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nonmonotone variational inequality is studied in [5], including nonsmooth demand func-
tions (e.g., piecewise concave). Although this formulation gives a more realistic model, its
numerical resolution requires introduction of certain simplifications.

In [10], a model for short-term optimal scheduling of hydraulic and thermal electricity
generation units based on Nash-Cournot equilibrium theory is presented. In this model, the
hydraulic units have the ability of pumping water back in order to reuse it (an approach
similar to [8]), leading to non-differentiability in the problem formulation.

In this work, the general approach of [10] is followed, but transmission constraints are
introduced giving more realism to the model. The resulting Nash-Cournot equilibrium
conditions are formulated as a pair of variational inequalities coupled by a linear constraint.
The problem is then stated as a variational inclusion with a maximal monotone operator.
It turns out that its structure is suitable for applying the decomposition method developed
in [7] (which itself is an extension of [18]).

The rest of the paper is organized as follows. In section 2, the electricity production mar-
ket and the Nash-Cournot models are described, and the notation is introduced. Section 3 is
organized in two subsections. In the first, the analytical model of the problem is formulated
as a variational inclusion and it is shown that it can be tackled by the decomposition method
of [7] (whose description is deferred to the Appendix). The second subsection deals with
the implementational issues. Section 4 presents numerical results for a small-size academic
example and for a medium-size real-life system. Finally, in the last section some conclusions
are stated.

2 Description of the Problem

We consider an oligopolistic electricity market with the following characteristics. The elec-
tricity production system is composed by thermal and pumped-storage hydroelectric power
units, interconnected by a bounded capacity net. In thermal units, the turbines are driven
by a high pressure fluid flow produced by the burn of fossil fuel, with the consequent pollu-
tant emissions. In contrast, in a hydraulic unit the falling water rotates the turbine blades,
but the availability of water depends on weather and is not guaranteed.

Pumped storage plants allow a more rational use of the hydraulic resources of a coun-
try, storing water when the electricity demand is low (off-peak hours) and using it to supply
power when demand is high (peak hours). Specifically, two reservoirs at different levels, con-
nected by a penstock and a reversible turbine, allow to generate electricity as a conventional
hydro-power plant in peak hours, and to pump water back in off-peak hours, guaranteeing
more water to produce energy during periods of peak consumption.

The key issue when scheduling hydroelectric plants is to design the best strategy to
manage the available water. Therefore, it is necessary to take into account the total system
generation during the present period, and the possibility to store water to spend it in the
future. Thus, the problem is coupled through different periods, with the aim to maximize
the sum of the future and the current profits.

In this setting, each operator seeks to maximize its own profit arriving to a Nash equi-
librium point. To set the analytical model, the benefits of the thermal and the hydroelectric
unit operators are defined. At each time period t, the operators will be paid a market price
pt > 0 for the quantity of energy produced. The Nash equilibrium is studied considering
T periods. We shall call yjt the hydroelectric generation (or consumption, if this quantity
is negative) at hydroelectric unit j for time period t. The production at thermal unit i for
the time period t is denoted by xit. The system consists of I thermal plants owned by M



SOLVING EQUILIBRIUM PROBLEMS VIA DECOMPOSITION 303

companies, and J pumped storage hydroelectric plants owned by N companies. Thus, there
are M sets CTh

m of indices representing Im thermal plants each, and N sets CH
n of indices

representing Jm hydroelectric units each, with
∑M

m=1 Im = I and
∑N

n=1 Jn = J . So the
variables for the thermal and hydroelectric production in T periods are x = (xit) ∈ RIT

and y = (yjt) ∈ RJT , respectively. The hydroelectric benefit for company n, assuming no
production costs, is given by

BenH
n =

∑
j∈CH

n

T∑
t=1

fj(yjt)pt, (2.1)

where, for each j,

fj(s) =

{
s, if s ≥ 0,

αjs, if s < 0,

is used to represent the difference between pumping (s < 0) and generating (s > 0). The
efficiency coefficient αj > 1 indicates that the energy used to pump water is higher than the
energy generated by the same volume of water. Note that the function fj introduces a non-
smoothness at zero. The main question is to determine the optimal total volume of water
to be spent in the planning horizon. In this work, we assume that a known fixed volume of
water is available for using in the planning horizon (obviously, less than the total volume of
water in the reservoir) as a result of long-term programming that takes into account other
modeling aspects (uncertainty in weather, demand, etc.), see [21] for a detailed discussion
of this issue. The water available to be used by unit j during the planning horizon is
represented by the total power yTot

j that the plant can generate with it. So the production
schedule for each unit must satisfy the condition∑

t

yjt = yTot
j . (2.2)

The thermal benefit for company m is given by

BenTh
m =

∑
i∈CTh

m

T∑
t=1

(xitpt − cTh
i (xit)), (2.3)

where cTh
i is the thermal production cost for unit i.

To reduce and simplify the thermal scheduling problem, any on-off restrictions in the
thermal unit operation are ignored.

The electricity system net is composed by buses (nodes) and lines (arcs). Some pairs of
buses, say b and k, are linked by a line ℓ = (b, k). The power derived by bus b to line ℓ for
time period t is denoted by wbkt, with wbkt = −wkbt. The electricity net capacity constraints
are given by

|wbkt| ≤ wCap
bk , ∀b, k, t (2.4)

and ∑
i∈STh

b

xit +
∑
j∈SH

b

yjt − dbt =
∑
k∈SB

b

wbkt, ∀b, t, (2.5)

where STh
b , SH

b , SB
b are respectively the sets of thermal plants, hydraulic plants and buses

linked with bus b, and dbt is the demand on bus b at time period t. These demands are
related with the market price p through the demand functions (assumed affine)

dbt(p) = Dbt − abtp, (2.6)



304 L.A. PARENTE, P.A. LOTITO, A.J. RUBIALES AND M.V. SOLODOV

whose coefficientsDbt and abt are obtained given the value of the elasticity around a demand-
price anchor point. Therefore, the market price at time period t can be obtained by the
inverse demand function (IDF)

p(dbt) =
1

abt
(Dbt − dbt) , (2.7)

or summing up over b in (2.6),

p(dt) =
1

at
(Dt − dt) , (2.8)

where at =
B∑

b=1

abt, Dt =
B∑

b=1

Dbt and dt =
B∑

b=1

dbt and B is the number of buses in the

network.
Nash equilibrium means that the demand is supplied by all the players. Thus, the total

production of energy at time t is composed of thermal and hydroelectric production and is
equal to the sum of the bus demands:

