 such that

∥dk∥ ≥ τ2, k ∈ T. (2.32)

From Lemma 2.5, we have
lim
k→∞

αkg
T
k dk = 0, (2.33)
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which together with (2.22), (2.32) and (2.33) yields

lim
k∈T,k→∞

αk = 0. (2.34)

From Lemma 2.8, (2.10), (2.32), (2.22) and (2.19), we have, for large k ∈ T ,

αk ≥ −(1− σ)gTk dk − L∥Fk∥2ϵk∥dk∥
C2∥dk∥2

=
(1− σ)dTkBkdk

C2∥dk∥2
− L∥Fk∥2ϵk

C2∥dk∥

≥ β3(1− σ)

C2
− L∥Fk∥2ϵk

C2∥dk∥

≥ β3(1− σ)

2C2
,

which contradicts to (2.34). This finishes the proof. 2

3 Superlinear Convergence

To prove superlinear convergence of Algorithm 2.1, we need the following assumptions.

Assumption 3.1. (I) The sequence {xk} converges to x∗, where ∇f(x∗) = 0 and ∇2f(x∗)
is positive definite.

(II) In some neighourhood Ω2 of x∗, ∇2Fi, i = 1, 2, · · · , n, are Lipschitz continuous, i.e.,
there exists a positive constant L2 satisfying

∥∇2Fi(x)−∇2Fi(y)∥ ≤ L2∥x− y∥, i = 1, 2, · · · , n, ∀x, y ∈ Ω2, (3.1)

where F = (F1, · · · , Fn)
T is twice continuously differentiable.

(III) The positive sequence {ϵk} satisfies

ϵk ≤ ρk0(f(xk)− f(x∗)),

where ρ0 ∈ (0, 1) is a constant.

Remark 3.2. (i) The condition (I) in Assumption 3.1 implies that x∗ is a strongly local
minimizer.

(ii) It is clear (see [2, 12]) that conditions (I)-(II) in Assumption 3.1 yield that there
exists positive constants L3, m and M such that

∥F (x)− F (y)∥ ≤ L3∥x− y∥, ∥J(x)− J(y)∥ ≤ L3∥x− y∥, ∀x, y ∈ Ω2, (3.2)

∥∇2f(x)−∇2f(y)∥ ≤ L3∥x− y∥, ∀x, y ∈ Ω2, (3.3)

and
1

2
m∥xk − x∗∥2 ≤ f(xk)− f(x∗) ≤ 1

m
∥∇f(xk)∥2, (3.4)

∥F (x)∥ ≤ M, ∥J(x)∥ ≤ M, ∀x ∈ Ω2. (3.5)

(iii) The condition (III) in Assumption 3.1 is used to ensure the approximate precision
of gk although it seems a little strong. And this assumption implies that (2.10) still holds.
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Now we begin to prove that the Dennis-Moŕe condition holds step by step. We first give
the following very useful lemma.

Lemma 3.3. Let Assumption 3.1 hold. Then we have

∞∑
k=0

∥xk − x∗∥ < ∞. (3.6)

Proof. From the line search (2.15) and (2.22), for k ∈ T , we have that

f(xk+1)− f(xk) ≤ − (1− σ)

C2

(gTk dk)
2

∥dk∥2
+

L

C2

|gTk dk|
∥dk∥

ϵk∥Fk∥2 + ϵkf(xk)

≤ − (1− σ)

C2

β2
3

β2
2

∥gk∥2 +
2LM2

C2
ϵkf(xk) + ϵkf(xk)

, −C4∥gk∥2 + C5ϵk (3.7)

holds for some positive constants C4 and C5, where we use ∥gk∥ = ∥
∫ 1

0
J(xk+tϵkFk)Fkdt∥ ≤

M2 in the second inequality. (3.2) and (3.5) mean that

∥∇f(xk)− gk∥ =
∥∥∥ ∫ 1

0

(
J(xk + tϵkFk)− Jk

)
Fkdt

∥∥∥ ≤ Lϵk∥Fk∥2 ≤ C6ϵk (3.8)

holds for some positive constant C6.
Since (3.4) holds for any sufficiently small m > 0 and the positive constant C4 is inde-

pendent of m, without loss of generality, we can choose m > 0 such that C4m
2 < 1. Then

(3.8) together with (3.4) yields that

f(xk)− f(x∗) ≤ 2

m
∥gk∥2 +

2

m
∥∇f(xk)− gk∥2 ≤ 2

m
∥gk∥2 +

2C2
6

m
ϵ2k. (3.9)

