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for a point x ∈ Rn of the feasible set if and only if the associated residual Hj(x) is strictly
greater than zero in (1.1e). Conversely, a constraint 0 ≤ Gj(x) is called vanished if Hj(x) =
0, giving rise to the name of the problem class.

Problem (1.1) has a nonconvex feasible set with combinatorial structure. The subclass
of problems considered in this paper is assumed to satisfy a regularity condition referred to
as MPVC–LICQ in the literature. This allows to retain the concept of iterating towards
KKT (Karush–Kuhn–Tucker) based local optimality. In addition, multiplier information for
a KKT point will be seen to allow for additional iterations improving the solution towards
global optimality, although no guarantees are shown to hold here.

Several authors are concerned with the development of convergence results to terminal
points satisfying weaker stationarity conditions under less restrictive CQs, such as [2, 15, 16]
for M-stationarity and recently [10] for T-stationarity.

1.1 Motivation and Applications

Problem (1.1) can be interpreted as an NLP including a logic implication,

min
x∈Rn

F (x) (1.2a)

s.t. 0 = C(x), (1.2b)

0 ≤ D(x), (1.2c)

0 ≤ H(x), (1.2d)

0 < Hj(x) =⇒ 0 ≤ Gj(x) j ∈ l. (1.2e)

In the following we give two examples of challenging applications in which a vanishing
constraint formulation appears in this way.

Robot Motion Planning One example of logic constraints in a real-world application
arises in robot motion planning [1, 24, 34]. Here, a communication network of a given
density needs to be maintained among a swarm of independent mobile robots. For each pair
(i, j) of robots, Hi,j(x) > 0 indicates that the pair is communicating. Then, 0 ≤ Gi,j(x)
must be satisfied to ensure that the distance between robots i and j actually allows for
communication. Conversely, this distance constraint vanishes for each pair (i, j) of robots
with Hi,j(x) = 0 which do not communicate. We return to this application in Section 5.

Truss Topology Optimization A prominent example of vanishing constraints arises in
truss topology optimization. Here, one is interested in finding the optimal design of a truss
structure using the ground structure approach [9]. On a grid in R2 or R3 a set of l potential
truss bars with cross-sectional areas xi ≥ 0 is considered for optimization. In order to
prevent structural failure under external loads, constraints are imposed on the internal force
and the stress in each truss bar. These constraints vanish for any bar with cross-sectional
area xi = 0, which is not implemented as a real bar. The objective may include structural
weight, deformation energy, manufacturing cost, or similar performance indicators. Further
details on the problem class as well as numerical results for case studies can be found e.g. in
[2, 16].

1.2 Contributions

In this paper we follow an idea for the numerical solution of a family of structurally non-
convex NLPs that has been described as a general framework for nonconvex SQP in [32],
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see also Section 2.4. Its possible application to MPVC was first mentioned in passing in
[2]. Subsequent works, such as [16, 18, 20], in general pursue the idea of solving regularized
problems using interior-point methods. Active set approaches for solving nonconvex prob-
lems date back to [14] and subsequent works which treat piecewise linear models. In [11]
an active set method with anti-cycling measures for linear programs with complementarity
constraints is described.

Sequential Quadratic Programming Approach In contrast to [16, 18, 20] we propose
an active set approach in an SQP framework to solve MPVCs under the regularity assump-
tion of MPVC-LICQ. For the locally quadratic subproblems, we propose to refrain from
linearizing the vanishing constraint, thereby carrying the nonconvexity over to the subprob-
lems. We refer to the arising subproblems as quadratic programs with vanishing constraints
(QPVCs).

Active Set Approach We propose a parametric primal–dual active set method for the
solution of QPVCs. A related method has been described for convex quadratic programming
(QP) in [7] and applied to model–predictive control in [13].

Partitioning and Hot Starts The parametric active set method either traces a piecewise
affine linear homotopy to a locally optimal solution of the QPVC located in a certain convex
subset of the problem’s nonconvex feasible set, or indicates failure on the boundary of that
subset. In the latter case, efficient continuation of the homotopy in an adjacent convex
subset is necessary. To this end, we propose a technique for so–called hot starts of the
parametric active set method.

Computational Results Reports of computational results for MPVC are still scarcely
found. We are only aware of [2, 16] where numerical results for truss bar optimization
problems are given. We apply the proposed algorithm to a discretized nonlinear optimal
control problem, variants of which have previously been investigated in [1, 24, 34]. This
problem involves a type of logic constraints for which we give a formulation as vanishing
constraints. We compute locally optimal solutions to a range of problem instances for which
we are not aware of previous solution reports so far.

1.3 Outline

The remainder of this paper is organized as follows. In Section 2 we describe an SQP frame-
work for the class of NLPs with vanishing constraints. Carrying the structural nonconvexity
of the NLP over to the SQP subproblems, we introduce the problem class of QPVCs. Con-
straint qualifications and stationarity concepts as found in the literature are briefly discussed
as we settle on the assumption of MPVC–LICQ. In Section 3 we propose an active set ap-
proach for the solution of QPVC. It is based on an overlapping subdivision of the feasible set
into convex subsets. By analyzing MPVC strong stationary conditions we develop rules for
searching these subsets based on MPVC multiplier information. These rules can be extended
to include progress towards global optimality for the QPVC. We describe a tree-search type
algorithm and an active-set type algorithm which realize searches over the convex subsets.
In Section 4 we present a primal–dual parametric active set method for convex QPs. It is
efficient for solving a sequence of closely related QPs. We propose extensions to this method
that allow to efficiently hot-start this algorithm during movement from one convex subset
of the QPVC to another. In Section 5 a vanishing constraint formulation for the robot
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path-finding and communication problem is presented. Logic communication constraints
are formulated as vanishing constraints. We apply the proposed primal–dual parametric ac-
tive set strategy for QPVC in an SQP framework to solve a number of problem instances to
optimality. We compare the obtained solutions to those known from the literature. Section
6 concludes this paper with a brief summary.

2 Nonlinear Programs with Vanishing Constraints

In this section we briefly collect results on the violation of commonly assumed constraint
qualifications by problem (1.1) and on appropriately modified concepts of stationarity. Ad-
ditionally, we indicate why conventional SQP methods are likely to fail or at least show
serious deterioration of numerical convergence behavior. This establishes the need for new
numerical methods for the efficient solution of problem (1.1), and we introduce the concept
of MPVC strong stationarity ([17]) under the regularity assumption of MPVC–LICQ ([2])
to this end. Based on this concept we realize a nonconvex SQP framework on the basis
of [32] for the case of NLPs with vanishing constraints. Therein, we choose to carry the
nonconvexity of the NLP problem over to the SQP subproblems (QPVCs).

2.1 Constraint Qualifications

To ease the notation we consider the following NLP with vanishing constraints,

min
x∈Rn

F (x) (2.1a)

s.t. 0 ≤ Hj(x) ·Gj(x), j ∈ l, (2.1b)

0 ≤ Hj(x), j ∈ l. (2.1c)

dropping standard equality and inequality constraints from problem (1.1). These are in-
cluded in the presented theory and algorithms as special case Gj(x) = 1.