J∑
j=1

yjt +

I∑
i=1

xit =

B∑
b=1

dbt. (2.9)

Therefore, using (2.9), the market price becomes

pt =
1

at

Dt −
J∑

j=1

yjt −
I∑

i=1

xit

 , (2.10)

where naturally pt > 0, and the benefits for each type of plants would depend on their own
production and the productions of the other plants. Also, the constraints (2.5), for all b, t,
take the form

∑
i∈STh

b

xit +
∑
j∈SH

b

yjt −Dbt +
abt
at

Dt −
J∑

j=1

yjt −
I∑

i=1

xit

 =
∑
k∈SB

b

wbkt. (2.11)

Therefore, the constraints for each hydroelectric unit are given by the production bounds
yLow
j , yUp

j and by (2.2). The n-th company constraints set is given by

KH
n = {yj ∈ RJnT : yLow

j ≤ yjt ≤ yUp
j , t = 1, .., T,

∑
t

yjt = yTot
j , j ∈ CH

n }. (2.12)

For each thermal unit only the restrictions given by production bounds xLow
i , xUp

i are
considered, so the constraints set for company m is the box

KTh
m = {xm ∈ RImT : xLow

i ≤ xit ≤ xUp
i , t = 1, .., T, i ∈ CTh

m }.

The conditions for the Nash equilibrium considering the production vector (x∗, y∗) are

BenTh
m (x∗, y∗) = max

xm∈KTh
m

BenTh
m (xm, x∗

/m, y∗), m = 1, ...,M, (2.13)
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and, simultaneously,

BenH
n (x∗, y∗) = max

yn∈KH
n

BenH
n (x∗, yn, y

∗
/n), n = 1, ..., N, (2.14)

where xm = (xit)i∈CTh
m

, x/m = (xit)i/∈CTh
m

, yn = (yjt)j∈CH
n

and y/n = (yjt)j /∈CH
n
.

The Net Constrained Nash-Cournot Equilibrium Problem (NCNCEP) is to determine
x,w and y satisfying conditions (2.13) and (2.14), together with the linear constraints (2.11).

The unconstrained Nash-Cournot Equilibrium Problem (NCEP), i.e., without the net
constraints (2.11), was previously studied in [10]. There, in order to deal with the non-
smoothness of the hydroelectric benefit functions, the variable y is split in the form y =
y+ − y− of positive and negative parts, where

(y+)jt =

{
yjt, if yjt ≥ 0,
0, if yjt < 0,

(y−)jt =

{
0, if yjt ≥ 0,

−yjt, if yjt < 0,
(2.15)

for j = 1, ..,J and t = 1, .., T . Then, defining z =
(
y+

⊤
, y−

⊤
)
, it turns out that y = Rz

where R = (IJT ,−IJT ), and the hydraulic benefits turn out to be quadratic functions of
the variables zn ∈ K̄H

n (here and in the sequel, for k ∈ N, Ik stands for the identity matrix
in Rk×k). The new constraints set derived from (2.12) with the formulation (2.15) involves
a complementarity constraint. On the other hand, the thermal costs are assumed quadratic.
So, from (2.3) and (2.10), the thermal benefits are quadratic functions in the variables xn.
NCEP can be stated as the following variational inequality: Find (x∗, z∗) ∈ KTh ×K̄H such
that

Ψ

(
x∗

z∗

)⊤(
x− x∗

z − z∗

)
≥ 0, ∀(x, z) ∈ KTh × K̄H , (2.16)

with

KTh =
M∏

m=1

KTh
m , K̄H =

N∏
n=1

K̄H
n ,

and

Ψ

(
x
z

)
=

( (
∇xmBenTh

m (xm, x/m, z)
)
m=1,..,M(

∇znBenH
m(x, zn, z/n)

)
n=1,..,N

)

=

(
MThx+ Γz + γ
MHz +Θx+ θ

)
,

for adequate matrices MTh,MH ,Γ,Θ and vectors γ, θ. A precise description of the matrices
and vectors involved can be found in [10]. In particular, MTh is symmetric but MH is not.
A key issue is that the matrix (

MTh Γ
Θ MH

)
(2.17)

is positive semidefinite, which is not difficult to prove from the definitions of the matrices
involved. In the following section, the formulation (2.16) is used as a starting point for the
analysis of NCNCEP.
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3 Net-Constrained Nash-Cournot Equilibrium Problem

In this section, the analytic model for NCNCEP is introduced, and it is shown that it can
be solved by the decomposition scheme derived from the Variable Metric Hybrid Proximal
Decomposition Method (VMHPDM). We refer to [7] for a detailed description of this method
in the general form. A brief (simplified) outline is given in the Appendix. In short, we need
to show that the problem can be cast as a variational inclusion 0 ∈ T (z), where the operator
T has following structure:

T = F × [G+H], (3.1)

where F : Rn × Rm ⇒ Rn is maximal monotone, G : Rn × Rm → Rm is continuous, and
H : Rm ⇒ Rm is maximal monotone.

3.1 The Analytic Model

In NCNCEP the net constraints (2.11) depend on the auxiliary box-constrained variable w.
Let CN be the index set of the lines ℓ = (b, k), with L elements, where it is assumed that
line (b, k) is the same as line (k, b). So only one of these pairs is considered in the definition
of ℓ. Since wbkt = −wkbt ∀b, k, t, it is natural to use only one variable wℓ, and change the
sings accordingly in (2.11). Then the constraint set for w is given by

KN = {w ∈ RLT : −wCap
ℓ ≤ wℓt ≤ wCap

ℓ , ℓ ∈ CN , t = 1, .., T}.

We next write the net constraints (2.11) in matrix form. For this, the following incidence
matrices are defined:

A0 ∈ RB×L s.t. (A0)b,ℓ =

 −1, if ℓ = (b, k) for some bus k,
1, if ℓ = (k, b) for some bus k,
0, otherwise,

B0 ∈ RB×I s.t. (B0)b,i =

{
1, if i ∈ STh

b ,
0, if i /∈ STh

b ,

C0 ∈ RB×J s.t. (C0)b,j =

{
1, if j ∈ SH

b ,
0, if j /∈ SH

b .

