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the well-known work of Lions-Stampacchia [30]. Afterwards, the entire problem is discretized
and solved in finite dimensions. In contrast, we provide an algorithmic framework in function
space, which is shown to converge locally at a superlinear rate. Upon discretization, using
the techniques in [25] thus allowing one to establish mesh-independent convergence.

In our work, the inclusion of an obstacle-type condition on the state of the system
(solution of the partial differential equation) in each of the player’s strategy sets results
in a Nash equilibrium problem in which the strategies of the individuals are perturbed by
the decisions of their “competitors”, i.e., a so-called generalized Nash equilibrium problem
(GNEP). In particular, our setting gives rise to a genuine quasivariational inequality. As
will later be seen, this blocks a direct application of classical existence results for Nash
equilibrium problems via either fixed-point theorems or the theory of variational inequalities.

The particular class of equilibrium problems chosen for this paper contains what we
believe to be essential components of an optimization problem whose feasible set is partially
governed by the solution of a partial differential equation (PDE), e.g., a PDE and control
and state constraints. Though the class considered here is simple in structure from a finite
dimensional perspective, the function space setting introduces additional difficulties, such
as the existence of Lagrange multipliers. These aspects, along with the potentially large
scale of the discretized models, add to the already nontrivial task of studying GNEPs. In
this respect, this paper is meant to serve as a foundation on which future investigations of
GNEPs in function space may be built.

After using a Moreau-Yosida-type penalty approach for the state constraints and reducing
the resulting optimality system for the relaxed game, we propose a function space algorithm
based on a nonsmooth Newton step for the numerical solution of the GNEP, see [8, 20, 43]
for more on semismooth Newton methods.

The paper is structured as follows. In Section 2, we introduce the equilibrium problem
and demonstrate the existence of a Nash equilibrium. In Section 3, we develop an algorithm
in function space for finding generalized Nash equilibria. This method is then tested and
discussed in Section 4, after a suitable discretization.

We will use a standard notation throughout the paper and we refer the reader to [1]
for details about Lebesgue and Sobolev spaces, to [17, 45] for regularity theory of solutions
of partial differential equations, and for any further notions of functional analysis to [46].
Much of the standard theory of PDE-constrained optimization can be found in [26] and [42].

2 A GNEP in Function Space

Throughout the text, we let Ω ⊂ Rd, d = 1, 2, or 3, be open and bounded. We use “ a.e.Ω ”
to represent the phrase “almost everywhere on Ω”. The spaces of all functions u for which
|u|2 is Lebesgue integrable will be denoted by L2(Ω), whereas W 1,2

0 (Ω) = H1
0 (Ω) represents

the Sobolev space of all L2(Ω) functions y such that |∇y|2 is Lebesgue integrable, where ∇y
represents the weak derivative of y, and for which y|∂Ω = 0 holds and is well-defined. Note
that ∇y(x) ∈ Rd, in which case |∇y| represents the pointwise Euclidean norm on Rd. The
dual space of H1

0 (Ω) will be denoted by H−1(Ω). Due to the assumed boundedness of Ω, we
may define the norm on H1

0 (Ω) by ||y||H1
0 (Ω) := ||∇y||L2(Ω). The Sobolev spaces Wm,p

0 (Ω),

where m ∈ N and 1 ≤ p ≤ +∞, are defined analogously to H1
0 (Ω) with their respective

dual spaces denoted by W−m,s(Ω), where s ∈ R+ ∪ {+∞} such that 1/p + 1/s = 1. For
a subset A ⊂ Ω, we use the symbols V ol(A) and χA to represent the Lebesgue measure
and the characteristic function, respectively, and we let −∆ = −div · ∇ be the standard
Laplacian. The following data assumptions are used throughout:
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• The boundary ∂Ω ⊂ Rd−1 is regular enough such that if f ∈ L2(Ω), then the (unique)
solution u : Ω → R of the Poisson equation with homogeneous Dirichlet boundary
conditions and righthand side f can be continuously embedded into the Sobolev space
W 1,r

0 (Ω), with r > max(2, d), if d > 1. Moreover, we assume that r < 2d
d−2 , whenever

d ≥ 3.