Active Set and Index Sets The conventional definition of sets AHG(x),AG(x) of active
NLP constraints for a feasible point x ∈ Rn of problem (2.1),

AHG(x) :=
{
j ∈ l | Hj(x) ·Gj(x) = 0

}
, (2.2a)

AH(x) :=
{
j ∈ l | Hj(x) = 0

}
, (2.2b)

is extended for the problem class of MPVCs as follows. According to [2] we introduce the
index sets

I0+(x) :=
{
j ∈ l | Hj(x) = 0, Gj(x) > 0

}
, (2.3a)

I++(x) :=
{
j ∈ l | Hj(x) > 0, Gj(x) > 0

}
, (2.3b)

I00(x) :=
{
j ∈ l | Hj(x) = 0, Gj(x) = 0

}
, (2.3c)

I+0(x) :=
{
j ∈ l | Hj(x) > 0, Gj(x) = 0

}
, (2.3d)

I0−(x) :=
{
j ∈ l | Hj(x) = 0, Gj(x) < 0

}
. (2.3e)
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which partition the set of active constraints according to signs of G(x) and H(x),

AHG(x) = I0+(x) ∪ I00(x) ∪ I+0(x) ∪ I0−(x), (2.4a)

AC
HG(x) := l \ AHG(x) = I++(x), (2.4b)

AH(x) = I0+(x) ∪ I00(x) ∪ I0−(x), (2.4c)

AC
H(x) := l \ AH(x) = I++(x) ∪ I+0(x). (2.4d)

From these relations, it already becomes clear that feasible points x with different index sets
I0+(x), I00(x), and I0−(x) cannot be told apart using the standard perception of an active
set. Figure 1 depicts active sets and corresponding index sets.

Hj

Gj

AGH, AC

H

AC

GH
, AC

H

AGH, AH

AGH, AH

AGH, AH

(a) Active sets (2.2).

Hj

Gj

I+0

I++

I00

I0−

I0+

(b) Index sets (2.3a).

Figure 1: Active set and index sets in a neighborhood of a feasible point x ∈ Rn of problem
(2.1).

Lower Level Strict Complementarity Condition Clearly, if I00(x) = ∅, then in a
neighborhood of x problem (2.1) is a standard NLP including only those constraints 0 ≤
Gj(x) for which j ∈ AC

H = I++(x)∪I+0(x). This condition, referred to as LLSCC (lower level
strict complementarity condition) in the literature, obviously is too strong to be imposed
on the entire feasible set of (2.1), as this would defy the idea of capturing its combinatorial
nature.

Violation of Commonly Assumed Constraint Qualifications If I00(x) ̸= ∅ and
LLSCC does not hold, then in a neighborhood of x the feasible set has combinatorial struc-
ture. Both LICQ (linear independence constraint qualification, [26]) and MFCQ (Mangasarian–
Fromovitz constraint qualification, [27]) are violated, as is easily verified e.g. in [16]. This
poses a number of significant difficulties to KKT based descent methods, which we describe
in Section 2.2.
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2.2 Consequences for Algorithms of SQP Type

Non-unique or Unbounded Dual Variables As a consequence of LICQ violation, the
dual solution y∗ is not unique. The set of dual solutions is not even bounded, as MFCQ is
violated too. Update schemes for approximations of the Hessian of the NLP Lagrangian,
such as BFGS updates [28], however crucially rely on secant information involving the dual
solution. We may therefore expect such Hessian approximations to become ill-conditioned.

Ill-conditioned Constraint Jacobians Linearizations of the vanishing constraint (2.1b)
in the neighborhood of points x ∈ Rn with some Hj(x) = 0, i.e. violating LICQ, become
severely ill-conditioned. This poses a challenge to active set methods that may fail to reliably
detect active sets.

Cycling and Stalling of Active Set Methods When applying standard active set based
QP and NLP codes to problems with vanishing constraints, a consequence of ill-conditioning
that can often be observed is cycling of the active set, i.e. repeated addition and removal
of the same sequence of constraints without progress in the primal iterate. Hence, if the
method successfully solves the QP subproblem at all, QP iteration counts and computation
time for a single SQP step increase significantly.

Suboptimal and Infeasible Steps Linearizations of the vanishing constraint (2.1b) fail
to properly represent the geometry of the feasible set in the neighborhood of points x ∈ Rn

with Hj(x) = 0, Gj(x) = 0. SQP methods hence perform steps that are significantly
suboptimal or infeasible on the NLP level. Hence, unnecessarily many more SQP iterations
may be required than would be required if the subproblem’s combinatorial nature had been
captured properly.

2.3 Modified Stationarity Concept

In view of the practical difficulties listed in Section 2.2, a modified concept of optimality
under a possibly weaker constraint qualification is desirable. In order to retain the concept
of iterating towards KKT based optimality, this CQ should ensure that stationary points of
(2.1) are indeed KKT points.

A Regularity Assumption To this end we introduce the regularity assumption of MPVC–
LICQ, see e.g. [2].

Definition 2.1. We say that MPVC–LICQ holds for a feasible point x ∈ Rn if the gradients

∇Hj(x), j ∈ I0+ ∪ I00 ∪ I0−, (2.5)

∇Gj(x), j ∈ I+0 ∪ I00

are linearly independent.

While the idealizing assumption of MPVC–LICQ is sometimes held for too strict for a
theoretical analysis of the full class MPVCs, see e.g. [2, 20], one frequently observes that
problem instances arising from practical applications indeed comply. This in particular is
the case for the vanishing constraints (5.1g, 5.1h) of the robot motion planning problem
we shall investigate in Section 5. For the remainder of this paper, we will assume MPVC–
LICQ to hold and refer the reader to e.g. [16] for details on weaker concepts of constraint
qualification for MPVC, resulting stationarity concepts, and applicable numerical methods.
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Strong Stationarity Conditions Under MPVC–LICQ, a KKT–like necessary condition
for local optimality of a candidate point x ∈ Rn of problem (2.1) can be given. It is based
on the so-called MPVC-Lagrangian Λ(x, µG, µH) of problem (2.1),

Λ(x, µG, µH) := F (x)− (µG)TG(x)− (µH)TH(x). (2.6)

The vectors µG, µH ∈ Rl are referred to as MPVC multipliers. The notion of strong station-
arity for MPVC has been defined in [17] as follows:

Definition 2.2. A feasible point x ∈ Rn of problem (2.1) is calledMPVC strongly stationary
if there exist MPVC multipliers µG, µH ∈ Rl such that it holds that

Λx(x, µ
G, µH) = 0, (2.7a)

µG
j ≥ 0 j ∈ I+0(x), (2.7b)

µG
j = 0 j ∈ I0−(x) ∪ I00(x) ∪ I0+(x) ∪ I++(x), (2.7c)

µH
j ≥ 0 j ∈ I00(x) ∪ I0+(x), (2.7d)

µH
j = 0 j ∈ I+0(x) ∪ I++(x). (2.7e)

In [2] it has been shown that under MPVC–LICQ strong stationarity (2.7) for MPVC
is equivalent to KKT stationarity for problem (2.1). The following stronger result is due to
[19] and can also be found in [20].

Theorem 2.3. Let x ∈ Rn feasible for (2.1) satisfy MPVC–LICQ. If x is a locally opti-
mal point of (2.1), then x is an MPVC strongly stationary point. The associated MPVC
multipliers (µG, µH) are unique.