Also, for t = 1, . . . , T , we define

vt ∈ RB s.t. (vt)b = Dbt −
abt
at

Dt,

Bt ∈ RB×I s.t. (Bt)b,i = abt/at, ∀i = 1, . . . , I,
Ct ∈ RB×J s.t. (Ct)b,j = abt/at, ∀i = 1, . . . ,J .

With these definitions, the linear constraints (2.11) become

Aw +Bx+ CRz − v = 0, (3.2)



SOLVING EQUILIBRIUM PROBLEMS VIA DECOMPOSITION 307

where v = (v⊤1 , v
⊤
2 , . . . , v

⊤
T )

⊤ ∈ RBT and

A ∈ RBT×LT s.t. A =


A0 0 0 0
0 A0 0 0

0 0
. . . 0

0 0 0 A0

 ,

B ∈ RBT×IT s.t. B =


B0 −B1 0 0 0

0 B0 −B2 0 0

0 0
. . . 0

0 0 0 B0 −BT

 ,

C ∈ RBT×JT s.t. C =


C0 − C1 0 0 0

0 C0 − C2 0 0

0 0
. . . 0

0 0 0 C0 − CT

 .

Then a solution of NCNCEP is a point (w∗, x∗, z∗) satisfying (2.16) and (3.2). In par-
ticular, it must be a feasible point for the set

K̄ =
{
(w, x, z) ∈ KN ×KTh × K̄H : Aw +Bx+ CRz − v = 0

}
. (3.3)

It is useful to state the hydraulic constraints set in the following way. Let KH be the
box

KH =
{
z ∈ R2JT : 0 ≤ z ≤ ZUp

}
, (3.4)

where ZUp = (yUp⊤, · · · yUp⊤,−yLow⊤
, · · · ,−yLow⊤

)⊤ ∈ R2JT , and define the matrices

E =

(
0 IJT

IJT 0

)
∈ R2JT×2JT , S = (IJ , · · · , IJ ) ∈ RJ×JT .

Then the hydraulic constraints set is given by

K̄H =
{
z ∈ KH : SRz = yTot, z⊤Ez = 0

}
. (3.5)

We next show that if we solve NCNCEP on the set with the complementarity constraint
in (3.5) ignored, then any such solution satisfies this constraint automatically. Hence, it can
be simply removed from the problem formulation. The result essentially follows adapting [10,
Proposition 1] to the current setting. In order to take care of some details and for the sake
of completeness, we include a streamlined proof.

Proposition 3.1. Let (x∗, w∗, z∗) be a solution of NCNCEP with the relaxed constraints
set

K̂ =
{
(w, x, z) ∈ KN ×KTh ×KH : SRz = yTot, Aw +Bx+ CRz − v = 0

}
, (3.6)

i.e., (x∗, w∗, z∗) ∈ K̂ satisfies

BenH
n (x∗, z∗) = max

zn∈KH
n

BenH
n (x∗, zn, z

∗
/n), n = 1, ..., N, (3.7)
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BenTh
m (x∗, z∗) = max

xm∈KTh
m

BenTh
m (xm, x∗

/m, z∗), m = 1, ...,M, (3.8)

and
Aw∗ +Bx∗ + CRz∗ − v = 0. (3.9)

Then it holds that z∗⊤Ez∗ = 0.

Proof. Suppose that (x∗, w∗, z∗) satisfies (3.7), (3.8) and (3.9), but z∗⊤Ez∗ ̸= 0. Then,
since z∗ ≥ 0, there exist indices j0 and t0 such that

z∗j0t0 = (y∗)+j0t0 > 0,

z∗j0t0+JT = (y∗)−j0t0 > 0.

Define the new point z̄ by

z̄jt = z∗jt, for jt ̸= j0t0 and jt ̸= j0t0 + J T,

z̄j0t0 =

{
z∗j0t0 − z∗j0t0+JT , if z∗j0t0 ≥ z∗j0t0+JT ,

0, if z∗j0t0 < z∗j0t0+JT ,

z̄j0t0+JT =

{
0, if z∗j0t0 ≥ z∗j0t0+JT ,

z∗j0t0+JT − z∗j0t0 , if z∗j0t0 < z∗j0t0+JT .

Since z̄jt − z̄jt+JT = z∗jt − z∗jt+JT for all (j, t), it is straightforward that z̄ satisfies the
hydraulic constraints and also that CRz̄ = CRz∗, which implies that Aw∗+Bx∗+CRz̄−v =
0.

Moreover, for all t = 1, . . . , T , the prices pt satisfy pt(x
∗, z̄) = pt(x

∗, z∗) and hence, for
all m ∈ {1, . . . ,M} and all n ∈ {n : 1 ≤ n ≤ N, j0 /∈ CH

n }, the benefits satisfy

BenTh
m (x∗

m, x∗
/m, z̄) = BenTh

m (x∗
m, x∗

/m, z∗),

BenH
n (x∗, z̄n, z̄/n) = BenH

n (x∗, z∗n, z
∗
/n).

If z∗j0t0 ≥ z∗j0t0+JT then using that αj0 > 1 and pt0 > 0, we obtain that

fj0(ȳj0t0)pt0 = (z̄j0t0 − αj0 z̄j0t0+JT )pt0 = (z∗j0t0 − z∗j0t0+JT )pt0
> (z∗j0t0 − αj0z

∗
j0t0+JT )pt0 = f(y∗j0t0)pt0 .

On the other hand, if z∗j0t0 < z∗j0t0+JT then

fj0(ȳj0t0)pt0 = (z̄j0t0 − αj0 z̄j0t0+JT )pt0 = αj0(z
∗
j0t0 − z∗j0t0+JT )pt0

> (z∗j0t0 − αj0z
∗
j0t0+JT )pt0 = f(y∗j0t0)pt0 .

