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we will assume that the differential variational inequality is affine linear, where the precise
form of the considered DVI will be given in the next section.

Given in the form (1.1), the solution of a DVI combines two problems to be solved in
parallel: the solution of an ODE and the solution of an infinite dimensional VI. In that
sense, the analysis of these problems comprise the theory and numerical solution of ODEs,
but also the theory and numerical solution of VIs.

Despite their many applications in various fields (see below), DVIs have not been analyti-
cally discussed and numerically analyzed in detail in the literature so far. Pang and Stewart
give an extensive introduction into the field in a recent paper [23]. They discuss several
variants and reformulations of the general DVI and present relations to neighbouring fields
as well as existence results and convergence properties of some Euler type time-stepping
schemes for a variety of different DVI classes. Other papers consider e.g. the existence and
uniqueness results of some special class of DVIs, namely differential complementarity prob-
lems (DCP)[28] or solution sensitivities of initial conditions for DVIs [24]. All mentioned
papers do not aim to discuss numerical methods (in detail).

In contrast to these papers, we focus on the numerical solution of DVIs. As general
Runge-Kutta methods [12] are more common to solve different types of ODEs, we therefore
first extend the convergence theory given in [23] only for simple Euler type time-stepping
schemes to general s-stage Runge-Kutta methods for the affine-linear case in Section 2. In
Section 3 we then apply a common nonsmooth reformulation of the resulting finite dimen-
sional VI using the so-called natural map [8]. The numerical method we present as next
is based on the application of a semismooth Newton method as introduced in [26] to the
nonlinear, nonsmooth system of equations. The method is proved to be reasonable and
convergent under suitable assumptions. Finally, in Section 4 we present some numerical
results for two examples taken from the literature which represent models of a two-player
differential Nash game.

1.1 Applications

Applications of DVIs arise in engineering sciences [1, 13, 22, 27] as well as in economic
sciences. In our presentation here we will focus on differential Nash games that appear
e.g. in management sciences [2, 6, 9, 17] and give rise to DVIs by their associated set of
necesserary conditions.

The concept of Nash games and Nash equilibria were introduced by J.F. Nash [20, 21] in
the 1950’s and form a powerful tool to model strategic behaviour in various situations. They
are nowadays widely-used in particular in the economic sciences. A noncooperative Nash
game is given by a set of N players, where each player aims to solve his own optimization
problem. However, the players cannot solve their optimization problems independently from
each other as the problems are coupled through the associated objective functions and/or
the feasible sets that depend on the other players’ strategy choices. A Nash equilibrium is a
situation (or to be more precise a vector of the players strategy choices), where each player
does not feel the incentive to change his chosen strategy seperately, if all other players stick
to their strategy.

A special class of Nash games are the so-called differential Nash games, where each player
ν ∈ {1, .., N} aims to solve an infinite dimensional optimal control problem of the form [6]

maxuν ,x Jν(x, uν , u−ν)

subject to ẋ(t) = g(x, uν , u−ν) t ∈ [0, T ],
x(0) = x0

uν(t) ∈ Uν ⊆ Rmν

(1.3)
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where uν denotes the control of player ν, u−ν contains the control vectors of the remaining
players (1, 2, .., ν − 1, ν + 1, .., N), x is the state (being the same for all players),

Jν(x, uν , u−ν) =

∫ T

0

θν(x, uν , u−ν)(t) dt+ σν(x(T ))

the objective functional of player ν and Uν the feasible set of player ν. Under suitable
assumptions, by Pontryagin’s maximum principle [18], using the Hamiltonian functions

Hν(x, pν , uν , u−ν) = pνg(x, uν , u−ν) + θν(x, uν , u−ν) (1.4)

for each player ν = 1, .., N we obtain a set of necessary conditions:

ẋ(t) = g(x, uν , u−ν), x(0) = x0,

ṗν(t) = −DxHν(x, pν , uν , u−ν), pν(T ) = ∇σν(x(T )), (1.5)

uν(t) ∈ S(Uν , DuνHν(x, pν , ·, u−ν)),

If Uν ̸= Rpν , then (1.5) correspond to a DVI of the form (1.1). Hence, one way to solve the
differential Nash game is to solve the associated DVI that corresponds to the concatenated
system of necessary conditions for player ν = 1, .., N (though the state equation appears
only once), which again yields a DVI of the form (1.1).

We refer the interested reader to the two monographs [2, 6]. Moreover, an overview of
several applications of differential Nash games in management sciences can be found in the
survey [9].

2 Runge-Kutta Time-Stepping Scheme for Affine DVIs

In this section, we will first describe and analyse a Runge-Kutta based time-stepping scheme
for affine differential variational inequalities (ADVI), where we suppose that the VI depends
on a closed convex set K (in particular a polyhedral set) and F (t, x(t), u(t)) is an affine
linear function both in x and u, i.e. we analyse

ẋ(t) = f(t, x(t)) +B(t, x(t))u(t), (t, x) ∈ Ω

u(t) ∈ S(K,G), (2.1)

x(0) = x0

where B(t, x(t)) : R+ × Rn → Rn×m and G(x(t), u(t)) := d+Dx(t) + Eu(t), with d ∈ Rm,
D ∈ Rm×n and E ∈ Rm×m. Moreover, S(K,G) denotes the solution set of the AVI: find a
continuous function ū(t) : [0, T ] → K such that∫ T

0

G(x(t), ū(t))T (u(t)− ū(t)) dt ≥ 0 (2.2)

holds for any continuous function u(t) : [0, T ] → K. Such problems arise e.g. as initial-value
problem involving an ODE with discontinuous right-hand side, linear complementarity sys-
tems, simulations of dynamics involving frictional contact problems [1, 22, 27] or boundary-
value problems of the type (1.1) that can be transformed into an initial-value problem.