• N ≥ 2, N ∈ N.

• ai, bi ∈ L2(Ω) with ai < bi, a.e.Ω, for all i = 1, . . . , N .

• ψ ∈W 1,r(Ω) with ψ|∂Ω < 0.

• yid ∈ L2(Ω), for all i = 1, . . . , N .

• αi > 0, for all i = 1, . . . , N .

• Bi ⊂ Ω, |Bi| > 0, for all i = 1, . . . , N .

• f ∈ L2(Ω).

As a notational convention, we define the product spaces L2(Ω)
N

:= ΠN
i=1 L

2(Ω), H1
0 (Ω)

N
:=

ΠN
i=1H

1
0 (Ω), and, for u ∈ L2(Ω)

N
, v ∈ L2(Ω), we let (v, u−i) represent the vector field in

L2(Ω)
N

obtained by replacing ui in u by v.

The choice of boundary ∂Ω allows us to work with problems for which Ω has a non-
smooth boundary and is convex as well as for cases in which ∂Ω is locally homeomorphic to
the graph of a Lipschitz continuous function without the convexity requirement on Ω. In the
first case, a well-known result from Kadlec, [27], shows that solutions of the Poisson equation
with homogeneous Dirichlet boundary conditions are inW 2,2(Ω)∩H1

0 (Ω), whereas a famous
result from Nečas, [31], shows that such a solution in the second case, i.e., ∂Ω Lipschitz and
Ω non-convex, is in the fractional Sobolev space Wm,2

0 (Ω), with m ∈ [1, 3/2). In both cases,
the Sobolev embedding theorem allows the solution to be embedded into W 1,r

0 (Ω) with r as
required (see [1] and Theorems 1.4.4.1, 2.2.2.3, 3.2.1.2 in [17]). Furthermore, the choice of
r in relatio n to d allows us again to apply the Sobolev embedding theorem to show that
W 1,r

0 (Ω) ↪→ C(Ω) continuously.

Given these data assumptions, we consider an N -player game in which each player i has
a desired state yid and cost of control αi

2 || · ||2L2(Ω). Each player i is assigned a subset Bi of
Ω on which their control ui can affect the state of the system via the righthand side of a
linear elliptic partial differential equation. The players seek to minimize both the distance
of the equilibrium state to their respective desired states in the L2(Ω)-norm as well as their
overall costs. This must all be done in such a way that the control lies pointwise almost
everywhere between the prescribed bounds ai and bi and such that the equilibrium state
satisfies the obstacle condition “y ≥ ψ, a.e.Ω.” In other words, each player i seeks to
solve the following optimization problem in which the decisions of its competitors, denoted

throughout by u−i ∈ L2(Ω)
N−1

, arise as exogenous parameters:

min 1
2 ||y − yid||2L2(Ω) +

αi

2 ||ui||2L2(Ω) over (ui, y) ∈ L2(Ω)×H1
0 (Ω)

subject to (s.t.)

−∆y = χBiui +
∑N

k=1
k ̸=i

χBk
uk + f, ai ≤ ui ≤ bi, a.e.Ω, y ≥ ψ, a.e.Ω.

(2.1)
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We refer to a point (u, y) ∈ L2(Ω)
N ×H1

0 (Ω) such that (ui, y) ∈ L2(Ω)×H1
0 (Ω) is feasible

for problem (2.1) for all i = 1, . . . , N as a feasible strategy. For simplicity, we often use

Ui :=
{
v ∈ L2(Ω) |ai ≤ v ≤ bi, a.e.Ω

}
.

We define solutions (equilibria) for this game in a standard sense.

Definition 2.1 (Nash Equilibrium). A feasible strategy (u, y) is referred to as a Nash
equilibrium provided the following condition holds for all i = 1 . . . , N :

1

2
||y − yid||2L2(Ω) +

αi

2
||ui||2L2(Ω) ≤

1

2
||y′ − yid||2L2(Ω) +

αi

2
||u′i||2L2(Ω),

∀u′i ∈ Ui, ∀y′ ≥ ψ, a.e.Ω : −∆y′ = χBiu
′
i +

N∑
k=1
k ̸=i

χBk
uk + f. (2.2)

In other words, no player can reduce the value of their objective functional by unilaterally
changing their decision.