From (3.7) and (3.9), for k ∈ T , we obtain that

f(xk+1)− f(xk) ≤ −C4m

2

(
f(xk)− f(x∗)

)
+ 2C4C

2
6ϵ

2
k + C5ϵk

≤ −C4m

2

(
f(xk)− f(x∗)

)
+ C7ϵk

holds for some positive constant C7, which implies that

f(xk+1)− f(x∗) ≤ ρ1
(
f(xk)− f(x∗)

)
+ C7ϵk, (3.10)

where the positive constant ρ1 = 1− C4m
2 < 1. From (III) in Assumption 3.1, without loss

of generality, we can assume that ρ1 + C7ρ
k
0 ≤ ρ2 < 1 for some positive constant ρ2 since

ρ0, ρ1 ∈ (0, 1). Then we have from (3.10) and (III) in Assumption 3.1

f(xk+1)− f(x∗) ≤ (ρ1 + C7ρ
k
0)
(
f(xk)− f(x∗)

)
≤ ρ2

(
f(xk)− f(x∗)

)
, (3.11)

where ρ2 < 1.
Moreover, from (2.15), we have

f(xk+1)− f(x∗) ≤ (1 + ϵk)
(
f(xk)− f(x∗)

)
+ ϵkf(x

∗), (3.12)
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which together with (III) in Assumption 3.1 implies

f(xk+1)− f(x∗) ≤ (1 + ωk)
(
f(xk)− f(x∗)

)
, (3.13)

where ωk , ϵk + ρk0f(x
∗). It is clear that

∞∑
k=0

ωk ≤ ω < ∞

holds for some positive constant ω.
From (3.11) and (3.13), we have that

f(xk+1)− f(x∗) ≤

( ∏
i∈{1,2,··· ,k}\T

(1 + ωi)

)∏
i∈T

ρ2
(
f(x0)− f(x∗)

)
≤

( k∏
i=1

(1 + ωi)
)
ρ

k
2
2

(
f(x0)− f(x∗)

)
≤ eωρ

k
2
2

(
f(x0)− f(x∗)

)
. (3.14)

(3.14) and (3.4) yield that

√
m/2

∞∑
k=0

∥xk − x∗∥ ≤
∞∑
k=0

√
f(xk+1)− f(x∗)

≤
∞∑
k=0

√
eω(f(x0)− f(x∗))(ρ

1
4
2 )

k

< ∞,

which gives (3.6). This finishes the proof. 2

From conditions (I) and (II), it is easily to get the following result [12].

Lemma 3.4. Let conditions (I) and (II) in Assumption 3.1 hold. Then

∥
(
∇f(xk+1)−∇f(xk)

)
−∇2f(x∗)sk∥

∥sk∥
≤ M3{∥xk+1 − x∗∥+ ∥xk − x∗∥} (3.15)

holds for some positive constant M3.

From (2.9) and the positive definiteness of ∇2f(x∗), we have

zTk sk > 0, (3.16)

which implies that, for large k,
yk = zk + µ∥gk∥sk.

Then we have

∥yk −∇2f(x∗)sk∥
∥sk∥

≤
∥zk −

(
∇f(xk+1)−∇f(xk)

)
∥

∥sk∥

+
∥
(
∇f(xk+1)−∇f(xk)

)
−∇2f(x∗)sk∥

∥sk∥
+

µ∥gk∥∥sk∥
∥sk∥

, A1 +A2 +A3.
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From (3.8) and (3.2), we have

A3 ≤ µ∥∇f(xk)∥+ µ∥gk −∇f(xk)∥ ≤ µL3∥xk − x∗∥+ C6ϵk. (3.17)

Now we estimate A1. From (2.9), we have

A1 =
∥zk − (Jk+1Fk+1 − JkFk)∥

∥sk∥

=
∥zk − (Jk+1Fk+1 − JkFk+1)− Jk(Fk+1 − Fk)∥

∥sk∥

=
∥γk − Jk(Fk+1 − Fk) + (ḡk+1 − ĝk+1)− (Jk+1Fk+1 − JkFk+1)∥

∥sk∥

≤ ∥γk − Jk(Fk+1 − Fk)∥
∥sk∥

+
∥ḡk+1 − Jk+1Fk+1∥

∥sk∥
+

∥ĝk+1 − JkFk+1∥
∥sk∥

, B1 +B2 +B3.