The existence of solutions to (2.1) can be obtained by application of Theorem 6.1 in [23].

Proposition 2.1 ((Pang,Stewart)[23]). Let K be a polyhedron with 0 ∈ K, E be positive
semidefinite and suppose that either
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1. (K,E) is an R0-pair or

2. (d+Dx) ⊆ intK(K,E)∗ for all (t, x) ∈ Ω.

holds. Then (2.1) has a weak solution.

Remark 2.2. (K,E) is an R0-pair e.g. if K is a convex cone and E is symmetric and
strictly copositive on K, i.e. yTE y > 0 holds for all y ∈ K\{0}. Moreover, if (K,E) is an
R0-pair, the solution set S(K, r + E) is bounded for any r = d + Dx, r ∈ Rm. For more
information on the R0-property and the conditions of Lemma 2.1 refer e.g. [8].

The time-stepping scheme for (2.1) that we consider here is based on a general (possibly
implicit) s-stage Runge-Kutta method [12] for the initial value problem (IVP) for x, i.e.

X
(i)
n,h = xh

n + h
s∑

j=1

aij( f
(i)
n,h +B

(i)
n,hu

h
n+1 )

xh
n+1 = xh

n + h
s∑

i=1

ωi( f
(i)
n,h +B

(i)
n,hu

h
n+1 ) (2.3)

for all n = 0, .., Nh − 1, where h denotes the discretization parameter of an equidistant grid,
i.e. thn = nh for n = 0, .., Nh (Nh being the grid size),

ci :=
s∑

j=1

aij , f
(i)
n,h := f(thn + cih,X

(i)
n,h), and B

(i)
n,h := B(thn + cih,X

(i)
n,h)

and xh
0 = x0 for all h. Here we used an alternative though equivalent formulation of the

standard Runge-Kutta method as it is given e.g. in [12]. The associated Butcher tableau
(being the same as for the standard formulation of the method) is given by

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

. . .
...

cs as1 as2 · · · ass
ω1 ω2 · · · ωs

=
c A

ωT

A suitable discretization of (2.2) is

uh
n+1 ∈ S(K,Gh

n+1) with Gh
n+1(u) := d+Dxh

n+1 + Eu. (2.4)

In the following we will make the general assumptions

Assumption 2.3.

1. f and B are smooth Lipschitz continuous functions with constants Lf and LB , respec-
tively.

2. B(t, x(t)) is bounded on Ω, i.e. there exists CB > 0, such that ∥B∥C(Ω) ≤ CB

3. The Runge-Kutta scheme is at least of first order, i.e
∑s

i=1 ωi = 1.

Note that by the Lipschitz-continuity of f and B there exist constants cf , cB > 0 for all
(t, x) ∈ Ω such that

∥f(t, x)∥ ≤ cf (1 + ∥x∥) and ∥B(t, x)∥ ≤ cB(1 + ∥x∥).
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Proposition 2.4. Let E be positive definite and K be closed and convex. Moreover, assume
that the previous state xh

n is given. Then there exists h̄ > 0 such that for all h ∈ (0, h̄] it
holds:

1. If f(t, x) = Rx and B(t, x) = B with R ∈ Rn×n and B ∈ Rn×m, respectively, then
xh
n+1 is uniquely defined by uh

n+1 and (2.3) and moreover S(K,Gn+1) is nonempty and
single-valued.

2. If K is moreover bounded and (2.3) implicitly defines some continuous function Θh,
i.e. xh

n+1 = Θh(uh
n+1), then S(K,Gh

n+1) is nonempty and compact.

3. If K = Rm
+ and (2.3) implicitly defines a continuous function, i.e. xh

n+1 = Θh(uh
n+1)

and either

(a) uTDΘh(u) ≥ 0 for all u ∈ K or

(b) DΘh(·) satisfies the coercivity condition

lim
u∈K

∥u∥→∞

uTDΘh(u)

∥u∥
= ∞

then S(K,Gh
n+1) is nonempty and bounded.

Proof. The first part follows since under the given conditions, (2.3) implicitly defines an
affine linear function Θh(uh

n+1) for sufficiently small h. Inserting Θh(uh
n+1) in (2.4) we thus

obtain a variational inequality V I(K, F̃ ) for uh
n+1, where F̃ is affine linear and furthermore

by the positive definiteness of E strongly monotone. Therefore Theorem 2.3.3 in [8] can be
applied, which gives the existence and uniqueness of a solution uh

n+1.
Again replacing xh

n+1 by Θh(uh
n+1) in (2.4), the second part is a direct consequence of

Corollary 2.2.5 in [8].
Finally, the third part follows by replacing xh

n+1 by Θh(uh
n+1) in (2.4), which yields the

NCP: find u such that

0 ≤ u ⊥ d+DΘh(u) + Eu ≥ 0,

where by assumption E is positive definite. Hence Proposition 2.2.12 in [8] can be applied,
by which it follows that S(K,Gh

n+1) is nonempty and bounded .

Knowing that under suitable conditions for sufficiently small h the finite-dimensional
AVI(K,Gh

n+1) have a (unique) solution, we are now interested in the convergence of our
time-stepping scheme, i.e. the convergence of approximations xh and uh for the limit h → 0.
Therefore , we approximate x(t) using a piecewise linear function which is based on the
discrete solutions xh

n

xh(t) := xh
n +

t− thn
h

(xh
n+1 − xh

n), ∀ t ∈ [thn, t
h
n+1], n = 0, 1, .., Nh − 1. (2.5)

As approximation for u(t) we use the piecewise constant function

uh(t) := uh
n+1, ∀ t ∈ [thn, t

h
n+1] n = 0, 1, .., Nh − 1. (2.6)

In preparation for the proof of convergence, we will first give some auxiliary results.
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Lemma 2.5. Let each xh
n+1 be the solution of (2.3) and uh

n+1 be the solution of the associated
AVI(K,Gh

n+1) for n = 0, 1, .., Nh − 1. Assume that each uh
n+1 satisfies

∥uh
n+1∥ ≤ ρ (1 + ∥xh

n+1∥) (2.7)

for some positive constant ρ. Then there exists some constant cu > 0 and h̄ > 0 such that

∥uh
n+1∥ ≤ cu(1 + ∥xh

n∥). (2.8)

holds for all h ∈ (0, h̄] and n = 0, 1, .., Nh − 1.