Therefore, for n0 such that j0 ∈ CH
n0
, for the benefit of company n0 it holds that

BenH
n0
(x∗, z̄n0 , z̄/n0

) > BenH
m(x∗, z∗n0

, z∗/n0
),

in contradiction with (3.7). This establishes that z∗⊤Ez∗ = 0

Now, taking into account (2.16) with the subsequent definitions, (3.2), Proposition 3.1
and definition (3.6), NCNCEP can be stated as the following variational inequality: Find
(w∗, x∗, z∗) ∈ K̂ such that 0

MThx∗ + Γz∗ + γ
Θx∗ +MHz∗ + θ

⊤ w − w∗

x− x∗

z − z∗

 ≥ 0, ∀(w, x, z) ∈ K̂. (3.10)
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Next, associating a Lagrange multiplier to the equality constraints in K̂, (3.10) becomes
equivalent to the following variational inequality in the primal-dual space (see, e.g., [4,
Proposition 1.3.4]): Find (w∗, x∗, z∗, µ∗) ∈ K = KN ×KTh ×KH × RBT+J such that

Ā⊤µ∗

MThx∗ + Γz∗ + γ +B⊤µ∗

Θx∗ +MHz∗ + θ + C̄⊤µ∗

v̄ − Āw∗ − B̄x∗ − C̄z∗


⊤

w − w∗

x− x∗

z − z∗

µ− µ∗

 ≥ 0, ∀(w, x, z, µ) ∈ K, (3.11)

where

Ā =

[
A
0

]
∈ R(BT+J )×LT , B̄ =

[
B
0

]
∈ R(BT+J )×IT

and

C̄ =

[
CR
SR

]
∈ R(BT+J )×2JT , and v̄ =

[
v

yTot

]
∈ RBT+J .

As is well known, (3.11) is equivalent to the variational inclusion

0 ∈ (Φ +NK)(w
∗, x∗, z∗, µ∗), (3.12)

where

Φ(w, x, z, µ) =


Ā⊤µ

MThx+ Γz + γ + B̄⊤µ
Θx+MHz + θ + C̄⊤µ
v̄ − Āw − B̄x− C̄z


and NK(w, x, z, µ) is the normal cone to the closed convex set K at the point (w, x, z, µ).

Note that the sum of a normal cone to a closed convex set with a monotone (single-
valued) continuous function is a maximal monotone operator. It is also easy to see that this
operator Φ +NK has the separable structure in (3.1). In particular, taking u = (w, x) and
v = (z, µ), we have that

(Φ +NK)(w, x, z, µ) = F (w, x, z, µ)× (G(w, x, z, µ) +H(z, µ)) ,

where F : R(L+I)T × R(2J+B)T+J ⇒ R(L+I)T is the set-valued operator given by

F (w, x, z, µ) =

(
Ā⊤µ+NKN (w)

MThx+ Γz + γ + B̄⊤µ+NKTh(x)

)
, (3.13)

G : R(L+I)T × R(2J+B)T+J → R(2J+B)T+J is the continuous function

G(w, x, z, µ) =

(
Θx+MHz + θ + C̄⊤µ
v̄ − Āw − B̄x− C̄z

)
, (3.14)

and H : R(2J+B)T+J ⇒ R(2J+B)T+J is the maximal monotone operator

H(z, µ) =

(
NKH (z)

0

)
. (3.15)

Convergence of the decomposition scheme requires that certain assumptions are met;
see the Appendix. In the present context, assumptions A1, A2 and A4 therein are trivially
satisfied. Assumption A3 holds because the matrix (2.17) is positive semidefinite, and
because sums of maximal monotone operators are maximal monotone provided a constraint
qualification holds (see [13,14]).
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3.2 The Algorithm

We now state the specific decomposition algorithm for our application, and justify that it is
well defined and is indeed a special case of VMHPDM (in particular, convergence and rate
of convergence then follow from [7]). Details we refer to the Appendix; they can be skipped
at first reading.

Algorithm 3.2. (Decomposition for NCNCEP)
Initialization: Choose (w0, x0, z0, µ0) ∈ RLT × RIT × R2JT × RBT+J . Set k := 0.

Forward-Backward Splitting Step: For ck > 0, compute

ẑk = ProjKH

{
zk − ck

(
Θxk +MHzk + θ + C̄⊤µk

)}
, (3.16)

µ̂k = µk − ck(v̄ − Āwk − B̄xk − C̄zk). (3.17)

Proximal Step: For appropriately chosen β > 0 and a symmetric positive definite matrix
U (see (3.27) below), compute

ŵk = ProjKN

{
wk − ckĀ

⊤µ̂k
}
, (3.18)

x̂k = ProjKTh

{
1

β

(
Uxk − (Γẑk + γ + B̄⊤µ̂k)

)}
. (3.19)

Approximation condition test: Choose the error tolerance parameter σk ∈ (0, 1). If the
inequality

∥sk∥2 ≤ σ2
k(∥ŵk − wk∥2 + ck∥x̂k − xk∥2U + ∥ẑk − zk∥2 + ∥µ̂k − µk∥2), (3.20)

with
sk = (skz , s

k
µ) = ck

(
G(ŵk, x̂k, ẑk, µ̂k)−G(wk, xk, zk, µk)

)
(3.21)

is not satisfied, decrease ck and go to Forward-Backward Splitting Step. Otherwise
proceed.
Iterates Update: Stop if ŵk = wk, x̂k = xk, ẑk = zk and µ̂k = µk. Otherwise, define

wk+1 = ŵk

xk+1 = x̂k

zk+1 = ẑk − skz
µk+1 = µ̂k − skµ.

(3.22)

Set k := k + 1 and go to Forward-Backward Splitting Step.

The next proposition shows that steps (3.16)-(3.17) and (3.18)-(3.19) in Algorithm 3.2
are indeed forward-backward and proximal steps in the general VMHPDM framework, re-
spectively.

Proposition 3.3. It holds that the relations (3.16) and (3.17) are equivalent to the forward-
backward splitting step

(ẑk, µ̂k) = (I + ckH(·, ·))−1 (
I − ckG(wk, xk, zk, µk)

)
. (3.23)

It holds that for an appropriate β > 0 and a symmetric positive definite matrix U , the
relations (3.18) and (3.19) are equivalent to the exact proximal step consisting in solving the
inclusion

0 ∈ F (ŵk, x̂k, ẑk, µ̂k) +
1

ck

(
I 0
0 ckU

)(
ŵk − wk

x̂k − xk

)
. (3.24)
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Proof. From (3.14) and (3.15), the relation (3.23) gives

ẑk +NKH (ẑk) ∋ zk − ck
(
Θxk +MHzk + θ + C̄⊤µk

)
,

µ̂k = µk − ck(v̄ − Āwk − B̄xk − C̄zk).