As the constraint sets of each player i depend on the decisions of its competitors, this
type of problem is often referred to as a generalized Nash equilibrium problem (GNEP).
Some alternate names for this problem class are, to name only a few, pseudo-games, social
equilibrium problems, and abstract economies. This category of games has been investigated
since Debreu [9] and Arrow and Debreu [2] in the 1950s. A significant amount of work over
the last two decades in the finite dimensional context has been completed, as can be seen in
the recent survey paper by Facchinei and Kanzow [12].

GNEPs are notoriously difficult to solve numerically as they essentially require the so-
lution of a quasi-variational inequality. To see this, recall that since the Laplace operator
−∆ is an isometric isomorphism from H−1(Ω) to H1

0 (Ω), and since L2(Ω) ↪→ H−1(Ω), we
can write y as a function linearly dependent on the righthand side of the PDE in (2.1). We
denote this solution operator by

y(u) = y(ui, u−i) := (−∆)−1(χBiui +
N∑

k=1
k ̸=i

χBk
uk + f).

Since L2(Ω) is compactly embedded into H−1(Ω) and (−∆)−1 : H−1(Ω) → H1
0 (Ω), y is

completely continuous from L2(Ω) → H1
0 (Ω). This can then be used to rewrite the GNEP

as the game in which the component problems are given by

min 1
2 ||y(ui, u−i)− yid||2L2(Ω) +

αi

2 ||ui||2L2(Ω) over ui ∈ L2(Ω)

s.t.
ai ≤ ui ≤ bi, a.e.Ω, y(ui, u−i) ≥ ψ, a.e.Ω.

(2.3)

Now let Γi : L
2(Ω)

N−1 ⇒ L2(Ω) be the multifunction defined by

Γi(u−i) :=
{
v ∈ L2(Ω) |v ∈ Ui, y(v, u−i) ≥ ψ, a.e.Ω.

}
.

It is easy to see that Γi has closed convex values. Therefore, for any fixed u−i, one can
derive the first-order necessary and sufficient optimality condition for the ith problem (in
the form of a variational inequality):
Find ui ∈ Γi(u−i):

(αiui, v − ui)L2(Ω) + (yui(ui, u−i)
∗(y(ui, u−i)− yid), v − ui)L2(Ω) ≥ 0, ∀v ∈ Γi(u−i) (2.4)
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Here, the adjoint operator yui(·, u−i)
∗ at ui is given by χBi(−∆)−1.

By coupling together each of the variational inequalities (2.4), one obtains a quasi-
variational inequality formulation of the GNEP (2.3). Then due to convexity, we see that

a feasible strategy u ∈ L2(Ω)
N

for (2.3) is a Nash equilibrium if and only if it solves the
quasi-variational inequality.

There are two main difficulties that must be surmounted in order not only to demon-
strate the existence of a generalized Nash equilibrium for the GNEP (2.1), but also, for the
development of an efficient numerical method. First, the classical existence theory for N -
player noncooperative games, based on the application of Kakutani’s fixed point theorem,
is developed in such a way that the decisions of each opposing player may only perturb
their competitors’ utility functions and not their strategy sets. Second, the derivation of
multiplier-based necessary and sufficient optimality conditions for each nonlinear program
that comprises (2.1) is significantly more difficult than in the finite dimensional setting.
The ability to derive KKT-type optimality conditions is essential for the development of a
numerical method as we shall see in Section 3. For these two reasons, we define a class of
parameter dependent Nash equilibrium problems (NEPs) by using a smooth, convex penalty
function for the pointwise constraint on the state variable y. This leads to the component
problems given by

min 1
2 ||y(ui, u−i)− yid||2L2(Ω) +

αi

2 ||ui||2L2(Ω) +
γ
2 ||(ψ − y(ui, u−i))+||2L2(Ω) over ui ∈ L2(Ω)

s.t. ai ≤ ui ≤ bi, a.e.Ω.
(2.5)

Here, (·)+ = max(0, ·), in the pointwise almost-everywhere sense. We refer to the γ-
dependent NEPs by the notation NEPγ and for convenience, we refer to NEPγ by (2.5),
despite the slight abuse of notation. Note that the idea to penalize the shared constraints
in finite dimensional GNEPs was first introduced by Fukushima and Pang in [33], see also
[13].