Proof. First, by (2.3), the Lipschitz-continuity of f and the boundedness of B we have

∥uh
n+1∥ ≤ ρ (1 + ∥xh

n+1∥)
≤ ρ (1 + ∥xh

n+1 − xh
n∥+ ∥xh

n∥) (2.9)

≤ ρ

[
1 + h

(
s∑
i

ωi cf (1 + ∥X(i)
n,h∥) + CB∥uh

n+1∥

)
+ ∥xh

n∥

]
Moreover, for each i = 1, .., s we have

∥X(i)
n,h∥ ≤ ∥xh

n∥+ h
s∑

j=1

|aij |( ∥f (j)
n,h∥+ ∥B(j)

n,hu
h
n+1∥)

≤ ∥xh
n∥+ h

 s∑
j=1

|aij |[ cf (1 + ∥X(j)
n,h∥) + CB∥uh

n+1∥ ]

 .

Hence, for the vector x := (∥X(1)
n,h∥, ..., ∥X

(s)
n,h∥)T we obtain

0 ≤ x ≤ h cf Ãx+ [∥xh
n∥+ h ∥A∥∞(cf + CB∥uh

n+1∥)] e

where ãij = |aij | and e = (1, .., 1)T . Therefore,

∥x∥∞ ≤ h cf∥A∥∞∥x∥∞ + [∥xh
n∥+ h ∥A∥∞(cf + CB∥uh

n+1∥)]

such that for all i = 1, .., s and h sufficiently small

∥X(i)
n,h∥ ≤ η̄ (1 + ∥xh

n∥+ ∥uh
n+1∥) (2.10)

for suitably defined η̄. Hence, if we insert this inequality in (2.9), we get

∥uh
n+1∥ ≤ ρ

[
1 + h

(
cf + cf η̄ (1 + ∥xh

n∥+ ∥uh
n+1∥) + CB∥uh

n+1∥
)
+ ∥xh

n∥
]
,

i.e. there exists a positive constant cu and some h̄ > 0 being small enough so that (2.8) is
satisfied for all n = 0, .., Nh − 1 and h ∈ (0, h̄].

Remark 2.6. Note that condition (2.7) is satisfied, if the linear growth condition

∃ ρ > 0 : sup{∥u∥ : u ∈ S(K, (r + Γ(u))} ≤ ρ(1 + ∥r∥),

with Γ(u) = Eu is fullfilled for any r = d+Dx, with (t, x) ∈ Ω . This condition is introduced
and discussed in [23], where assumptions on the problem data are given under which the
linear growth condition is proved to hold (cf. Section 6.2, in particular Theorem 6.1 in [23]).
Conditions on the problem data for (2.7) to hold are for example: K being a bounded set
(e.g. for the box-constrained case as discussed in Section 3) or K ⊆ Rm being a nonempty
closed convex set and E being symmetric and positive definite.
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Lemma 2.7. Let X
(i)
n,h (i = 1, .., s) and xh

n+1 be the solutions of (2.3) for all n = 0, 1, .., Nh−
1. Assume that there exists a constant ρ such that the solutions uh

n+1 of the associated
AVI(K,Gh

n+1) satisfy (2.7) for all n = 0, 1, .., Nh − 1. Then there exists a constant cX and
h̄ > 0, such that

∥X(i)
n,h∥ ≤ cX(1 + ∥xh

n∥) (2.11)

holds for all n = 0, 1, .., Nh − 1 and h ∈ (0, h̄].

Proof. By assumption we know that (2.10) holds for each i = 1, .., s (cf. proof of Lemma
2.5). Moreover, by Lemma 2.5 it follows that for h > 0 small enough ∥uh

n+1∥ satisfies (2.8).
Hence,

∥X(i)
n,h∥ ≤ η̄ (1 + ∥xh

n∥+ cu(1 + ∥xh
n∥)) ≤ cX (1 + ∥xh

n∥)

for cX := η̄ (1 + cu).

Lemma 2.8. Let xh be defined as in (2.5) with (xh
n) (n = 0, 1, .., Nh−1) being the solutions

of (2.3). Assume that the scheme (2.3) is at least of first order and suppose uh
n+1 satisfies

(2.7). Then there exists h̄ > 0, such that

1. there exists a constant Lx, such that for all n: ∥xh
n+1 − xh

n∥ ≤ Lxh

2. xh(t) is Lipschitz-continuous with L-constant Lx (i.e. independent of h)

for all h ∈ (0, h̄].

Proof. First, by (2.3), Lemma 2.5 and Lemma 2.7 we have

∥xh
n+1 − xh

n∥ ≤ h
s∑

i=1

ωi[cf (1 + ∥X(i)
n,h∥) + CBcu(1 + ∥xh

n∥)]

≤ h(cf + cfcX + CBcu)(1 + ∥xh
n∥).