The equality above is exactly (3.17). Also, recalling the basic property of the projection
operator (namely that ŝ = ProjKH{s} if and only if s − ŝ ∈ NKH (ŝ)), the inclusion above
means (3.16).

Using (3.13), the inclusion (3.24) is equivalent to

0 ∈ 1

ck
ŵk + Ā⊤µ̂k − 1

ck
wk +NKN (ŵk), (3.25)

0 ∈ (U +MTh)x̂k + Γẑk + γ + B̄⊤µ̂k − Uxk +NKTh(x̂k). (3.26)

Let

U = βIIT −MTh with β > max
k=1,...,IT


IT∑
j=1

|(MTh)kj |

 . (3.27)

Note that according to (3.27), U is symmetric and diagonally dominant. Hence, it is positive
definite. Also,

U +MTh = βIIT .

Since for any cone K its holds that K = tK for any t > 0, multiplying by ck in (3.25) and
dividing by β in (3.26), the proximal step takes the form

wk − ckĀ
⊤µ̂k ∈ ŵk +NKN (ŵk),

1

β

(
Uxk − (Γẑk + γ + B̄⊤µ̂k)

)
∈ x̂k +NKTh(x̂k).

Using again the same basic property of the projection as above, these two relations give
(3.18) and (3.19), respectively.

Remark 3.4. As can be seen in the Appendix, steps (3.23) and (3.24) are special cases
of the steps (6.2) and (6.3) therein, respectively, for u = (w, x), v = (z, µ), Qk = I and

P−1
k =

(
I 0
0 ckU

)
.

Remark 3.5. Note that since the sets KH , KN and KTh are defined by box constraints,
the projections (3.16), (3.18) and (3.19) can be computed explicitly by the formulas

ẑk = min
{
max{zk − ck

(
Θxk +MHzk + θ + C̄⊤µk

)
, 0}, ZUp

}
, (3.28)

ŵk = min
{
max{wk − ckĀ

⊤µ̂k,−WCap},WCap
}

(3.29)

and

x̂k = min

{
max{ 1

β

(
Uxk − (Γẑk + γ + B̄⊤µ̂k)

)
, XLow}, XUp

}
, (3.30)

where
WCap = (wCap⊤, . . . , wCap⊤)⊤ ∈ RLT

and
XLow = (xLow⊤

, . . . , xLow⊤
)⊤, XUp = (xUp⊤, . . . , xUp⊤)⊤ ∈ RIT .

This justifies solving the steps (6.2) and (6.3) exactly in this context.
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Next we show that the approximation condition (3.20) can be satisfied. The proof is
analogous to the proof of [10, Proposition 3]; we include it for completeness.

Proposition 3.6. With the choices of β and U as in (3.27), there exists c̄ > 0 such that
(3.20) holds if the operations in (3.17), (3.16), (3.18) and (3.19) are performed with any
ck ∈ (0, c̄).

Proof. Using (3.14) and (3.21), we see that

sk = ck

([
0

−Ā

]
(ŵk − wk) +

[
Θ
−B̄

]
(x̂k − xk) +

[
MH

−C̄

]
(ẑk − zk) +

[
C̄⊤

0

]
(µ̂k − µk)

)
.

Let L = max{∥Ā⊤Ā∥, ∥Θ⊤Θ+B̄⊤B̄∥, ∥MH⊤
MH+C̄⊤C̄∥, ∥C̄C̄⊤∥} and γ = max(∥U−1∥, 1).

Then, using the convexity of ∥ · ∥2 and assuming (without loss of generality with respect to
the claim to be proved) that ck ≤ 1, it holds that

∥sk∥2 ≤ 4c2k

(
∥Ā(ŵk − wk)∥2 +

∥∥∥∥[ Θ
−B̄

]
(x̂k − xk)

∥∥∥∥2
+

∥∥∥∥[ MH

−C̄

]
(ẑk − zk)

∥∥∥∥2 + ∥C̄⊤(µ̂k − µk)∥2
)

≤ 4c2kL(∥ŵk − wk∥2 + ∥x̂k − xk∥2 + ∥ẑk − zk∥2 + ∥µ̂k − µk∥2) (3.31)

≤ 4ckL(∥ŵk − wk∥2 + ck∥U−1∥∥x̂k − xk∥2U + ∥ẑk − zk∥2 + ∥µ̂k − µk∥2)
≤ 4ckLγ(∥ŵk − wk∥2 + ck∥x̂k − xk∥2U + ∥ẑk − zk∥2 + ∥µ̂k − µk∥2).

Hence, condition (3.20) is satisfied if ck ≤ c̄ = min{σ2
k/(4Lγ), 1}.

The bound c̄ defined above is a guarantee that (3.20) can be satisfied, and thus a guar-
antee for theoretical convergence of Algorithm 3.2. But this bound may be too conservative.
For this reason, Algorithm 3.2 allows values of ck larger that c̄, which are decreased only if
(3.20) does not hold. If (3.20) holds at every iteration, convergence still follows regardless
of the values of ck. Moreover, for the given operator T and the choice of the matrix U , the
linear local rate of convergence is obtained if the parameters ck are bounded away from zero
(see [7, Theorem 2]).

Let ν ∈ (0, 1) be the constant in the linear convergence estimate and let ξ∗ := (w∗, x∗, z∗, µ∗)
be a solution of the problem, (similarly, ξk := (wk, xk, zk, µk), ξk+1 := (wk+1, xk+1, zk+1, µk+1)

and ξ̂k := (ŵk, x̂k, ẑk, µ̂k)). Then, for all k sufficiently large, by using (3.22) and and (3.31)
it holds that (see [10]) ∥∥ξk − ξ∗

∥∥ ≤ 1 + 2ck
√
L

1− ν

∥∥∥ξk − ξ̂k
∥∥∥ . (3.32)

Thus, ∥ξk − ξ̂k∥ measures how far is an iterate from the solution. This justifies the
stopping test used in the implementation of the algorithm, which we illustrate on some
examples next.