Our first result deals with the existence of Nash equilibria for NEPγ (2.5). We first recall
a famous result of Ky Fan/Kakutani [15] as formulated in [44].

Theorem 2.2. Let S be a compact convex set in a real locally convex topological space X
and let ψ : S ⇒ S such that ψ(x) ⊂ S is nonempty, convex, and compact for all x ∈ S. If
xn →X x and yn ∈ ψ(xn) such that yn →X y implies y ∈ ψ(x), then there exists an x∗ ∈ S
such that x∗ ∈ ψ(x∗).

Theorem 2.3 (Existence of a Nash Equilibrium for NEPγ). For all γ > 0, the
associated NEPγ (2.5) has a Nash equilibrium.

Proof. We need to adapt (2.5) to the setting of Theorem 2.2. To begin, we define the locally
convex topological vector spacesXi for i = 1, . . . , N byXi := (L2(Ω), τweak), i.e.,Xi is L

2(Ω)
endowed with the weak topology τweak. We then let X := ΠN

i=1Xi be the real locally convex
topological space required in Theorem 2.2 and set Si := cl {Ui}Xi

. Due to the equivalence
of weak and strong closure for convex sets in locally convex topological vectors spaces,
Si = Ui. Accordingly, we define S ⊂ X by S := ΠN

i=1Si. The weak compactness of closed
convex bounded subsets in reflexive Banach spaces implies that S is convex and compact
in X. Using these spaces and subsets, we define the best response functions ψγ

i : X ⇒ Xi,
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i = 1, . . . , N :

ψγ
i (u) :=

{
vi ∈ Si

∣∣∣∣12 ||y(vi, u−i)− yid||2L2(Ω) +
αi

2
||vi||2L2(Ω) +

γ

2
||(ψ − y(vi, u−i))+||2L2(Ω) =

inf
wi∈Si

1

2
||y(wi, u−i)− yid||2L2(Ω) +

αi

2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u−i))+||2L2(Ω)

}
along with the multifunction ψγ : S ⇒ S given by ψγ(u) := ψγ

1 (u) × · · · × ψγ
N (u), u ∈ S.

Clearly, ψγ(u) is single-valued for all u ∈ S and therefore, it satisfies the hypotheses of
Theorem 2.3.

Now let un → u in X and vn ∈ ψγ(un) such that vn → v in X. By definition this means
uni → ui, v

n
i → vi weakly in L2(Ω) for each i = 1, . . . , N . Moreover, vn ∈ ψγ(un) implies

that for each i = 1, . . . , N the following holds

1

2
||y(vni , un−i)− yid||2L2(Ω) +

αi

2
||vni ||2L2(Ω) +

γ

2
||(ψ − y(vni , u

n
−i))+||2L2(Ω) ≤

1

2
||y(wi, u

n
−i)− yid||2L2(Ω) +

αi

2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u

n
−i))+||2L2(Ω), ∀wi ∈ Si.

Since y(·) is completely continuous from L2(Ω)
N

to H1
0 (Ω) and the embedding H1

0 (Ω) ↪→
L2(Ω) is continuous, y(·) is continuous from X to H1

0 (Ω), and therefore, to L2(Ω). Since
the mapping (ψ − ·)2+ is pointwise convex, its integral is a convex functional and hence
weakly lower semicontinous on L2(Ω), i.e. lower-semicontinous on Xi. In fact, the previous
observation makes this functional weakly continuous. Passing to the limit inferior in the
previous inequality, we obtain

1

2
||y(vi, u−i)− yid||2L2(Ω) +

αi

2
||vi||2L2(Ω) +

γ

2
||(ψ − y(vi, u−i))+||2L2(Ω) ≤

1

2
||y(wi, u−i)− yid||2L2(Ω) +

αi

2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u−i))+||2L2(Ω), ∀wi ∈ Si.