2.4 Nonconvex Sequential Quadratic Programming

In [32] a general framework for applying SQP methods to structurally nonconvex problems
has been described. Of special interest for us is the result concerning local convergence for
nonconvex problems. We introduce the generic formulation

min
x∈Rn

F (x) s.t. C(x) ∈ Z (2.8)

wherein F is the objective function of (2.1), C : Rn → Rm is the continuously differentiable
constraint function, and the closed set Z ⊂ Rm captures the nonconvex structure of the
problem’s feasible set.

For the MPVC (2.1), we have in particular C(x) := (H(x), G(x)) ∈ R2l, i.e. m = 2l, and
the nonconvex structure of the problem is captured by defining Z as

Z :=
{
(z′, z′′) ∈ R2l

∣∣ ∀j ∈ l : (z′j ≥ 0 ∧ z′′j ≥ 0) ∨ (z′j = 0)
}
⊂ R2l. (2.9)

Definition 2.4. A constraint function Cj of problem (2.8) is called inactive in a feasible
point x if there exists ε > 0 such that C(x)+ δej ∈ Z holds for all |δ| < ε, where ej denotes
the j-th unit vector. In other words, the validity of the statement “C(x) ∈ Z” is locally
independent of the value of Cj(x) in a neighborhood of x. The constraint function is called
active otherwise.

Definition 2.5. A feasible point x ∈ Rn of problem (2.8) is called regular if the gradients
of all active constraint functions Cj are linearly independent.
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Definition 2.6. A feasible point x∗ ∈ Rn of problem (2.8) is called critical if d = 0 is a
local minimizer of the auxiliary problem

min
d

∇F (x∗)T d s.t. C(x∗) +∇C(x∗)T d ∈ Z. (2.10)

This subproblem gives rise to the existence of multipliers µ∗ ∈ Rm associated with the
constraints.

Definition 2.7. A regular critical point (x∗, µ∗) ∈ Rn+m of problem (2.8) is called station-
ary if v = 0 is a local minimizer of the auxiliary problem

max
v

µ∗T v s.t. C(x∗) + v ∈ Z. (2.11)

Definition 2.8. A stationary point (x∗, µ∗) ∈ Rn+m of problem (2.8) is said to satisfy
strict complementarity if there exists ε > 0 such that v = 0 remains the solution of (2.11)
for all µ ∈ Uε(µ

∗). In other words, small local changes to the multiplier µ∗
i do not affect

stationarity of x∗.

Based on this notion of stationarity, the following convergence result for the exact Hessian
SQP method holds. The sequential QPVC algorithm proposed in this paper is a special case
of this method.

Theorem 2.9. Let (x∗, µ∗) be a stationary point of (2.8), and let the set Z be locally star-
shaped in z∗ = C(x∗). Let strict complementarity hold in (x∗, µ∗) and let the exact Hessian
be positive definite on the nullspace of the active constraints. Then exact Hessian SQP
converges locally quadratically to the stationary point x∗.

Proof. See [32].

This result can now be used for the special case of the MPVC (2.1).

Theorem 2.10. Let (x∗, µ∗) be an MPVC strongly stationary point of (2.1) and satisfy
MPVC–LICQ. Let strict complementarity hold in (x∗, µ∗) and let the exact Hessian be pos-
itive definite on the nullspace of the active constraints. Then exact Hessian SQP converges
locally quadratically to the MPVC strongly stationary point x∗.

Proof. Under MPVC-LICQ, any MPVC strongly stationary point is stationary in the sense
of [32] and Definition 2.7. We define C(x) := (H(x), G(x)) and the set Z as mentioned
above. Being a finite union of non-disjoint convex sets, it is locally star shaped, c.f. [32].
Observe now that for any point x ∈ Rn in a neighborhood of a feasible point x of problem
(2.8), the functions Gj(x) are inactive iff j ∈ I0−(x)∪I0+(x)∪I++(x), whereas the functions
Hj(x) are inactive iff j ∈ I+0 ∪ I++. Hence by Definition 2.1 regular points are exactly the
points satisfying MPVC–LICQ and Theorem 2.9 is applicable.

Theorem 2.9 assumes strict complementarity to hold in the KKT point in order to
establish a locally quadratical rate of convergence. Strict complementarity is not assumed
to hold in the remainder of this paper. We may in general expect SQP to still converge,
although with a suboptimal rate of convergence. Moreover, the locally quadratical rate of
convergence will also be lost if the exact Hessian is replaced by an approximation such as
e.g. BFGS.
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2.5 Convex Quadratic Programs with Vanishing Constraints

In the proposed SQP framework for vanishing constraint problems, the subproblems that
arise from a locally quadratic model of the MPVC-Lagrangian are convex quadratic programs
extended by affine linear vanishing constraints,

0 ≤ (hT
j x− αj) · (gTj x− βj), j ∈ l, (2.12a)

αj ≤ hT
j x, j ∈ l. (2.12b)

We denote by H = (h1, . . . , hn)
T , G = (g1, . . . , gn)

T ∈ Rl×n the vanishing constraint Ja-
cobians and their row vectors, and by α, β ∈ Rl the vanishing constraint vectors of lower
bounds. Again, the feasible set of (2.12) is structurally combinatorial, hence nonconvex.
In the interest of a simplified notation we restrict ourselves to the more specific vanishing
constraint formulation

0 ≤ xj · (gTj x− βj), 0 ≤ xj , j ∈ l (2.13)

in place of (2.12). This problem structure can always be obtained by introduction of l
additional variables x̃j := hT

j x − αj and suitable arrangement of the constraint rows in G.
In addition, we restrict ourselves to vanishing constraints having lower constraint bounds
only. We are hence interested in the QPVC

min
x∈Rn

1
2x

TBx+ xT b (2.14a)

s.t. 0 ≤ xj · (gTj x− βj), 0 ≤ xj , j ∈ l. (2.14b)

Different from standard convex QP notation, in problem (2.14) B ∈ Rn×n denotes the
Hessian of the MPVC Lagrangian, or a suitable positive definite approximation thereof.

3 Partitioning and Continuation for the QPVC Subproblems

In this section we show how the nonconvex feasible set of a QPVC can be partitioned into
multiple, mutually overlapping convex subsets by introduction of an additional constraint.
We compare KKT conditions for QP subproblems QP(S) on convex subsets with MPVC
strong stationarity conditions for the QPVC, in order to obtain MPVC multiplier informa-
tion that allows for an efficient iteration over the convex subproblems defined by particular
choices of S. To this end we describe a tree–search type algorithm and an active set type
algorithm.

3.1 Convex Quadratic Programs on Subsets

Fixing sets S := {j | xj = 0} of constraints gTj x ≥ βj that have vanished, and SC of
constraints that may not vanish, restricts the feasible set of (2.14) to a convex subset. In
the neighborhood of a feasible point x ∈ Rn of the QPVC (2.14) we then consider the
following convex problem QP(S) with a smaller but convex feasible set,

min
x∈Rn

1
2x

TBx+ xT b (3.1a)

s.t. βj ≤ gTj x, j /∈ S, (3.1b)

0 ≤ xj , j /∈ S, (3.1c)

0 = xj , j ∈ S. (3.1d)



284 C. KIRCHES, A. POTSCHKA, H.G. BOCK AND S. SAGER

We assume problem (3.1) to have a positive definite Hessian B ∈ Rn×n of the MPVC
Lagrangian, and denote the objective’s linear part by b ∈ Rn, the vanishing constraints
Jacobian G ∈ Rl×n, and the constraint bounds vectors by β ∈ Rl.