4 Numerical Experiments

In this section, numerical results on two different systems are presented. The first test
case is a small-size academic example. The second is based on a real medium-size system.
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According to a short-term optimization problem, 12 and 24 hours planning horizons were
taken into account, respectively.

The algorithm was coded using SciLab 5.3.3 (INRIA-ENPC, see www.scilab.org) and
ran on an Intel Core I5-2430M 2.96 Ghz with 4 GB of RAM. The theoretical stopping
condition of Algorithm 3.2 is ŵk = wk, x̂k = xk, ẑk = zk and µ̂k = µk. Recalling (3.32), the
natural stopping criterion used in our implementation is ∥ŵk − wk∥ < tol, ∥x̂k − xk∥ < tol,
∥ẑk − zk∥ < tol and ∥µ̂k − µk∥ < tol, where tol is a tolerance parameter. By (3.32), this
stopping test gives a measure of quality of the obtained iteration in terms of proximity to
the exact solution. In the numerical experiences, the parameter tol was set equal to 10−6

(so in the case of electricity production, since the used units are megawatts, the error is
about one watt).

4.1 9 Buses System

A small-size system, composed by a hydroelectric unit, 3 thermal plants, 9 buses and 9
lines, is considered. A one-line diagram of the system is shown in Figure 1, where electrical
elements are shown by standardized schematic symbols. The circles represent electric gener-
ators such as hydroelectric (H1) and thermal (T1, T2, T3) plants, while black bars represent
the buses (N1-N9) and grey lines represent the interconnecting conductors. Other elements
such as circuit breakers (red squares in Figure 1), inductors, transformers, capacitors, etc.,
are often indicated by specific symbols.

Figure 1: One-line diagram

Table 1: 9-buses lines capacity

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9

Pattern A 150 250 150 150 200 150 150 150 250
Pattern B 150 250 150 100 90 100 150 150 250
Pattern C 100 250 100 100 90 70 100 150 150

As mentioned before, network constraints are governed by a simplified model (called DC
because of its similarity with direct current flow equations); so system reactive power is not
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considered. Tables 1 and 2 show the specificity of the lines and the power plants for this
model. The market comprises a hydroelectric company and two thermal companies, as shown
in Table 2. Two different water availability scenarios were considered for the hydropower
(scenarios 1 and 2), and three different capacity patterns were taken into account for the
lines (patterns A, B and C). Thus six different numerical tests were performed (tests A1,
A2, B1, B2, C1 and C2).

Table 2: 9-buses power units

Hydroelectric unit

Company Unit Power Efic. coeff. Total Production

Min [MW] Max [MW] α Scen.1 Scen.2

H 1 H1 -50 240 1.05 320 640

Thermal units

Company Unit Power Costs

Min [MW] Max [MW] A
[

U
MWh2

]
B
[

U
MWh

]
C [U]

Th 1 T1 10 200 0.14 5 350
T2 10 220 0.15 5 350

Th 2 T3 10 230 0.123 1 335

The system presents power demand on buses 5, 7 and 9. For calculating the anchor points
(demand-price) only anchor demand values at these buses for each period were given. For
this reason, prices for each demand level were calculated assuming that these demands were
met considering only thermal generation. As a market price estimation, an aggregation of
the marginal cost functions of several thermal plants is considered. The anchor point values
for each period are defined in Table 3.

In order to estimate the price elasticity of demand (ε), the approach of [1] is followed.
In particular, the market demand is estimated for ε = −1/3 measured at the anchor point.
Accordingly, the slope parameter of the demand function is calculated considering that the
elasticity at the demand level is equal to ε and the intercept is calculated so as to fit anchor
quantity and anchor price at each demand level. The inverse demand function has the form
p = D

a − d
a , where the obtained coefficient values are given in Table 3.

The numerical results are now presented. Tables 4, 5 and 6 show the obtained thermal
and hydroelectric production patterns, as well as the final equilibrium market prices for the
six numerical tests performed. The corresponding benefits and the algorithm performance
(concerning number of iterations and computational time) are shown in Table 7.

As one would expect, large productions correspond to high prices periods and low pro-
ductions correspond to low prices periods. Moreover, on water scarcity scenarios, it can be
observed that the hydroelectric unit proceeds to pump water in low prices periods. This
behavior disappears when water availability is sufficient and, in those situations, the corre-
sponding hydroelectric benefits are much larger, while the thermal benefits decrease signifi-
cantly. The equilibrium prices also decrease in high water availability periods, when thermal
production is lower.

On the other hand, it is shown that modifications on the lines capacities can force
changes in the production patterns, modifying the corresponding benefits. The experiments
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Table 3: 9-buses demand-price anchor points and IDF coefficients

t d5 d7 d9 p D5 D7 D9 a5 a7 a9

1 64.70 71.50 78.20 36.20 86.27 95.33 104.27 0.60 0.66 0.72
2 47.90 49.40 52.70 28.71 63.87 65.87 70.27 0.56 0.57 0.61
3 35.90 31.10 42.30 25.29 47.87 41.47 56.40 0.47 0.41 0.56
4 55.30 60.50 68.10 32.46 73.73 80.67 90.80 0.57 0.62 0.70
5 72.30 76.40 95.40 40.04 96.40 101.87 127.20 0.60 0.64 0.79
6 91.40 93.60 114.40 47.52 121.87 124.80 152.53 0.64 0.66 0.80
7 109.70 105.10 128.90 47.67 146.27 140.13 171.87 0.77 0.73 0.90
8 133.20 129.10 149.60 43.75 177.60 172.13 199.47 1.01 0.98 1.14
9 173.50 164.50 178.50 44.65 231.33 219.33 238.00 1.30 1.23 1.33
10 126.70 116.30 130.40 45.36 168.93 155.07 173.87 0.93 0.85 0.96
11 81.20 85.80 107.30 44.09 108.27 114.40 143.07 0.61 0.65 0.81
12 72.40 80.50 100.60 41.29 96.53 107.33 134.13 0.58 0.65 0.81

Table 4: 9-buses results. Production and prices A1-A2

x1 x2 x3 y Price x1 x2 x3 y Price

44.72 40.21 92.82 13.32 48.02 40.20 36.97 85.07 36.59 44.09
T 32.70 28.74 68.41 0.00 40.28 T 28.97 26.06 62.00 19.23 36.60
E 24.37 21.18 51.31 -3.88 36.62 E 21.49 19.11 46.36 10.98 33.18
S 39.14 35.04 81.73 5.68 44.28 S 34.81 31.95 74.31 27.94 40.35
T 49.93 45.29 103.35 21.52 51.86 T 45.27 41.96 95.37 45.47 47.93