It follows that v ∈ ψγ(u). Then by Theorem 2.2, there exists some u∗ ∈ S such that
u∗ ∈ ψγ(u∗). In other words, there exists a u∗ ∈ S such that for all i = 1, . . . , N

1

2
||y(u∗i , u∗−i)− yid||2L2(Ω) +

αi

2
||u∗i ||2L2(Ω) +

γ

2
||(ψ − y(u∗i , u

∗
−i))+||2L2(Ω) ≤

1

2
||y(wi, u

∗
−i)− yid||2L2(Ω) +

αi

2
||wi||2L2(Ω) +

γ

2
||(ψ − y(wi, u

∗
−i))+||2L2(Ω), ∀wi ∈ Si,

This concludes the proof.

In order to demonstrate that the GNEP (2.3) has a Nash equilibrium, we will require
the fulfillment of a constraint qualification.

Definition 2.4 (Strict Uniform Feasible Responses). We will say that the GNEP
satisfies the strict uniform feasible response constraint qualification (SUFR), if there exists
an ε > 0, for all i = 1, . . . , N :

∀u−i ∈ U−i, ∃ui ∈ Ui : y(ui, u−i) ≥ ψ + ε, a.e.Ω.
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Remark 2.5. Since we could easily transform the GNEP by redefining ui := ui − ai,
bi := bi − ai, f := f −

∑N
i=1 χBiai, we can assume without loss of generality that ai ≡ 0.

Consider first the ith player’s optimization problem with u−i = 0. Then if there exists
ε > 0 such that χBibi ≥ −∆ψ −min{0, f}+ ε and −∆ψ ∈ L2(Ω), it follows from the weak
maximum principle, by setting ui = bi, that y(bi, 0) ≥ ψ + ε. Thus, for any other choice of
u−i ∈ U−i, which incidentally implies uk ≥ 0, a.e.Ω for all k ̸= i k = 1, . . . , N , it follows
that y(bi, u−i) ≥ ψ + ε. Hence, SUFR holds.

In effect, the SUFR condition allows us to show that the mappings Γi are continuous
with respect to the topology induced by Mosco convergence of closed convex sets, c.f. [4].
Considering that our GNEP is equivalent to a quasivariational inequality of the type (2.4),
for which, amongst other things, Mosco convergence of the sets Γ(un) := Γ1(u

n
−1) × · · · ×

ΓN (un−N ), along a feasible sequence un, is generally required for the proof of existence of a
solution, the SUFR condition is a natural requirement, see e.g. [29].

In the first part of the proof of Theorem 2.6, we will see that for the convergence of a
sequence of equilibria {uγ}γ to a feasible strategy of GNEP it suffices for SUFR to hold
with ε = 0. However, for the convergence to a Nash equilibrium, ε > 0 is required.

Theorem 2.6 (Consistency of the Relaxed Problems). If the GNEP (2.1) satisfies
the SUFR, then there exists a sequence of penalty parameters γn → +∞ and an associated
sequence of Nash equilibria {uγn} for the NEPγn ’s (2.5) such that for all i = 1, . . . , N ,
uγn

i ⇀L2(Ω) u
∗
i as γn → +∞, where u∗ is a Nash equilibrium for the GNEP.

Proof. Let U := ΠN
i=1Ui and fix an arbitrary sequence γn → +∞. According to Theorem

2.3, each NEPγn has a Nash equilibrium uγn ∈ U . By definition, ai ≤ uγn

i ≤ bi, a.e.Ω.

Therefore, the sequence of equilibria {uγn} is uniformly bounded in L2(Ω)
N
. As U is weakly

closed and L2(Ω)
N

a Hilbert space, there exists a subsequence, denoted by γ′n, and some

element u∗ ∈ U such that uγ
′
n ⇀ u∗ in L2(Ω)

N
.

According to the SUFR, there a sequence
{
vγ

′
n

}
⊂ U such that y(v

γ′
n

i , u
γ′
n

−i) ≥ ψ, a.e.Ω.