Based on usual KKT optimality ([28]) for every solution x∗ ∈ Rn of problem (3.1) there
exists a (unique) vector of MPVC multipliers µG∗

, µH∗ ∈ Rl such that the following system
of optimality conditions for subproblem (3.1) is satisfied,

0 = Bx∗ + b−
∑

j /∈S
(GT )jµ

G
j

∗ − EµH∗
, (3.2a)

0 ≤ gTj x
∗ − βj , j /∈ S, (3.2b)

0 ≤ x∗
j , 0 = x∗

k, j /∈ S, k ∈ S, (3.2c)

(gTj x
∗ − βj)µ

G
j

∗
= 0, µG

j

∗ ≥ 0 j /∈ S, (3.2d)

x∗
jµ

H
j

∗
= 0, µH

j

∗ ≥ 0 j /∈ S. (3.2e)

In (3.2a) (GT )j denotes the j-th column of the Jacobian G, and E denotes the l× l identity
matrix with n− l zero rows appended. Moreover, let µG

j := 0 for j ∈ S, i.e. those vanishing
constraints that have vanished in problem (3.1). By positive definiteness of B the solution
x∗ is unique, and it is a global solution of (3.1). We obtain the following result.

Theorem 3.1. Let S ⊆ l be given and let (x∗, µG∗
, µH∗

) be a KKT point of the subproblem
QP(S) associated with the choice S. Then the KKT point is MPVC strongly stationary for
the QPVC (2.14) if and only if µG

j
∗
= 0 for all j ∈ I00(x∗).

Proof. We observe that the set of KKT conditions (3.2) is almost identical to the set of
MPVC strong stationarity conditions (2.7) plus constraint (3.1d): MPVC strong stationarity
is defined for primary feasible points which is also given by (3.2b, 3.2c, 3.1d) and the gradient
of the Lagrangian vanishes in (2.7a) due to (3.2a). Furthermore, the inequalities in (3.2d)
and (3.2e) imply (2.7b) and (2.7d), respectively. Finally, the equality conditions in (2.7c) and
(2.7e) are implied by the equalities in (3.2d) and (3.2e) for all indices j with gTj x

∗ − βj ̸= 0
and xj ̸= 0. This leaves condition (2.7c) for j ∈ I00(x∗).

The requirement µG
j
∗
= 0 for j ∈ I00(x∗) (2.7c) is relaxed to µG

j
∗ ≥ 0 in (3.2d), giving

rise to the if and only if condition in the claim.

It should be stressed that the choice of the set S is an algorithmic one, and solving the
QPVC effectively means identifying the optimal choice of S ∈ P(l̄) among the power set of
all 2l possible choices. In contrast, the index sets (2.3) denote active and inactive constraints
in solutions of the QPVC and of QP(S). Exploiting the multiplier information found in µG

j
∗
,

j ∈ I00(x∗), and additionally in µH
j
∗
, j ∈ S for the imposed subset constraint (3.1d), turns

out to be crucial for the development of an efficient continuation method that iterates over
P(l̄).

3.2 Continuation in Adjacent Subsets

For any choice of S the solution of the subproblem QP(S) (3.1) associated with S must fall
into one of three categories.

KKT Point with µG
j

∗
> 0 for some j ∈ I00(x∗) For a KKT Point with µG

j
∗
> 0 for

some j ∈ I00(x∗) we know that this point violates MPVC strong stationarity which requires
µG
j
∗
= 0. Consequently, the convex subset of problem (2.14) selected by the current choice
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of S ⊆ l does not contain an MPVC strongly stationary point, as otherwise this point would
have been found as the unique KKT point. We may continue the solution of the QPVC in
any convex subset selected by an index set S ∪ {j}.

Any Other KKT Point A KKT point that does not fall into the above category is said
to lie “in the interior” ([32]) of problem (3.1). The chosen subset S of vanishing constraints
that must have vanished is locally optimal. The point (x∗, µG∗

, µH∗
) is an MPVC strongly

stationary point of the original problem (2.14), albeit not necessarily a globally optimal one
as will be addressed in Section 3.3.

Infeasible Subproblem Subproblem QP(S) (3.1) may have an empty feasible set for
certain choices of S. Initially, it is not clear whether starting with either of the obvious
choices S = ∅ (all vanishing constraints must be satisfiable at once) or S = l (all variables
xj are fixed to zero) will lead to a feasible subproblem. In a sequential QPVC algorithm,
an obvious initial candidate for S is the set I0−(x) defined by the feasible point x in which
the QPVC is set up. We return to this issue in Section 4.4.

3.3 Improvement towards Global Optimality

MPVC strongly stationary points of (2.14) are not necessarily globally optimal. Stationarity
of the solution of all SQP subproblems is sufficient to reach stationarity of the NLP solution,
see e.g. [32]. Still, in QPVCs derived from applications, local solutions might be missing
some more or less obvious features modeled by vanishing constraints. By reduction to
MIQP, finding a globally optimal solution of a QPVC is an NP-hard problem. Hence, what
we propose in this section is a heuristics based on a sufficient condition, that allows the
continuation of the QPVC solution process in order to improve the solutions beyond the
first strongly stationary point. A sufficient condition for global optimality is given in ([16],
Corollary 6.2.5) which applies in particular to the QPVC subproblems (2.14) with B positive
definite. We state this condition in the following, more restrictive form for problem (2.1):

Theorem 3.2. Let the objective function F be convex, and the constraint functions G, H
be concave. Further, let x∗ ∈ Rn be an MPVC strongly stationary point of problem (2.1). If
µG
j
∗
= 0 for all j ∈ I+0(x

∗) and µH
j
∗ ≥ 0 for all j ∈ I0−(x∗) then x∗ is a globally optimal

solution of problem (2.1).

From this theorem we derive two further continuation rules in addition to those found
in Section 3.2 and comment on the benefits of memorizing stationary points.

KKT Point with µG
j

∗
> 0 for some j ∈ I+0(x

∗) For a KKT point (x∗, µG∗
, µH∗

) with

µG
j
∗
> 0 for some j ∈ I+0(x

∗), i.e. a vanishing constraint active at its lower bound, but with
inactive associated variable xj > 0, we may continue the solution in the adjacent convex
subset of problem (2.14) with S ∪ {j}, now including the vanishing constraint j indicating
possible improvement towards global optimality. This effectively means extending the first
rule of Section 3.2 from the set I00(x∗) also to the set I+0(x

∗).

KKT Point with µH
j

∗
< 0 for some j ∈ S For a KKT Point with µH

j
∗
< 0 for some

j ∈ S we know that the additionally introduced equality constraint (3.1d) would be inactive
if it was an inequality constraint as in (2.13). Consequently, improvement of the objective
may be possible if xj > 0. We may continue the solution of the QPVC in any convex subset
selected by an index set S \ {j}.
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Memorizing Stationary Points In an actual implementation of this strategy of im-
provement towards global optimality, we need to be aware of the nature of Theorem 3.2.
As it is a sufficient condition only, there may well exist stationary points being globally
optimal solutions but violating the conditions of Theorem 3.2. Hence a memory of MPVC
strongly stationary points found so far needs to be maintained, including the associated ob-
jective function value of problem (2.14) in these points. In addition, the proposed heuristics
does not guarantee that all possible convex subsets are actually visited, and hence does not
provide a certificate of global optimality for the solution found. Upon exhaustion of the
proposed continuation procedure, the best point that has been found is returned.