Define ηx := cf + cfcX + CBcu, then it follows

∥xh
n+1∥ ≤ ∥xh

n∥+ hηx(1 + ∥xh
n∥) = hηx + (1 + hηx)∥xh

n∥

≤ hηx

n∑
j=0

(1 + ηxh)
j + (1 + hηx)

n+1∥x0∥

= eh(n+1)ηx∥x0∥+ (eh(n+1)ηx − 1) ≤ (eTηx − 1) + eTηx∥x0∥

for all h sufficiently small, for all n = 0, .., Nh − 1. Hence,

∥xh
n+1 − xh

n∥ ≤ h ηx(1 + ∥xh
n∥) ≤ Lxh

for Lx := ηxe
Tηx(1 + ∥x0∥). Therefore, by definition of xh(t) it follows directly that

∥xh(t1)− xh(t2)∥ ≤ Lx|t1 − t2| ∀ t1, t2 ∈ [thn, t
h
n+1]

for all n = 0, 1, .., Nh − 1. Hence,

∥xh(t1)− xh(t2)∥ ≤ Lx|t1 − t2| ∀ t1, t2 ∈ [0, T ].
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Next, we prove the convergence of the Runge-Kutta based time-stepping scheme. It can
be shown, that sequences of approximations xhk and uhk defined by (2.5) and (2.6) converge
to limits x̄ and ū in L∞(0, T ) and L2(0, T ), respectively, for the limit hk ↘ 0. Moreover,
these limits can be proved to satisfy the ADVI (2.1) in the weak sense.

Theorem 2.9. Let E be positive definite, K be a closed convex set and (hk) be such that
hk ↘ 0 with associated aproximations xk(t) := xhk(t) and uk(t) := uhk(t). Assume that
every uhk

n+1 satisfies (2.8). Then there exists a subsequence (hℓ) ⊆ (hk), such that xℓ → x̄
uniformly in L∞(0, T ) and uℓ ⇀ ū in L2(0, T ). Furthermore, x̄ is Lipschitz-continuous with
constant Lx and (x̄, ū) is a weak solution of (2.1).

Proof. The proof is organized as follows: first we will prove the existence of the limits x̄ and
ū. Next, we show that x̄ satisfies the ODE of (2.1) in the weak sense and finally, that ū
solves (2.2) in the weak sense.

By Lemma 2.8 it follows that all approximations xh(t) are Lipschitz continuous for
sufficiently small h with a L-constant that is independent of h, i.e. the family of functions
(xh) for sufficiently small h is an equicontinuous family of functions. Moreover, there exists
a constant C̃ such that for any h sufficiently small ∥x̄h∥L∞(0,T ) ≤ C̃. Therefore, by the
Arzelá-Ascoli theorem [16] there exists a subsequence (hℓ) ⊆ (hk) such that the associated
sequence (xℓ) converges in L∞(0, T ) to a Lipschitz-continuous function x̄.

By assumption, it follows that

∥uh∥L∞(0,T ) ≤ max
n

{∥uh
n+1∥} ≤ max

n
{cu(1 + ∥xh

n∥)} ≤ cue
Tηx∥x0∥ =: Cu

for all h sufficiently small with ηx defined as in Lemma 2.8. Hence, ∥uh∥L2(0,T ) ≤
√
CuT .

Since L2(0, T ) is a Hilbert space, there exists a subsequence (ukj ) ⊆ (uℓ) that satisfies
ukj ⇀ ū in L2(0, T ) (wlog we assume that (ukj ) = (uℓ), i.e. uℓ ⇀ ū ) .

Next, we show that

x̄(t1)− x̄(t2) =

∫ t2

t1

f(τ, x̄(τ)) +B(τ, x̄(τ)) ū(τ) dτ . (2.12)

By assumption and Lemma 2.7, for all τ ∈ [thn, t
h
n+1] it holds with cRK = maxi{

∑s
j=1 |aij |}

∥f (i)
n,h − f(τ, xh(τ))∥ ≤ Lf (h+ ∥X(i)

n,h − xh(τ)∥)

≤ Lfh[1 + cRK(cf + (cfcX + CBcu)(1 + ∥xh
n∥)) + LfLxh]

≤ ηfh (2.13)

for some suitably defined ηf > 0. Similarly we obtain for τ ∈ [thn, t
h
n+1]

∥B(i)
n,hu

h
n+1 −B(τ, xh(τ))uh(τ)∥ ≤ ∥(B(i)

n,h −B(τ, xh(τ)))uh
n+1∥

≤ ηf
LB

Lf
Cu h . (2.14)

Now, it follows by (2.13) and (2.14)

xhk
n+1 − xhk

n =

∫ t
hk
n+1

t
hk
n

f(τ, xk(τ)) +B(τ, xk(τ))uk(τ) dτ +O((hk)
2)
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such that for any 0 ≤ t1 ≤ t2 ≤ T :

xk(t1)− xk(t2) =

∫ t2

t1

f(τ, xk(τ)) +B(τ, xk(τ))uk(τ) dτ +O(hk) . (2.15)

Since xℓ → x̄ uniformly in L∞(0, T ) and by the continuity of f we have

lim
ℓ→∞

∫ t2

t1

f(τ, xℓ(τ))dτ =

∫ t2

t1

f(τ, x̄(τ))dτ.

and furthermore, by the continuity of B on Ω and uℓ ⇀ ū in L2(0, T )∥∥∥∥∫ t2

t1

B(τ, xℓ(τ))uℓ(τ) dτ −
∫ t2

t1

B(τ, x̄(τ)) ū(τ) dτ

∥∥∥∥
≤
∫ t2

t1

∥B(τ, xℓ(τ))−B(τ, x̄(τ))∥ ∥uℓ(τ)∥ dτ

+

∥∥∥∥∫ t2

t1

B(τ, x̄(τ)) (uℓ(τ)− ū(τ)) dτ

∥∥∥∥
−→ 0 (ℓ → ∞)

Hence, by (2.15) we obtain (2.12).
In order to prove that ū satisfies the AVI (in the weak sense), we first prove that ū(t) ∈ K

for almost all t ∈ [0, T ]. First, it follows by Mazur’s theorem [16], that we can build a
sequence ũm of convex combinations of uℓ (ℓ ∈ N) such that ũm → ū in L2(0, T ). Since K
is convex and uℓ(t) ∈ K for all ℓ ∈ N and almost all t, we have that ũm(t) ∈ K for almost
all t ∈ [0, T ]. Furthermore, as there exists a subsequence of (ũm) that converges pointwise
almost everywhere in (0, T ) and since K is closed, ū(t) ∈ K for almost all t ∈ [0, T ]. Hence,
it remains to show that∫ T