Then from (2.3), (3.2) and (3.5), we deduce that

B1 =
∥
(
F (xk + δk)− Fk

)
− Jkδk∥

∥sk∥

=
∥
∫ 1

0

(
J(xk + tδk)− Jk

)
δkdt∥

∥sk∥

≤ L3∥δk∥2

∥sk∥
≤ L3

3∥sk∥,

B2 =

∥∥ ∫ 1

0

(
J(xk+1 + t∥sk∥2Fk+1)− Jk+1

)
Fk+1dt

∥∥
∥sk∥

≤ L3∥Fk+1∥2∥sk∥ ≤ L3M
2∥sk∥,

and

B3 =
∥
∫ 1

0

(
J(xk + t∥sk∥2Fk+1)− Jk

)
Fk+1dt∥

∥sk∥
≤ L∥Fk+1∥2∥sk∥ ≤ L3M

2∥sk∥.

The above three inequalities imply that there exists a positive constant M4 such that

A1 ≤ M4∥sk∥ = M4∥xk+1 − xk∥ ≤ M4(∥xk+1 − x∗∥+ ∥xk − x∗∥).

Therefore we have
∥yk −∇2f(x∗)sk∥

∥sk∥
≤ M5ηk, (3.18)

where M5 is some positive constant and

ηk = ∥xk+1 − x∗∥+ ∥xk − x∗∥+ ϵk.

Then from (3.6) and (2.10), we have

∞∑
k=0

ηk < ∞,

which implies that the following Dennis-Moŕe condition holds.
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Lemma 3.5 ([2, Theorem 3.2]). Let Assumption 3.1 hold. Then we have

lim
k→∞

∥
(
Bk −∇2f(x∗)

)
sk∥

∥sk∥
= 0. (3.19)

Moreover, the sequences {Bk} and {B−1
k } are uniformly bounded.

From (2.14) and Lemma 3.5, we get

∥dk∥ = ∥B−1
k gk∥ ≤ ∥B−1

k ∥∥gk∥ → 0.

This inequality together with the mean value theorem, (2.14) and (3.8) yields that there
exists a constant θ ∈ (0, 1) such that

f(xk + dk)− f(xk)− σgTk dk

= ∇f(xk)
T dk +

1

2
dTk∇2f(xk + θsk)dk − σgTk dk

=
(1
2
− σ

)
gTk dk +

(
∇f(xk)− gk

)T
dk +

1

2
gTk dk +

1

2
dTk∇2f(xk + θsk)dk

=
(1
2
− σ

)
gTk dk +

(
∇f(xk)− gk

)T
dk

+
1

2
dTk
(
∇2f(x∗)−Bk

)
dk +

1

2
dTk
(
∇2f(xk + θsk)−∇2f(x∗)

)
dk

=
(1
2
− σ

)
gTk dk +

(
∇f(xk)− gk

)T
dk + o(∥dk∥2)

= −
(1
2
− σ

)
dTkBkdk + o(ϵkf(xk)) + o(∥dk∥2)

≤ ϵkf(xk),

where we use the fact that σ ∈ (0, 1
2 ) and Lemma 3.5. From this inequality and (2.15),

we have that the unit steplength is always accepted for sufficiently large k, i.e., αk ≡ 1 for
large k. This conclusion together with Lemma 3.5 implies the superlinear convergence of
Algorithm 2.1.

Theorem 3.6 ([12, Theorem 5.4.6]). Let Assumption 3.1 hold. Then the sequence {xk} be
generated by Algorithm 2.1 converges superlinearly, that is,

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

4 Extension to Norm Descent Case

From the line search (2.15) in Algorithm 2.1, we see that the sequence {f(xk)} is not
necessarily a descent sequence. In this section, we extend Algorithm 2.1 to norm descent
case in the sense that f(xk+1) < f(xk), k = 0, 1, 2, . . . by utilizing the technique proposed
by Gu eta. [5].

Let α > 0 be a parameter,

gk(α) ,
F (xk + α∥sk−1∥Fk)− Fk

α∥sk−1∥
(4.1)
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and dk(α) be the solution of the following nonlinear equations

Bkd = −gk(α). (4.2)

Suppose that Bk is positive definite. Now we give a way to determine the search direction
dk as follows, which is motivated by that of [5].