3.4 Tree Search Algorithms for Selection of Convex Subsets

The described process of subdivision into convex subsets lends itself to treatment in a branch-
ing type algorithm on the power set P(l) of vanishing constraint indices. Starting with an
initial choice S ∈ P(l) we solve the corresponding subproblem QP(S) for (x∗, µG∗

, µH∗
).

Analysis of the multiplier information on the index sets I00(x∗), I0+(x∗), and S as pro-
posed in Sections 3.2, 3.3 yields a list of candidate subproblems to continue with. These can
be evaluated in a recursive depth-first search, or alternatively in a list-based breadth-first
search.

Several challenges remain with this approach, though. As mentioned, the initial choice
of S is not obvious. Moreover, a choice associated with an infeasible subproblem does not
yield sufficient multiplier information that would allow for continuation in a feasible one.
Second, the convex subsets do not form a proper partition of the feasible set of (2.14) but
are mutually overlapping. Hence solving a convex QP afresh on each convex subset comes
with a significant computational effort as identical subsequences of active set exchanges have
to be repeatedly carried out for each QP.

3.5 Active Set Algorithm for Selection of Convex Subsets

To address these issues, we propose an active set type framework for the selection of convex
subsets that blends with the QP active set method used for solving the subset QPs. In the
following, we describe in more detail those active set exchange moves between index sets
that are different from a standard active set method. Figure 2 depicts the discussed active
set exchange moves. Index sets are always understood to refer to the current iterate x.

A vanishing constraint enters I00 from I+0 If for an active vanishing constraint
βj ≤ gTj x the controlling variable xj becomes zero, the associated MPVC multiplier µG

j

may remain positive and is then in violation of MPVC strong stationarity conditions (2.7).
We immediately let the constraint’s index j enter the set S of constraints that have van-
ished. Thereby, a move to a neighboring convex subset problem (3.1) of the QPVC (2.14)
is accomplished. In Figure 2(a), two arcs have to be traversed.

A vanishing constraint leaves S for I00 If an infeasible and hence vanished constraint
βj ≤ gTj x becomes feasible, we remove the constraint’s index j from the set S. The index

will enter the set I00 if µH
j > 0, or the set I+0 if µH

j ≤ 0. In the latter case, we must set

µH
j := 0 and restore stationarity as detailed in Section 4.4. Again, a move to a neighboring

convex subset problem (3.1) of the QPVC (2.14) is accomplished. In Figure 2(a), one or
two arcs are traversed.
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If we choose to include the global optimality criterion in the active set strategy, further
active set exchange moves need to be considered. As the criterion is of sufficient nature only,
these moves are not binding.

A vanishing constraint enters I+0 from I++ If a vanishing constraint βj ≤ gTj x

becomes active with xj > 0, the associated MPVC multiplier µG
j may become positive. This

is in accordance with MPVC strong stationarity, but in violation of the sufficient condition
for global optimality (Theorem 3.2). We may choose to let the constraint’s index j enter
the set S of constraints that have vanished. If we do so, we must set xj := 0 and make
this simple lower bound active. Primal and/or dual feasibility are restored as detailed in
Section 4.4. This move is shown in Figure 2(b) together with its counterpart move. The
previously addressed move from I+0 to I00 can then not occur anymore.

Linear dependence caused by vanishing constraints Adding the simple lower bound
xj = 0 to the active set, required when moving a constraint index j to S from either I+0 or
I++ as just described, may cause linear dependence of the active constraint Jacobian rows.
In Section 4 we give references to a fast and efficient resolution procedure that indicates a
constraint k ̸= j to be removed from the active set in order to restore linear independence.

It may happen that for this constraint k ∈ S holds, i.e. the simple bound xk = 0 is to
be removed even though the associated vanishing constraint gk ≤ Gkx would be violated.
In this case, linear dependence cannot be resolved inside the convex subset selected by the
current choice of S. We remove k from the set S, thus moving to an adjacent convex
subset, and restore feasibility of the vanishing constraint by modifying a homotopy between
quadratic problems in a suitable manner. Details are given in Section 4.4.

I0+ I++

I00 I+0

S

Gj(x) = 0 µG

k < 0

µH

k < 0

xj = 0

µH

k < 0

xj = 0

Gj(x) = 0 µG

k < 0

µG

k > 0 Gj(x) = 0

(a) Schematic of the active set algorithm.
Emphasized moves may violate MPVC strong
stationarity (but not KKT conditions for the
subset QP) and trigger a second move as de-
tailed in Section 3.5.

I0+ I++

S

Gj(x) ↓ 0

Gj(x) = 0

µH

k < 0

µH

k < 0

xj = 0

Gj(x) ↑ 0 ∧

µH

k ≥ 0

(b) Schematic of the proposed active set al-
gorithm including the global optimality crite-
rion. Emphasized moves require appropriate
modification of the QP to restore feasibility
and/or stationarity as detailed in Section 4.4.

Figure 2: Schematics of the proposed active set algorithms for the selection of convex subsets.
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4 A Parametric Primal-Dual Active Set Strategy for Hot Starting

In this section we make a recourse to the more familiar problem class of convex QPs. We
describe a parametric primal–dual active set method for the numerical solution of such
programs. The method is due to [7], and has been proposed for application in an online
optimization in [13] and related works. In [6], it has been used for sensitivity analysis of
convex QP solutions. Here we propose to use the described method to realize a hot starting
facility for the subsequent solution of multiple QPs in convex feasible subsets of a QPVC
as described in Section 3. Hot starting procedures are presented for each of the active set
exchange moves described in Section 3.5 that move to neighboring convex subsets of the
QPVC.

4.1 Parametric Convex Quadratic Programs

A convex QP becomes a convex parametric quadratic program if the gradient vector and
all constraint bound vectors are affine linear vector valued functions, depending on a scalar
homotopy parameter τ ∈ [0, 1] ⊂ R,

min
x∈Rn

1
2x

TBx+ xT b(τ) (4.1a)

s.t. c(τ) ≤ Cx, (4.1b)

with b ∈ Hn, c ∈ Hm, and Hk denoting a set of affine linear functions

Hk :=
{
f : [0, 1] → Rk | ∀τ ∈ (0, 1) : f(τ) = (1− τ)f(0) + τf(1)

}
, k ≥ 1. (4.2)

The restriction to homotopies of the gradient and constraint vectors is not a real one.
Changes of the Hessian B or the constraint matrices C,D can also be rewritten as vector-
valued ones by virtue of a simple transformation of the system of KKT conditions [13].

In problem (4.1) we seek a solution of the QP in τ = 1, assuming a–priori knowledge of
a solution in τ = 0. Most often, these two QPs will be closely related in a certain way. Pro-
gressing along the homotopy path then constitutes a highly efficient way of accomplishing
hot starts. This situation arises naturally in a number of application cases, e.g. Sequential
Quadratic Programming (SQP) methods, model predictive control algorithms [13], or in
algorithms of the branching type with QP subproblems on the branch tree’s nodes, cf. Sec-
tion 3.