0

(d+Dx̄(t) + Eū(t))T (u(t)− ū(t)) dt ≥ 0 (2.16)

holds for all continuous functions u : [0, T ] → K. By definition of uh, uh
n+1 ∈ S(K,Gn+1)

for all h and n ∈ N, Lemma 2.8 and the convexity of K, we have∫ T

0

(d+Dxh(t) + Euh(t))T (u(t)− uh(t)) dt

=

Nh−1∑
n=0

∫ thn+1

thn

(d+Dxh(t) + Euh
n+1)

T (u(t)− uh
n+1) dt

≥ h

Nh−1∑
n=0

(d+Dxh
n+1 + Euh

n+1)
T

(
1

h

∫ thn+1

thn

u(t) dt− uh
n+1

)
−h2Nh(∥u∥L∞(0,T ) + Cu)∥D∥Lx

≥ −h2Nh(∥u∥L∞(0,T ) + Cu)∥D∥Lx

Hence,

lim sup
ℓ→∞

∫ T

0

(d+Dxℓ(t) + Euℓ(t))T (u(t)− uℓ(t)) dt ≥ 0, (2.17)



332 SONJA STEFFENSEN

i.e. it remains to show that

lim sup
ℓ→∞

∫ T

0

(d+Dxℓ(t) + Euℓ(t))T (u(t)− uℓ(t)) dt (2.18)

≤
∫ T

0

(d+Dx̄(t) + Eū(t))T (u(t)− ū(t)) dt.

The convergence properties of xℓ and uℓ and the uniform boundedness of uh imply∣∣∣∣∣
∫ T

0

(Dxℓ)Tuℓ − (Dx̄)T ū dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

(D(xℓ − x̄))Tuℓ + (Dx̄)T (uℓ − ū) dt

∣∣∣∣∣
≤ Cu

∫ T

0

∥D(xℓ − x̄)∥1dt+

∣∣∣∣∣
∫ T

0

(Dx̄)T (uℓ − ū) dt

∣∣∣∣∣
−→ 0 (ℓ → ∞).

Hence (2.18) holds, if

lim inf
ℓ→∞

∫ T

0

(Euℓ(t))Tuℓ(t) dt ≥
∫ T

0

(Eū(t))T ū(t) dt .

Since E is positive definite, we have

uℓ(t)TEuℓ(t) = ū(t)TEū(t) + (uℓ − ū)(t)T (E + ET )ū(t)

+(uℓ − ū)(t)TE(uℓ − ū)(t)

≥ ū(t)TEū(t) + (uℓ − ū)(t)T (E + ET )ū(t)

for almost all t ∈ [0, T ], such that

lim inf
ℓ→∞

∫ T

0

(Euℓ(t))Tuℓ(t) dt ≥
∫ T

0

(Eū(t))T ū(t) dt

+ lim inf
ℓ→∞

∫ T

0

(uℓ − ū)(t)T (E + ET )ū(t) dt

=

∫ T

0

(Eū(t))T ū(t) dt ,

which proves (2.16).

3 Semismooth Newton Method

Applying the Runge-Kutta time discretization as presented in the previous section, we obtain
finite-dimensional problem consisting of the nonlinear Runge-Kutta system and the finite-
dimensional AVIs (2.4). Moreover, the AV I(K,Gh

n+1) can be reformulated by a nonlinear,
nonsmooth equation using the so-called natural map [8] associated with the AV I(K,Gh

n+1).
Define z = (z1, z2, z3) := (Xh

n , x
h
n+1, u

h
n+1) ∈ Rsn × Rn × Rm, then z3 = uh

n+1 is a solution
of AV I(K,Gh

n+1) if and only if [8]

FV I(z) := z3 −ΠK(z3 − (d+Dz2 + Ez3)) = 0,



SEMISMOOTH NEWTON METHOD FOR AFFINE DVIS 333

where ΠK denotes the projection operator onto the convex set K.
Hence, in oder to solve the discretized affine differential variational inequality, for each

time step n = 0, 1, .., N − 1, we have to solve the nonlinear, nonsmooth system(
FRK(z)
FV I(z)

)
= 0. (3.1)

In the following we assume that K ⊆ Rm is a rectangular box, i.e. K =
∏m

j=1[αj , βj ]. By
asssumption, FRK(z) is continuously differentiable. Since FV I concatenates linear functions
with the nonsmooth function ΠK , it is itself nonsmooth. However, it is known [8], that
the natural map (i.e. FV I) is semismooth, i.e. F itself is semismooth. In the following we
review some definitions and relations of nonsmooth analysis that we will refer to later on,
taken from [4, 5] and [25, 26], respectively.

Definition 3.1.

1. The directional derivative of F is given by the limit

F ′(z; d) = lim
t↓0

F (z + td)− F (z)

t
.

2. Let F be locally Lipschitz-continuous, then the generalized Jacobian of F is given by

∂F (z) = conv{V ∈ R(sn+n+m)×(sn+n+m) : ∃ zi → z, F ′(zi) → V }

3. F is said to be semismooth at z, if it is locally Lipschitz-continuous at z and

lim
V ∈∂F (z+td)

d→s,t↓0

V d

exists for any s.

Proposition 3.2. Suppose that F is a locally Lipschitz-continuous function. Then the
following statements are equivalent:

1. F is semismooth at z.

2. for any V ∈ ∂F (z + s) , s → 0, V s− F ′(z; s) = o(∥s∥).

Proposition 3.3. Suppose that F is semismooth. Then for any s → 0:

F (z + s)− F (z)− F ′(z; s) = o(∥s∥).