Procedure 1. Let r ∈ (0, 1) and σ > 0 be given two constants. Let ik be the smallest
nonnegative integer such that the following inequality holds with α = ri, i = 0, 1, . . . ,

f(xk + αdk(α))− f(xk) ≤ −σ∥αdk(α)∥2. (4.3)

Then let
dk = dk(r

ik).

Moreover, if ik = 0, we take
αk = 1.

It is clear that (4.3) is well defined, that is, (4.3) terminates finitely. Otherwise

0 > −∇f(xk)
TBk∇f(xk) = lim

α→0+

f(xk + αdk(α))− f(xk)

α
≥ − lim

α→0+
σα∥dk(α)∥2 = 0,

which is a contradiction.
If ik > 0, we give the following procedure to compute the stepsize.
Procedure 2. Let ik and dk be determined by Procedure 1. Let jk be the largest integer

j ∈ {0, 1, 2, . . . , ik − 1} satisfying

f(xk + rik−jdk)− f(xk) ≤ −σ∥rik−jdk∥2. (4.4)

Then let
αk = rik−jk .

Procedures 1 and 2 present a way to produce dk and αk simultaneously. It is easy to see
that if αk ̸= 1, then α′

k = αk

r does not satisfy (4.3), that is,

f(xk + α′
kdk)− f(xk) > −σ∥α′

kdk∥2. (4.5)

Now we give the complete norm descent BFGS method as follows.

Algorithm 4.1 (The derivative-free BFGS method with norm descent).

Step 0. Choose a starting point x0 ∈ Rn, an initial symmetric positive definite matrix
B0 ∈ Rn×n and several constants σ > 0, ∥s−1∥ > 0, µ > 0 and r ∈ (0, 1). Let k := 0.

Step 1. Compute dk and αk by Procedures 1 and 2.

Step 2. Set xk+1 = xk + αkdk. Update Bk by the BFGS formula (2.13), where yk is
given by (2.12) with gk = gk(r

ik).

Step 3. Let k := k + 1 and go to Step 1.

Similar to Algorithm 2.1, we can discuss the convergence properties of Algorithm 4.1.
For simplicity, we only present the global convergence of Algorithm 4.1 under Assumption
2.4 here.
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Theorem 4.2. Let Assumption 2.4 hold. Then the sequence {xk} generated by Algorithm
4.1 converges globally in the sense that lim infk→∞ ∥∇f(xk)∥ = 0.

Proof. We prove the theorem by contradiction. If the conclusion is not true, then (2.28)
and (2.29) hold. From Procedures 1 and 2, we have

∞∑
k=0

∥αkdk∥2 =
∞∑
k=0

∥sk∥2 < ∞, (4.6)

which implies that
lim
k→∞

αkdk = lim
k→∞

∥sk∥ = 0. (4.7)

(i) If lim infk∈T,k→∞ ∥dk∥ = 0, then by (4.2) and (2.22), we have

lim inf
k∈T,k→∞

∥gk∥ = lim inf
k∈T,k→∞

∥Bkdk∥ ≤ β2 lim inf
k∈T,k→∞

∥dk∥ = 0,

which implies that lim infk→∞ ∥∇f(xk)∥ = 0. This leads to a contradiction to (2.28).
(ii) If lim infk∈T,k→∞ ∥dk∥ > 0, then by (4.7), we know

lim
k∈T,k→∞

αk = 0. (4.8)

From (4.5) and similar argument as Lemma 2.8, there exists a positive constant C̄1 such
that

αk ≥ −gTk dk − L∥Fk∥2∥sk−1∥∥dk∥
C̄1∥dk∥2

=
dTkBkdk
C̄1∥dk∥2

− L∥Fk∥2∥sk−1∥
C̄1∥dk∥

, (4.9)

which together with (4.7) and (2.22) shows that, for sufficiently large k ∈ T ,

αk ≥ β3

2C̄1
.

This contradicts to (4.8). The proof is then finished. 2

5 Numerical Experiments

In this section, we only compare the performance of the GN-BFGS method [8] with the
parameters σ1 = σ2 = 0.01, r = 0.5 and Algorithm 2.1 with σ = 0.01, r = 0.5 and yk = zk
(that is, we use the unmodified BFGS update formula) in (2.13). The code was written in
Matlab 7.4. We stopped the iteration if one of the following conditions was satisfied: (i) the
total number of iterations(Iter) exceeds 100; (ii) ∥gk∥ ≤ 10−5.

Table 1 reports the numerical result for the large residual Trigonometric problem [1],
which is given by the following system.