The QPVC subproblem (3.1) assumes the shape of (4.1) if for notational convenience we
collect vanishing constraints j /∈ I0− and simple lower bounds and equality constraints in
the common matrix C.

No Phase One Necessary Note that an optimal solution in τ = 0 for the “trivial QP”
with b(0) = 0, c(0) = 0 is always available with (x∗(0), µ∗(0)) = (0, 0), such that the
homotopy also makes a phase one strategy unnecessary. Such a strategy might otherwise be
required to find an initial feasible guess if none is available.

4.2 The Parametric Active Set Method

For a fixed value τ ∈ [0, 1] ⊂ R and a given active set A ⊆ m the system of optimality
conditions (3.2a–3.2c) for problem (4.1) reads in matrix form(

B CA
T

CA 0

)(
x∗(τ)

−µ∗
A(τ)

)
=

(
−b(τ)
cA(τ)

)
, (4.3)
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with (x∗(τ), µ∗
A(τ)) denoting the primal–dual optimal solution in τ . Based on the fact

that affine linearity of the right hand side of (4.3) in τ necessarily leads to piecewise affine
linearity of the solution set (x∗(τ), µ∗

A(τ)), τ ∈ [0, 1], the underlying idea of the primal–dual
parametric active set strategy now is to proceed as follows.

Iteration k = 0 starts in τ (0) = 0 with the known optimal solution (x∗(0), µ∗
W(0)) and

a maximal linear independent subset W ⊆ A(x∗(0)) of the active set, referred to as the
working set.

In each iteration k, the step direction (∆x(k),∆µ(k)) is determined by solving the system
of optimality conditions (

B CT
W

CW 0

)(
∆x(k)

−∆µ
(k)
W

)
=

(
−∆b(τ (k))
∆cW(τ (k))

)
. (4.4)

Herein, the vectors ∆b(τ (k)) and ∆cW(τ (k)) denote the gradient and constraint vector steps

from τ (k) to end τ = 1 of the homotopy. Let further ∆µ
(k)
j = 0 for j ∈ m \W.

The step length α(k) ∈ [0, 1] is determined as the maximum advance in the homotopy
parameter τ that satisfies both (3.2b, 3.2c) and positivity of the duals µ∗(τ), i.e. that keeps
the working set W both primal and dual feasible, given the computed primal–dual step
direction.

In the obtained solution for τ (k+1) := τ (k) + α(k),

(x∗(τk+1), µ∗(τ (k+1))) = (x∗(τk), µ∗(τ (k))) + α(k)(∆x(k),∆µ(k)) (4.5)

the primal or dual blocking constraint is added to or removed from the working set W. The
homotopy advances by letting

b(τ (k+1)) := b(τ (k)) + α(k)∆b(τk), (4.6a)

c(τ (k+1)) := c(τ (k)) + α(k)∆c(τ (k)), (4.6b)

and the procedure continues with iteration k + 1. Once the homotopy end point τ (k) = 1
has been reached, the procedure terminates and a piecewise affine linear solution trajectory
for problem (4.1) has been determined. Finite termination of this procedure in a KKT point
of the QP can be shown under the usual nondegeneracy assumptions, e.g. [7].

4.3 Algorithmic Details

Several details of the described algorithm merit further discussion and need to be addressed
in an efficient implementation of the parametric active set strategy. We mention them
briefly and give appropriate references. Concerning publicly available implementations of
the parametric active set strategy, we are only aware of the code qpOASES [13].

Solution of the Saddle Point Problem Finding the step direction (∆x,∆µ) requires
the solution of the linear system (4.4). The numerically stable and efficient solution of this
saddle-point problem in n + m unknowns requires exploitation of the problem structures,
a topic outside the scope of this paper. We refer the reader to e.g. [5, 28] for surveys of
applicable linear algebra. Block structured linear algebra techniques applicable to optimal
control problem structures can be found e.g. in [21, 35]. Matrix update procedures are used
to recover KKT system factorizations after a constraint entered or left the active set. We
refer to [28] for updates in the dense nullspace method, to [3] for Schur complement updates,
and to [22] for updates to optimal control problem block structures.
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Regularity of the Working Set Addition of a primal blocking constraint to the working
set may cause singularity of the constraints matrix CW , i.e. the working set may become
degenerate. In [7, 13] a cheap and efficient strategy for degeneracy resolution is described
that determines a constraint to be removed from the working set W, allowing the primal
blocking one to be added without loss of regularity.

Primal and Dual Ties Neither the primal nor the dual blocking constraint found when
determining the step length are necessarily unique. The situation of non-uniqueness is
referred to as a tie. The authors are not aware of implementations that systematically
resolve ties. A costly procedure to this end that requires the solution of a larger auxiliary
QP is proposed in [36]. In [31] a fast heuristic is described that avoids a tie in τ by applying
a suitable perturbation of the homotopy.

4.4 Parametric Hot Starting for QPs with Vanishing Constraints

The described parametric active set method can be efficiently used to facilitate hot starts if
the solution of a QP on an adjacent convex subset of a QPVC’s feasible set, once an initial
QP has been solved.

Hot Starting if a Constraint Vanishes If in a point τ (k) ∈ (0, 1) on the homotopy
path a vanishing constraint j ∈ l \ I0− vanishes, one of two situations arises as derived
in Section 3.5. If j ∈ I00, the active simple bound x∗

j (τ
(k)) = 0 becomes an equality

constraint, and the active vanishing constraint is removed from the QP. If j ∈ I+0, the
variable x∗

j (τ
(k)) ̸= 0 must be set to zero in addition. In the latter case, both feasibility and

stationarity of the perturbed solution (x̃(τ (k)), µ∗(τ (k))) are lost. We compute a suitable
perturbation of the problem’s right hand side in τ (k),

b̃(τ (k)) := CTµ∗(τ (k))−Bx̃(τ (k)), (4.7a)

c̃(τ (k)) := Cx̃(τ (k)), (4.7b)

This approach can be viewed as determining the QP in τ (k) for which the perturbed point
(x̃(τ (k)), µ∗(τ (k))) with x̃j(τ

(k)) = 0 is optimal. This is done without affecting the QP in
τ = 1, which is the QP we are interested in. We continue by progressing along the new
homotopy towards τ = 1.

Hot Starting if a Constraint Appears If in a point τ (k) ∈ (0, 1) on the homotopy
path a vanishing constraint j ∈ I0− appears, again one of two situations arises as derived
in Section 3.5. If j ∈ I0− enters the index set I00, the equality constraint on xj is lifted

and becomes a simple lower bound. If j enters I+0 and µH
j
∗
< 0 must be set to zero,

stationarity of the perturbed solution (x∗(τ (k)), µ̃(τ (k))) is lost. We again compute a suitable
perturbation of the problem’s right hand side in τ (k),

b̃(τ (k)) := CT µ̃(τ (k))−Bx∗(τ (k)), (4.8)

and continue by progressing along the homotopy path towards the unaffected QP to be
solved in τ = 1.
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The Initial QP Subproblem in the First SQP Iteration For the first QPVC of the
first SQP iteration k = 0, we initially do not have an optimal solution to a related QPVC
at hand. We start with the “trivial” QPVC

min
x∈Rn

1
2x

TB(0)x (4.9a)

s.t. 0 ≤ C
(0)
j x j /∈ I0−, (4.9b)

0 = xj j ∈ I0−, (4.9c)

which allows to use the choice I0− = l. The associated optimal solution is (x∗, µ∗) = (0, 0).
The first parametric QPVC solution then progresses along the new homotopy

b(τ) : [0, 1] −→ Rn : τ 7→ 0 + τb(0)(1), (4.10a)

c(τ) : [0, 1] −→ Rl : τ 7→ 0 + τc(0)(1), (4.10b)

where b(0)(1), c(0)(1) denote the gradient and constraint bound vector of the QPVC for SQP
iteration k = 0. This has been noted in [12] for convex QPs. As the initial problem (4.9)
turns out to have m ties in τ = 0, an alternative initialization is proposed in [31] that relies
on a homotopy perturbation concept.