The semismooth Newton method for (3.1) is based on the semismooth Newton step sk

that is obtained by the solution of the nonsmooth Newton equation

Vk s
k = −F (zk) with Vk ∈ ∂F (zk). (3.2)



334 SONJA STEFFENSEN

Proposition 2.4 implies that under appropriate conditions F (z) = 0 has a (unique)
solution. We next show that under suitable assumptions the step computation in Algorithm
1 is well-defined and we can expect locally superlinear convergence of the generated iterates
zk.

The generalized Jacobian ∂F (zk) is given by the family of matrices

V =

 I − hA1 0 −hB1

−hA2 I −hB2

0 ΛD I − Λ(I − E)

 , (3.3)

where Λ denotes the generalized derivative of ΠK , which equals the convex hull of the B-
(Bouligand) subdifferential ∂B of ΠK (cf. Definition 3.1), which is given by Λ = diag(λj)
with

λj ∈


0, if wj /∈ [αj , βj ]

1, if wj ∈ (αj , βj)

{0, 1}, if wj ∈ {αj , βj}
(3.4)

where wj := (−d−Dz2+(I−E)z3)j . Next, we show that if E is strictly diagonally dominant
with positive diagonal entries, then for sufficiently small h > 0 all elements V ∈ ∂F (zk) are
regular. Moreover, since ∂BF (zk) ⊆ ∂F (zk), we not only get the regularity of all elements of
the generalized Jacobian, but also of the B-subdifferential, i.e. we also get the BD-regularity
of zk.

Lemma 3.4. Let E be strictly diagonally dominant with positive diagonal entries eii. Then
there exists h̄ > 0 such that for every h ∈ (0, h̄] all elements V ∈ ∂F (z) are regular for all z.

Proof. First, we will prove that R := I − Λ(I − E) is regular for any Λ = diag(λj) with
λj ∈ [0, 1]. Since E is assumed to be diagonally dominant with eii ≥ 0,

m∑
j=1
j ̸=i

|rij | =
m∑
j=1
j ̸=i

|λieij | < |λieii| ≤ |λieii + (1− λi)| = |rii|

for all λi ∈ (0, 1]. However, if λi = 0, then rij = 0 for all j ̸= i such that
∑m

j=1,j ̸=i |rij | =
0 < 1 = rii. Thus, R is again strictly diagonally dominant and therefore regular.

Now, consider the homogeneous linear system V s = 0, where s = (s1, s2, s3) ∈ Rsn ×
Rn × Rm and V ∈ ∂F (z) for any z. Then by (3.3) and the regularity of R, we obtain

s3 = −R−1ΛDs2.

Next, we substitute s3 by the right-hand side in V s = 0, this yields the homogeneous linear
system (

I − hA1 hB1(R
−1ΛD)

−hA2 I + hB2(R
−1ΛD)

)(
s1
s2

)
=

(
0
0

)
If h > 0 is sufficiently small, then corresponding system matrix is again strictly diagonally
dominant. This implies (s1, s2) = 0 and furthermore s3 = 0.

Lemma 3.5. Assume that z∗ is a solution to (3.1) with h > 0 sufficiently small. Then
there exists a constant CV > 0 such that all elements V of the generalized Jacobian ∂F (z)
satisfy ∥V −1∥ ≤ CV for all z in some neighbourhood N (z∗) of z∗.
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Proof. First note that by the Lipschitz-continuity of f,B and the projection operator ΠK

the function F is also Lipschitz. Hence ∂F (z) is bounded in a neighbourhood of z∗. Now
assume that there is no such neighbourhoodN (z∗), then there exists a sequence zk → z∗ and
Vk ∈ ∂F (zk) with ∥V −1

k ∥ > CV . However, by the boundedness of ∂F (z) in a neighbourhood
of z∗, it follows that Vk contains a subsequence that converges to some limit V̄ ∈ ∂F (z∗)
that has to be singular. This, however, contradicts Lemma 3.4.

Theorem 3.6. Let z∗ be a solution to (3.1). Assume that E ∈ Rm×m is strictly diagonally
dominant with positive diagonal entries eii. Then there exists a neighbourhood N (z∗) such
that for all z0 ∈ N (z∗) Algorithm 1 either terminates after finitely many iterations with
zk = z∗ or it produces a sequence (zk) that converges superlinearly to z∗, i.e. ∥zk+1− z∗∥ =
o(∥zk − z∗∥).

Proof. By assumption and Lemma 3.5 and Lemma 3.5, there exists a neighbourhood N (z∗)
such that for all z0 ∈ N (z∗), all elements V of the generalized Jacobian ∂F (z0) are nonsin-
gular and satisfy ∥V −1∥ ≤ CV for some constant CV . The semismoothness of F therefore
implies (for k = 0)

∥zk+1 − z∗∥ = ∥(zk − z∗)− V −1
k F (zk)∥

≤ ∥V −1∥
(
∥Vk(z

k − z∗)− F ′(z∗; zk − z∗)∥
+ ∥F (zk)− F (z∗)− F ′(z∗; zk − z∗)∥

)
= o(∥zk − z∗∥)

for ∥z0 − z∗∥ sufficiently small. By induction the implications can be transferred to all
k ∈ N.

Remark 3.7. Note that instead of using the generalized Jacobian in Algorithm 1, we
could also use the B-subdifferential of F given by (3.3) and (3.4). In that case one needs to
guarantee the weaker BD-regularity of each zk as a condition to prove a similiar convergence
result as Theorem 3.6 (see [25]). However, our preliminary numerical tests indicated that
for some examples it might be advantageous to use the generalized Jacobian. Therefore, as
a start we remained with the generalized Jacobian.

4 Numerical Tests

In the following, we present some numerical results that we obtained for the previously
discussed semismooth Newton method applied to the Runge-Kutta discretization scheme
analysed in Section 2.