59.87 54.25 122.52 37.94 59.34 55.06 50.81 114.27 62.69 55.41
A 69.08 61.88 140.57 43.78 59.49 A 63.59 57.92 131.12 72.11 55.56
1 83.97 74.73 171.25 44.86 55.57 2 76.80 69.57 158.92 81.85 51.64

105.49 92.97 213.89 58.58 56.46 96.70 86.61 198.73 104.03 52.54
76.19 66.99 154.15 43.64 57.18 69.94 62.46 143.37 75.98 53.25
55.25 50.32 113.87 30.34 55.91 50.50 46.92 105.72 54.79 51.98
51.38 47.07 106.64 24.22 53.11 46.69 43.73 98.60 48.34 49.18

also show that the equilibrium prices present a little increase in the cases when lines capacity
patterns are tighter.

4.2 Neuquén-Rio Negro System

We now consider a section of the Argentinian National Interconnected System, whose trans-
portation is managed by Transcomahue company. The system is located at Alto Valle and it
comprises Neuquén and Rio Negro provinces, and so it is called Neuquén-Rio Negro system
(NR). It is a medium size network with 23 thermal units, 6 hydroelectric plants, 87 buses
and 89 lines. A one-line diagram of the system is shown in Figure 2.

Hydroelectric units are associated in 3 companies and thermal units in 6. In particular,
hydroelectric plants belonging to the same company correspond to different generators on the
same reservoir, and they are identical. As in the previous example, the network constraints
are governed by a DC model and system reactive power is not considered.

It is important to mention that the real system has regular hydroelectric plants and not
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Table 5: 9-buses results. Production and prices B1-B2

x1 x2 x3 y Price x1 x2 x3 y Price

44.84 40.29 93.03 12.70 48.13 40.24 37.00 85.14 36.38 44.13
T 32.70 28.74 68.41 0.00 40.28 T 29.01 26.09 62.06 19.04 36.63
E 24.45 21.24 51.46 -4.31 36.72 E 21.52 19.13 46.41 10.82 33.21
S 39.25 35.12 81.93 5.09 44.39 S 34.85 31.97 74.38 27.74 40.39
T 50.06 45.38 103.56 20.87 51.97 T 45.32 41.99 95.44 45.25 47.97

60.00 54.34 122.74 37.28 59.45 55.10 50.84 114.34 62.47 55.45
B 69.22 61.98 140.82 43.02 59.60 B 63.64 57.96 131.21 71.85 55.60
1 82.43 76.60 171.58 43.87 55.67 2 74.85 71.63 159.03 81.51 51.68

99.88 107.09 190.00 65.46 58.67 64.82 121.59 190.00 106.57 53.34
76.35 67.11 154.44 42.77 57.28 69.99 62.50 143.47 75.69 53.28
55.38 50.41 114.09 29.69 56.01 50.54 46.96 105.80 54.57 52.01
51.51 47.16 106.86 23.57 53.21 46.73 43.76 98.67 48.12 49.22

Table 6: 9-buses results. Production and prices C1-C2

x1 x2 x3 y Price x1 x2 x3 y Price

45.05 40.44 93.39 11.61 48.31 40.13 36.92 84.95 36.93 44.04
T 32.73 28.77 68.47 -0.17 40.31 T 28.91 26.02 61.90 19.53 36.54
E 24.60 21.35 51.71 -5.07 36.89 E 21.44 19.07 46.28 11.22 33.12
S 39.45 35.27 82.27 4.05 44.57 S 34.75 31.90 74.20 28.26 40.30
T 50.27 45.53 103.94 19.75 52.15 T 45.21 41.91 95.25 45.81 47.88

57.87 56.85 123.13 36.12 59.63 52.51 53.24 114.15 63.05 55.35
C 64.97 66.68 141.26 41.69 59.78 C 58.85 62.52 130.99 72.52 55.50
1 78.91 84.75 160.00 46.19 57.15 2 54.01 92.18 158.74 82.39 51.58

86.57 131.34 160.00 73.57 61.51 55.73 148.97 160.00 100.00 58.08
70.72 73.25 154.95 41.26 57.47 64.06 68.17 143.22 76.45 53.19
54.54 51.64 114.47 28.55 56.19 49.37 47.94 105.60 55.15 51.92
51.55 47.49 107.23 22.45 53.40 46.42 43.88 98.48 48.69 49.12

pumped-storage units, so the used data were taken from literature examples. The goal of
introducing pumping capacity into the model is to study the existence of scenarios where
this capability is beneficial, in order to assess the benefits that such units can bring. Various
numerical experiments were performed, with three different scenarios of water availability
in the planning horizon, and allowing or not pumping.

Similarly to the 9-buses example, the anchor prices were calculated from buses anchor
demands as an aggregation of the marginal cost functions of the thermal plants which satisfy
the anchor demand. The IDF coefficients on these buses were determined from demand-price
anchor points for each period and the price elasticity of demand equal to −1/3.

Since data related to this example is too extensive, detailed information is not given
here. Complete information including the characteristics of the thermal and hydroelectric
units, the lines capacity and the description of the water availability scenarios, as well as
the anchor points for the expected total demand and the prices with the corresponding
obtained IDF coefficients, can be found in the website http://nas1.pladema.net/shares
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Table 7: 9-buses results. Benefits and algorithm performance

Test A1 A2 B1 B2 C1 C2

BenTh
1 49463.85 40555.07 50429.77 40733.57 52096.15 41862.45

BenTh
2 58938.75 49932.24 58831.60 49912.39 58352.46 49568.62

BenH 18290.51 32431.75 18517.80 32547.29 18960.18 32938.35

Iterations 476 477 470 591 581 552
Comp. time (s) 0.36 0.39 0.36 0.47 0.45 0.42

Figure 2: NR one-line diagram

/Publico/Neuquen-RN-data.pdf .
Figure 3 shows the average production/consumption for hydroelectric companies and the

equilibrium prices for each period, for those scenarios in which pumping is allowed. Table 8
shows the obtained benefits and the average price of the analysis horizon in different scenar-
ios, as well as the algorithm performance concerning number of iterations and computational
time.