Initial QP Subproblem in Subsequent Iterations For all subsequent SQP iterations
k > 0, we have an MPVC strongly stationary point (x∗, µ∗) of the previously solved QP
subproblem at hand. Denoting the old and new Hessians by B(k−1) and B(k), and the old
and new constraint Jacobians by C(k−1) and C(k), we start the solution of the parametric
QP

min
x∈Rn

1
2x

TB(k)x+ b(τ)Tx (4.11a)

s.t. c(τ) ≤ C
(k)
j x j /∈ I0−, (4.11b)

0 = xj j ∈ I0−, (4.11c)

with homotopy

b(τ) : [0, 1] −→ Rn : τ 7→ (1− τ)b(k)(0) + τb(k)(1), (4.12a)

c(τ) : [0, 1] −→ Rl : τ 7→ (1− τ)c(k)(0) + τc(k)(1). (4.12b)

starting in τ = 0 with the modified initial right hand side

b(k)(0) := b(k−1)(1)− (B(k) −B(k−1))x∗ + (C(k) − C(k−1))Tµ∗, (4.13a)

c(k)(0) := c(k−1)(1) + (C(k) − C(k−1))x∗. (4.13b)

This choice maintains optimality of the known previous solution (x∗, µ∗) for τ = 0. In
[31] an alternative initialization is proposed that does not require evaluation of the matrix
differences (4.13).

5 A Robot Pathfinding and Communication Problem

In this section, we demonstrate the applicability of the described parametric active set
method for QPVCs by computing a family of MPVC strongly stationary points to a robot
motion planning problem with logic communication constraints that can be cast as vanishing
constraints.
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5.1 Problem Formulation

Robot motion planning problems are frequently studied, see e.g. [24] for an introduction
and [1] for details on modeling questions and a variant of the problem we investigate here.
We consider a swarm of N two-wheeled mobile robots indexed by i = 1, . . . , N moving
on prescribed fixed paths s : [0, 1] → (xi(s), yi(s)) ∈ R2 on the cartesian plane (x, y)
according to tangential accelerations a and velocities v. Starting in the given initial positions
(x(0), y(0)) ∈ R2N on their respective paths, the robots shall complete their paths to the
given final positions (x(1), y(1)) ∈ R2N in the minimum possible time. Each robot is able
to communicate at any point in time with any other robot of the swarm that satisfies a
communication constraint, e.g. that is within a prescribed distance T . While the swarm of
robots proceeds along the paths, a communication network needs to be maintained among
the swarm: each robot is required to be in communication with at least K other robots.

Optimal Control Problem The resulting nonlinear optimal control problem can be
formulated as follows: We minimize a time transformation parameter h,

min
a,c,s,v,h

h (5.1a)

subject to the dynamic equations of movement on the time horizon [0, h] ⊂ R for the swarm
of robots on the fixed paths (x(s), y(s)) on the cartesian plane,

dsi
dt

(t) = h · vi(t) t ∈ [0, 1], i ∈ N, (5.1b)

dvi
dt

(t) = h · ai(t) t ∈ [0, 1], i ∈ N. (5.1c)

At t = 0 all robots are located at the their prescribed initial positions,

0 = si(0), i ∈ N, (5.1d)

0 = vi(0), i ∈ N, (5.1e)

(a) Model of a two-wheeled mo-
bile robot.
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(b) Predefined paths for a swarm of ten robots.

Figure 3: Model of a two-wheele mobile robot, and predefined paths for a swarm of ten robots
on the cartesian plane. Nodes delimit piecewise cubic spline segments. Initial positions are
found in the lower left corner, and final ones in the upper right corner.
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and at t = 1 arrival of all robots at the end of their prescribed paths is required,

0 = si(1)− smax,i, i ∈ N. (5.1f)

We introduce a communication function ci,j(t) ≥ 0 for each pair (i, j) of robots. This
function may assume a positive value if and only if the associated pair of robots is within
communication distance,

0 ≤ ci,j(t) · (T −D2
i,j(t)) t ∈ [0, 1], (i, j) ∈ N ×N, (5.1g)

0 ≤ ci,j(t) ≤ 1 t ∈ [0, 1], (i, j) ∈ N ×N. (5.1h)

In (5.1g) the Euclidean distance D2
i,j(t) between any pair (i, j) of two robots is defined as

D2
i,j(t) := [xi(si(t))− xj(sj(t))]

2
+ [yi(si(t))− yj(sj(t))]

2
. (5.1i)

The communication network is maintained by imposing a communication constraint for each
robot that counts the number of swarm members that are within reach,

K + 1 ≤
∑
j∈N

ci,j(t), t ∈ [0, 1], i ∈ N.

Hence, any optimal solution will assume ci,j(t) = 1 for a pair (i, j) within reach, if constraint
(5.1j) is active. Finally, simple bounds apply to the positions s on the prescribed paths, to
the path tangential velocities, and to the acceleration of each robot,

0 ≤ si(t) ≤ smax,i, t ∈ [0, 1], i ∈ N, (5.1j)

0 ≤ vi(t) ≤ 0.5, t ∈ [0, 1], i ∈ N, (5.1k)

−1 ≤ ai(t) ≤ 0.5, t ∈ [0, 1], i ∈ N. (5.1l)

To complete problem (5.1), piecewise cubic spline representations for the paths (xi(si),
yi(si)) on si ∈ [0, smax,i] according to Figure 3 are required. By courtesy of Hande Y. Ben-
son, the same scenario as in [1] could be used. Note that problem formulation (5.1) leaves
ample freedom for implementation of a more detailed communication range model, taking
e.g. frequency, noise, fading, or crosstalk into account, and also allows for asymmetric com-
munication conditions. We refer the reader to [1, 24] and the references found therein. For
the purpose of this paper, we are interested in the combinatorial structure introduced into
problem (5.1) by the communication variables ci,j in (5.1g, 5.1h) and the imposed constraint
(5.1j) only.

Discretized Problem Problem (5.1) is transformed into a time-discrete NLP by intro-
ducing a discretization

0 = t0 < t1 < . . . < tM−1 < tM = 1 (5.2)

of the time horizon [0, 1], and replacing (5.1b, 5.1c) by a fixed-step integration scheme using
e.g. a higher-order Runge-Kutta method. For details on more elaborate adaptive schemes
for the numerical solution of ODE initial value problems, and for numerically stable and
efficient methods for sensitivity generation, we refer to e.g. [4, 29]. Constraints are enforced
on the grid {ti} (5.2) only. This approach may in general yield solutions that are slightly
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Table 1: Initial values for h used for the computations presented in Tables 2 and 3. Empty
fields denote known infeasible choices of T and K.