We discuss two problems taken from [6]. Both of them are examples for a differential
Nash game as presented in Section 1. As discussed there, these problems can be solved
by the solution of the corresponding set of Hamiltonian systems. Due to the boundary
conditions for the adjoint equations at time t = T the resulting DVIs for these problems
are, however, not initial value problems but boundary value problems as (1.1) (in contrast
to the DVIs discussed in Section 2 and 3). Therefore, instead of solving (3.1) for each time
step seperately, we concatenate the systems (3.1) into one large nonlinear system and solve
the concatenated system for all time steps all at once.
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4.1 Example 1

The first problem that we test is a differential game with two players each of them facing
an optimal control problem. The optimal control problems of player 1 and 2 are given by

max
ui

Ji(x, u) =

∫ T

0

θi(x, u) dt subject to ui ∈ Ui = [0, 1], i = 1, 2,

respectively, with u1 and u2 being the controls for player 1 and player 2, respectively,

θ1(x, u1, u2) = x− u1u2 − α(u1)
2,

θ2(x, u1, u2) = (1 + u1)x− u2 − β(u2)
2

and x satisfying the state equation

ẋ(t) = u1(t) + u2(t) t ∈ [0, T ]

where T = 2. The initial vector z0 = (x0, p01, p
0
2, u

0
1, u

0
2) is given by the associated discretiza-

tions of x0(t) ≡ 1, p01(t) = T − t, p02(t) = 2(T − t), u0
1(t) ≡ 1 and u0

2(t) ≡ 0 for t ∈ [0, T ].
As the right-hand side of the state equation in this example does not depend on the state
itself (i.e. f(t, x) = 0) in this case the particular choice of the Runge-Kutta method is
insignificant.

If α, β > 0 are set equal to zero, we obtain the example given in [6]. However in that
case, the associated matrices E are not positive definite and strictly diagonally dominant.
We, therefore solved the problem for various strictly positive values of the parameters α, β,
(i.e. positive definite, diagonally dominant matrices E). It can be observed, that for small
values of α, β, the original result of the Nash game given in [6]:

u1(t) =

 1 if t ∈ [0, T − 1)
0 if t ∈ [T − 1, T − 0.5)
1 if t ∈ [T − 0.5, T ],

u2(t) =

{
1 if t ∈ [0, T − 0.5)
0 if t ∈ [T − 0.5, T ],

is approximately recovered. In Figure 1, we display the result for α, β = 0.0625, the constant
value λ = 0.5 for the subdifferential of ΠK (cf. (3.4)) and grid size Nh = 640. The state x
is given by the dashed line, the two associated adjoint states are given by the dashed-dotted
line and the two controls are given by the solid lines. Next, the results given in Table 1,
indicate that in this case the semismooth Newton method is independent of the gridsize as
the number of Newton iterations remains almost constant for various gridsizes.

Moreover, we display the evolution of the error ∥zk+1−z∗∥/∥zk−z∗∥ and log10(∥F (zk)∥)
for various gridsizes and two parameter settings for Example 1 in Figure 2.

4.2 Example 2

The second example corresponds to a linear quadratic two-player differential game model
taken from [6]. The optimal control problems of the players are given by

max
ui

Ji(x, u) =

∫ T

0

e−rtθi(x, u1, u2) dt subject to ui ∈ Ui = [−5, 5], i = 1, 2,

with r = 1.0,

θ1(x, u1, u2) =
5

2
x2 − 3

4
(u1)

2,

θ2(x, u1, u2) = 3x2 − 7

4
(u2)

2
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Figure 1: Plot of the state, the adjoint states and the controls of the Nash equilibrium of
Example 1 for α, β = 0.0625, λ = 0.5 and grid size Nh = 640.

α, β = 0.0625 α, β = 0.75
Nh It. CPU time It. CPU time
20 93 0.04 17 0.02
40 92 0.14 18 0.04
80 91 0.81 18 0.15
160 97 2.77 18 0.51
320 95 6.79 18 1.11
640 91 24.76 19 5.00

Table 1: Number of iterations (It.) and CPU times (in sec.) for Example 1 with λ = 0.5
and two parameter settings for (α, β).

and x satisfying the state equation

ẋ(t) = −1

2
x+

3

10
u1(t) +

1

2
u2(t), x(0) = 15.0, t ∈ [0, T ]

where T = 5. The initial vector z0 = (x0, p01, p
0
2, u

0
1, u

0
2) for the optimization is given by the

discretizations of x0(t) ≡ 1, p01(t) ≡ 1, p02(t) ≡ 1, u0
1(t) ≡ 0 and u0

2(t) ≡ 0 for t ∈ [0, T ].
Furthermore, we used again λ = 0.5 for the generalized Jacobian. We test two Runge-Kutta
schemes a first-order 1-stage method and a second- order 2-stage method. Moreover, as
discussed e.g. in the papers [3, 11, 14, 15], we used partitioned Runge-Kutta methods [12]
such that the optimization and the discretization process commute [3, 15]. As first-order
method, we apply an explicit Euler method to the state equation with the corresponding
implicit method for the adjoint equations. As second-order method for the state equation
we choose the trapezoidal rule.

In Figure 3 we display the solution and the evolution of the error for Nh = 640 and the
second-order RK-method. We display the state, the adjoints p1 and p2 for player 1 and 2
and the controls u1 and u2 of the players.