As might be expected, in low water availability scenarios, hydroelectric companies pump
water on low demand-prices periods, in order to generate energy in the most profitable
periods. Pumping decreases or disappears as water availability is greater. In particular, in
scenario 3 there is no need for pumping, so the results for when pumping is allowed are the
same as for the case in which this possibility is restricted. It can be observed that water
scarcity tends to increase the electricity price, according to the intensive use of the more
expensive thermal units.

On the other hand, hydroelectric companies that opt to pump when permitted, get
significantly lower benefits if the possibility of pumping is restricted. This prohibition also
results in higher profits for thermal companies. And it is quite remarkable that the use of
pumping allows to decrease the average electricity price.

Finally, concerning the algorithm’s performance, it can be seen that despite of the large
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Figure 3: NR results. Price and hydroelectric activity with pumping in scenarios 1 , 2 and
3



SOLVING EQUILIBRIUM PROBLEMS VIA DECOMPOSITION 319

Table 8: NR results. Benefits, average prices and performance

Scenario 1 2 3 1 2 3
Pumping Yes Yes Yes No No No

BenH1 6240.60 6641.37 6157.52 4756.57 5468.66 6157.52
BenH2 61035.40 77130.29 94010.65 52809.51 77256.53 94010.65
BenH3 43501.56 44177.14 53167.44 25261.55 42012.56 53167.44

BenTh1 101243.84 84575.01 71628.11 107695.53 85046.08 71628.13
BenTh2 152058.45 131559.69 118192.72 164745.08 131733.45 118192.72
BenTh3 76899.86 61030.22 49593.20 82826.84 61478.16 49593.20
BenTh4 43564.13 36610.80 30335.61 45322.06 36674.02 30335.61
BenTh5 46777.93 36732.43 28640.16 49179.72 36991.66 28640.16
BenTh6 24320.11 13204.14 5276.88 27992.78 13581.48 5276.88

Av. price 63,72 58,06 53,53 65,51 58,12 53,53

Iterations 6788 6650 6696 6807 6273 6696
Time (s) 144 140 142 143 135 143

number of iterations, the computational cost of each of them is very low and so the total
computational times are very reasonable.

5 Conclusions

In previous works, the numerical resolution of models for the behavior of electricity gener-
ating companies acting in an oligopolistic market was considered. To gain more realism, in
this work a new kind of constraints associated to the network characteristics is included.
The methodology previously applied to the simpler model is extended to solve the new
more realistic one. The variational inclusion derived from the model is tackled with a vari-
able metric proximal decomposition method. The inclusion represents mathematically the
coupled-in-time Nash-Cournot equilibrium for the scheduling of hydroelectricity production
considering all the market players and also the network constraints.

The proposed methodology was effective for small-size and medium-size networks. In the
studied examples, the numerical experiments verify that the possibility of pumping water
back can deliver better profits in water-stressed scenarios. When water is available, pumping
is no longer needed. Also, it is shown that modifications in the lines capacities can force
changes in the production patterns, altering the corresponding benefits.

Numerical results obtained for a medium-size real case show that this methodology could
be applied both for the scheduling of a heterogeneous network of power generation units and
for the analysis of the market and the policies of the regulatory agencies.

6 APPENDIX: The Decomposition Scheme

Our terminology follows [14]. In short, for the application in consideration we need to show
that NCNCEP can be formulated as a variational inclusion with the following structure:

0 ∈ T (u, v) = F (u, v)× [G(u, v) +H(v)], (6.1)

where F : Rn × Rm ⇒ Rn, G : Rn × Rm → Rm and H : Rm ⇒ Rm are such that
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A1 G is a (single-valued) continuous function.

A2 H is maximal monotone.

A3 The mapping (u, v) 7→ F (u, v)×G(u, v) is maximal monotone.

A4 domH ⊂ rint {v ∈ Rm | ∃u ∈ Rn s.t. F (u, v)×G(u, v) ̸= ∅}.

Under these assumptions, it follows that T is maximal monotone [13], and that the mapping
u → F (u, v) is maximal monotone for any fixed v ∈ domH [20, Lemma 2.1]. VMHPDM is
derived from the Variable Metric Hybrid Inexact Proximal Point Method presented in [9],
and both schemes are extensions to the variable metric setting of the methods introduced
in [18] and [19], respectively.

We next explain the (simplified version of the) method. Given (uk, vk) ∈ Rn ×Rm, first
a forward-backward splitting step is performed with the u-part fixed, computing

v̂k = (I + ckQkH(·))−1 (
I − ckQkG(uk, vk)

)
, (6.2)

where ck > 0 and Qk is a symmetric positive definite matrix. This step splits the sum G+H
“forward” in G and “backward” in H.

The splitting step is followed by an inexact proximal step with the v-part fixed, which
means computing an approximation of

ûk =
(
ckPkF (·, v̂k) + I

)−1
(uk), (6.3)

where Pk is a symmetric positive definite matrix. By inexactness we mean that instead of
computing ûk in (6.3), any ûk satisfying the proximal approximation condition

∥sk∥2
Q−1

k

≤ σ2
k

(
∥ûk − uk∥2

P−1
k

+ ∥v̂k − vk∥2
Q−1

k

)
, (6.4)

is acceptable, where σk ∈ (0, 1) and sk = ckQk

(
G(ûk, v̂k)−G(uk, vk)

)
. In its general form,

the method uses an even weaker approximation condition, which can be always satisfied
provided the splitting step has been solved with sufficient accuracy and with ck small enough;
see [7]. For our application, we have proven that the stronger condition (6.4) can be satisfied
for a sufficiently small ck. We also note that inverting the matrices is not required for
checking (6.4); see [9].

Having performed the splitting and proximal steps, the next iterates are obtained by
setting

uk+1 = ûk,
vk+1 = v̂k − sk.

(6.5)

The decomposition framework outlined above is rather general; for example, it contains
as special cases the methods in [3, 6, 11, 18, 20]. The described algorithm converges globally
to a solution of (6.1), with linear local rate of convergence under suitable assumptions [7,
Theorem 2]. For a full description and further discussion, see [7].
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