• Trigonometric problem:

Fi(x) = −di + F̃i(x)
2, i = 1, 2, . . . ,m,

where

F̃i(x) = −ei +

n∑
j=1

(
aij sinxj + bij cosxj

)
, i = 1, 2, . . . ,m,

where x = (x1, . . . , xn)
T , aij , bij are random integers in [-10,10], ei are random numbers in

[0,1], and d = (d1, d2, . . . , dn)
T = (1, 2, . . . ,m)T . In this section, we set m = n.
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Table 1: Test results for the methods with different initial points and {ϵk} values.

Parameters The GN-BFGS Method Algorithm 2.1
ϵk Initial Point n Iter ∥gk∥ ∥Fk∥ Iter ∥gk∥ ∥Fk∥
1
k3 0 10 100 7.75e+004 2.40e+002 21 0.00e+000 6.23e+002
1
k3 0 20 100 6.71e+006 7.22e+003 42 0.00e+000 2.43e+003
1
k3 0 30 100 1.37e+007 7.02e+003 22 0.00e+000 3.65e+003
1
k3 0 40 100 3.09e+007 9.07e+003 20 0.00e+000 6.02e+003
1
k3 0 50 100 7.78e+007 2.09e+004 21 0.00e+000 2.08e+004
1
k3 0 100 100 3.94e+008 6.11e+004 22 0.00e+000 4.84e+004
1
k3 (1, . . . , 1)T 10 100 1.04e+005 2.91e+002 19 0.00e+000 7.99e+002
1
k3 (1, . . . , 1)T 20 100 5.29e+006 5.10e+003 40 0.00e+000 2.14e+003
1
k3 (1, . . . , 1)T 30 100 1.98e+007 9.36e+003 22 0.00e+000 4.75e+003
1
k3 (1, . . . , 1)T 40 100 5.22e+007 1.90e+004 21 0.00e+000 1.18e+004
1
k3 (1, . . . , 1)T 50 100 7.38e+007 1.90e+004 32 0.00e+000 1.84e+004
1
k3 (1, . . . , 1)T 100 100 4.49e+008 5.37e+004 45 0.00e+000 5.35e+004

0.6k 0 10 69 0.00e+000 6.46e+002 27 0.00e+000 7.22e+002
0.6k 0 20 70 0.00e+000 4.96e+003 21 0.00e+000 4.91e+003
0.6k 0 30 66 0.00e+000 8.37e+003 25 0.00e+000 6.93e+003
0.6k 0 40 61 0.00e+000 1.86e+004 21 0.00e+000 1.71e+004
0.6k 0 50 67 0.00e+000 2.19e+004 25 0.00e+000 1.38e+004
0.6k 0 100 64 0.00e+000 4.86e+004 35 0.00e+000 4.29e+004
0.6k (1, . . . , 1)T 10 72 0.00e+000 2.37e+002 14 0.00e+000 8.89e+002
0.6k (1, . . . , 1)T 20 64 0.00e+000 4.66e+003 23 0.00e+000 2.15e+003
0.6k (1, . . . , 1)T 30 67 0.00e+000 8.54e+003 43 0.00e+000 8.10e+003
0.6k (1, . . . , 1)T 40 71 0.00e+000 1.30e+004 27 0.00e+000 1.26e+004
0.6k (1, . . . , 1)T 50 66 0.00e+000 2.56e+004 31 0.00e+000 2.06e+004
0.6k (1, . . . , 1)T 100 60 0.00e+000 6.09e+004 36 0.00e+000 5.54e+004

From Table 1, we can see that Algorithm 2.1 performs very well, which always converges
to some stationary point successfully. However, the GN-BFGS method diverges in the case
ϵk = 1

k3 . This is not surprising since the GN-BFGS method is based on the Gauss-Newton
method and the latter easily performs badly for large residual problems [1, 12]. Moreover,
we note that the GN-BFGS method needs more iterations than Algorithm 2.1, which shows
that Algorithm 2.1 converges faster than the GN-BFGS method for this problem.

6 Conclusions

In this paper, we propose a new derivative-free BFGS method for symmetric nonlinear least
squares with global and superlinear convergence, which is an extension of the GN-BFGS
method [8] for symmetric nonlinear equations. The proposed method utilizes the second
order information of the problem sufficiently, which makes it perform well for the given
large residual problem. How to extend the proposed method to solve more general (non-
symmetric) nonlinear least squares and report more numerical results compared with other
methods will be our further study.
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