Furthermore, in Table 2 we display again the numbers of iterations for various gridsizes
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(a) ∥zk+1 − z∗∥/∥zk − z∗∥ (left) and log10(∥F (zk)∥) (right) for α, β = 0.0625
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(b) ∥zk+1 − z∗∥/∥zk − z∗∥ (left) and log10(∥F (zk)∥) (right) for α, β = 0.75

Figure 2: Evolution of the errors ∥zk+1 − z∗∥/∥zk − z∗∥ and log10(∥F (zk)∥) for Example 1
with α, β ∈ {0.0625, 0.75}, λ = 0.5 and Nh ∈ {40, 80, 160, 320}.
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Figure 3: State x, controls u1, u2, adjoints p1, p2 and evolution of the error for Example 2
obtained for the second-order RK-method and Nh = 640.
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first-order second-order
Nh It. Nh It.
20 691 20 708
40 732 40 742
80 765 80 772
160 799 160 801
320 831 320 832

Table 2: Number of iterations (It.) for Example 2 with λ = 0.5 and a first- and second-oder
RK method.

first-order Runge-Kutta scheme

Nh ∥xopt
N − x∗∥2 ∥uopt

N,1 − u∗
1∥2 ∥uopt

N,2 − u∗
2∥2

20 5.22 E+0 (0.00) 3.01 E+0 (0.00) 1.87 E+0 (0.00)
40 3.54 E+0 (1.46) 2.11 E+0 (1.43) 1.31 E+0 (1.43)
80 2.37 E+0 (1.49) 1.44 E+0 (1.46) 8.95 E-1 (1.46)
160 1.53 E+0 (1.54) 9.48 E-1 (1.52) 5.91 E-1 (1.51)
320 8.93 E-1 (1.71) 5.72 E-1 (1.66) 5.72 E-1 (1.03)

Table 3: Error in the state and the controls (with the corresponding ratio in brackets) for
Example 2 for the first-oder Runge-Kutta scheme.

Nh and both RK schemes. In this case, it can be observed that the number of iterations
are alomst identical for both methods, however the independence of gridsize is lost as the
number of iterations are slightly increasing with the gridsize.

Finally, in Table 3 and 4 we report the evolution of the error ∥xopt
N − x∗∥2 in the state

x and ∥uopt
N,i − u∗

i ∥2 in the controls u1 and u2 for the two RK schemes and several gridsizes

Nh, where xopt
N and uopt

N,i denote the optimal state or control, respectively, obtained for the
gridsize Nh. The optimal solutions x∗ and u∗

i correspond to the solution obtained for the
second-order Runge-Kutta scheme for Nh = 640. The values in brackets correspond to the
ratio of the error divided by the previous one.

Since the solution of the ODE is coupled with the solution of the VI and we cannot
expect the order of convergence for the ODE to transfer directly to the solution of the VI,
we will not obtain the complete order of convergence of the corresponding Runge-Kutta

second-order Runge-Kutta scheme

Nh ∥xopt
N − x∗∥2 ∥uopt

N,1 − u∗
1∥2 ∥uopt

N,2 − u∗
2∥2

20 3.13 E+0 (0.00) 1.69 E+0 (0.00) 1.02 E+0 (0.00)
40 2.10 E+0 (1.49) 1.14 E+0 (1.48) 6.81 E-1 (1.49)
80 1.37 E+0 (1.53) 7.48 E-1 (1.52) 4.44 E-1 (1.53)
160 8.29 E-1 (1.66) 4.52 E-1 (1.66) 2.68 E-1 (1.66)
320 3.90 E-1 (2.13) 2.12 E-1 (2.13) 2.12 E-1 (1.26)

Table 4: Error in the state and the controls (with the corresponding ratio in brackets) for
Example 2 for the second-oder Runge-Kutta scheme.
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λ 0.0 0.25 0.5 0.75 1.0

α, β = 0.75 55 29 18 13 6
α, β = 0.0625 160 124 95 91 90
α, β = 0.01 606 521 497 493 493

Table 5: Number of iterations for Example 1 for various λ ∈ [0, 1], Nh = 320 and α, β ∈
{0.01, 0.0625, 0.75}.

method. However, as can be observed, by using a higher-order method for the ODE we
might anyhow slightly improve the convergence for the DVI using a higher-order method.

We also tested the sensitivity of our method with respect to the choice of λ ∈ [0, 1]. Note,
that choosing λ ∈ {0, 1}, refers to the choice Vk ∈ ∂BF (zk). As for Example 1, we fixed
Nh = 320 and α, β ∈ {0.01, 0.0625, 0.75} and varied the parameter λ ∈ {0, 0.25, 0.5, 0.75}.
The results are displayed in Table 5. It seems that unfortunately the efficiency of the method
is somehow sensitive to the choice of the elements of the subdifferential. In particular for
λ = 0 we obtain a less efficient method. Concerning Example 2, we have made similiar
observations. The lack of efficiency (and robustness in the case of Example 2) might be
due to the missing information, since λ = 0 disregards information that originates from the
directional derivatives associated with λ = 1. However, these observations deserve some
closer attention and the question which elements of the subdifferential to choose will be
investigated amongst others in subsequent research.

Summary and Outlook

In this paper, we analysed a numerical scheme to solve differential variational inequalities as
they appear e.g. as necessary conditions of differential Nash game models. The method we
presented is based on a Runge-Kutta time discretization scheme and a semismooth Newton
method. The method was proved to be convergent under suitable assumptions. Moreover,
some preliminary numerical tests indicated a good performance of the method though still
being at a preliminary stage. Future research topics hence not only include the extension
of the theoretical analysis to nonlinear DVIs as well as the interaction of the convergence
properties for the ODE with the convergence of solutions of the VI but also the numerical
improvement of the method that involves globalization techniques as e.g. line-search [25],
trust-region [29] or nonsmooth filter methods, improvement of the order of convergence and
the investigation of the correct or best choice of elements of the subdifferential.

Furthermore, in our theory, we considered initial value problems though in practice
(in particular in the case of differential Nash games) one often deals with boundary value
problems. Hence, another desirable extension of the theory and numeric presented here
concerns the treatment of boundary value problems (where for the proof of convergence
possibly similar techniques as in [7, 19] can be applied).
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