T = 2.0 2.5 3.0 3.5 4.0 4.5 5.0
K = 1 10 10 10 10 10 10 10

2 10 10 10 10 10 10
3 35 9 10 10 10 10
4 FAIL 11 10 10 10 10
5 20 10 10 10 10
6 11 12 10
7 10 12 10
8 50 12 10

infeasible with respect to the original problem, but serves the purpose. We refer to [30] for
semi-infinite programming techniques that handle this issue in an exact way, and to [1] for
more detailed evaluations of the effects of discretized constraints on solutions for the class
of robot motion planning problems.

5.2 Numerical Results

We chose M = 10 time intervals, and a swarm of N = 10 robots. The obtained NLP has
836 unknowns, 550 constraints, and 450 additional vanishing constraints. NLP unknowns
introduced in the M + 1 points {tk} of the grid (5.2) were initialized to

si(tk) =
k

M
smax,i, i ∈ N, 0 ≤ k ≤ M, (5.3a)

vi(tk) = 0, i ∈ N, 0 ≤ k ≤ M, (5.3b)

ai(tk) = 0, i ∈ N, 0 ≤ k ≤ M, (5.3c)

ci,j(tk) = 0, (i, j) ∈ N ×N, 0 ≤ k ≤ M, (5.3d)

The initial values for the total time h required until all robots have reached their destinations
are listed in Table 1.

The SQP algorithm proceeds as detailed in Section 2.4, where we did not implement a
globalization strategy but always performed full steps. The Hessian matrix of the MPVC-
Lagrangian was approximated using BFGS updates on the space of primal variables and
MPVC multipliers. For the ODE system solution, a 4th order Runge-Kutta method with
fixed step size was used. All QPVCs and all NLPs were solved up to a KKT tolerance (see
[25]) of 10−8. For all computations we used a single core of an Intel Core i7 940 at 2.67
GHz, running Ubuntu Linux 9.10 (64 bit).

Computational Solutions Found The objective functions (minimal path completion
times) of the solutions we found for the presented robot motion planning problem are listed
in Table 2. We evaluated 56 problem instances, with communication radii T ranging from
2.0 to 5.0 in steps of 0.5, and with communication network constraints K ranging from 1 to
8 other robots within reach.

The number of SQP iterations and the total accumulated number of QPVC iterations
for all solved problem instances is listed in Table 3.



APARAMETRICACTIVE-SET METHOD FOR QPS WITH VANISHING CONSTRAINTS 295

Table 2: Computational solutions found for the robot path-finding and communication
problem of Section 5 for various values of the communication radius R and the minimum
number K of robots required to be in communication. Empty fields denote known infeasible
choices of T and K.

T = 2.0 2.5 3.0 3.5 4.0 4.5 5.0
K = 1 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575

2 7.99575 7.99575 7.99575 7.99575 7.99575 7.99575
3 12.7161 8.58713 7.99575 7.99575 7.99575 7.99575
4 FAIL 9.54828 8.64826 7.99575 7.99575 7.99575
5 14.3232 10.2715 7.99575 7.99575 7.99575
6 10.1474 7.99575 7.99575
7 13.7652 7.99575 7.99575
8 21.3840 11.1614 7.99575

Table 3: Number of SQP steps and total number of QPVC iterations required to compute
the solutions reported in Table 2. Empty fields denote known infeasible choices of T and K.

T = 2.0 2.5 3.0 3.5 4.0 4.5 5.0
K = 1 16/440 16/ 501 16/ 440 16/ 387 16/ 336 15/317 15/285

2 17/ 578 17/ 524 16/ 391 16/ 342 16/319 16/289
3 32/15845 25/ 875 16/ 445 16/ 355 16/337 16/295
4 FAIL 25/ 2920 27/ 539 16/ 388 16/347 16/296
5 33/22295 44/3247 16/ 427 16/398 16/334
6 28/ 541 28/657 17/355
7 16/1195 26/962 17/463
8 21/2454 13/737 21/551

Discussion We evaluated 56 problem instances, of which 17 turned out to be infeasible. In
addition, all problem instances with K = 9, i.e. requiring all robots to be in communication
with all other robots in all points of the time grid, are infeasible. For 27 of the remaining 39
feasible problems, a minimum time for completion of 7.99575 seconds was determined. This
solution corresponds to the isolated time optimal solution for robot number 8, subject only to
acceleration and velocity constraints. Hence, this solution is a globally optimal one. For 11
problem instances we determined minimum times for completion that are larger, depending
on the restrictiveness of the choice of K and T . Verification of global optimality is not easily
possible in the proposed framework, though. The proposed approach failed to solve only
the single instance K = 4, T = 2.5 due to divergence of the SQP method. We conjecture
that the use of a suitable globalization procedure for the SQP method, e.g. transferring the
works of [8, 23, 33] to MPVC, may lead to improvements here.

Table 3 shows that all problems that could be solved were solved within 15 to 44 SQP
iterations. Increases in the number of QPVC iterations can generally be observed for the
more difficult instances with larger values of K, respectively with smaller values of T . The
increased number of SQP iterations for the solution of the instances (K,T ) = (3, 2.5) and
(5, 3.0) could possibly also be improved upon using a suitable globalization procedure.

We conclude our discussion with the remark that, using a standard SQP method based
on linearizations of the multiplicative vanishing constraint (5.1g, 5.1h), hence ignoring the
combinatorial nature of the problem and its implications for the validity of constraint quali-
fications, we have not been able to solve even a single instance of this robot motion planning
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problem with N = 10 robots. This observation again demonstrates the necessity of exploit-
ing the combinatorial problem structure explicitly.

6 Summary and Conclusions

In this paper we have considered the challenging class of NLPs with vanishing constraints.
Problems that fall into this class violate commonly assumed constraint qualifications, and we
have given a number of detrimental consequences arising when standard SQP type methods
are applied to such problems. To address this issue, we have presented a nonconvex SQP
framework for the subclass of MPVCs that satisfy the regularity condition of MPVC–LICQ.
We have described a search procedure for the solution of QPVCs that has been derived by
partitioning the problem’s nonconvex feasible set into overlapping feasible convex subsets
and comparing MPVC strong stationarity conditions to KKT conditions. We have shown
how multiplier information can be exploited to efficiently move between the introduced
convex subsets in an active set method. In addition, iterations towards global optimality of
the QPVC subproblem solution can be made. We have embedded the proposed approach in
a parametric primal-dual active set method for convex QPs and have used the parametric
framework of this method to facilitate hot starts when moving between the convex subsets.
Within an SQP framework, we have applied the derived QPVC active set method to a
robot path-finding and communication problem. Here, communication constraints on a
swarm of robots have been formulated as vanishing constraints. We have considered 39
feasible problem instances of varying combinatorial difficulty. Using the proposed algorithm
we have solved 27 of them to global optimality and have found solutions to a further 11
instances whose global optimality cannot be verified easily. One problem instance failed to
solve and we have conjectured that the development of a suitable globalization procedure
for the proposed SQP framework could yield improved convergence behavior here.
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