As in the previous argument, we can deduce the uniform boundedness of
{
vγ

′
n

}
in L2(Ω)

N
.

Thus, there exists a constant M ≥ 0, independent of γ′n, such that

1

2
||y(uγ

′
n

i , u
γ′
n

−i)− yid||2L2(Ω) +
αi

2
||uγ

′
n

i ||2L2(Ω) ≤

1

2
||y(uγ

′
n

i , u
γ′
n

−i)− yid||2L2(Ω) +
αi

2
||uγ

′
n

i ||2L2(Ω) +
γ′n
2
||(ψ − y(u

γ′
n

i , u
γ′
n

−i))+||
2
L2(Ω) ≤

1

2
||y(vγ

′
n

i , u
γ′
n

−i)− yid||2L2(Ω) +
αi

2
||vγ

′
n

i ||2L2(Ω) ≤M.

Using the weak lower semicontinuity of the L2(Ω)-norm, it follows that

1

2
||y(u∗i , u∗−i)−yid||2L2(Ω)+

αi

2
||u∗i ||2L2(Ω) ≤ lim inf

n→+∞

[
1

2
||y(uγ

′
n

i , u
γ′
n

−i)− yid||2L2(Ω) +
αi

2
||uγ

′
n

i ||2L2(Ω)

]
.

Therefore,
γ′
n

2 ||(ψ − y(u
γ′
n

i , u
γ′
n

−i))+||2L2(Ω) is bounded as γ′n → +∞. But this can only hold

if ||(ψ − y(u
γ′
n

i , u
γ′
n

−i))+||2L2(Ω) → 0. Due to the complete continuity of the solution operator

y from L2(Ω)
N

to H1
0 (Ω) and the continuity of the embedding H1

0 (Ω) ↪→ L2(Ω), we also

have ||(ψ − y(u
γ′
n

i , u
γ′
n

−i))+||2L2(Ω) → ||(ψ − y(u∗i , u
∗
−i))+||2L2(Ω). Thus, u∗ ∈ U such that
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y(u∗i , u
∗
−i) ≥ ψ, a.e.Ω. In other words, there exists a subsequence of equilibria of the

NEPγn that converges weakly to a feasible strategy for the GNEP (2.1). Our next step is
to demonstrate that u∗ is also a generalized Nash equilibrium.

Define Xi :=
{
vi ∈ Ui

∣∣y(vi, u∗−i) ≥ ψ, a.e.Ω
}
. Note that Xi is non-empty due to the

SUFR condition. Since for all such γ′n, u
γ′
n is a Nash equilibrium for NEPγ′

n
, it holds that

1

2
||y(uγ

′
n

i , u
γ′
n

−i)− yid||2L2(Ω) +
αi

2
||uγ

′
n

i ||2L2(Ω) +
γ′n
2
||(ψ − y(u

γ′
n

i , u
γ′
n

−i))+||
2
L2(Ω) ≤

1

2
||y(vi, u

γ′
n

−i)− yid||2L2(Ω) +
αi

2
||vi||2L2(Ω) +

γ′n
2
||(ψ − y(vi, u

γ′
n

−i))+||
2
L2(Ω), ∀vi ∈ Xi, (2.6)

Now, for any vi ∈ Xi, we construct a strongly convergent sequence v
γ′
n

i such that v
γ′
n

i →L2(Ω)

vi and y(v
γ′
n

i , u
γ′
n

−i) ≥ ψ.
According to the SUFR condition, there exists a constant ε > 0 and, for each n, a point

vni ∈ Ui such that y(vni , u
γ′
n

−i) ≥ ψ + ε, a.e.Ω. Clearly,{vni } is bounded in L2(Ω). Since Ui is
convex, the points vni (λ) = λvni + (1 − λ)vi ∈ Ui for all λ ∈ (0, 1). Due to the linearity of
the solution operator y, it holds for each λ ∈ (0, 1) that

y(vni (λ), u
γ′
n

−i) = y(λvni + (1− λ)vi, u
γ′
n

−i)

= λy(vni , u
γ′
n

−i) + (1− λ)y(vi, u
γ′
n

−i)

≥ λ(ψ + ε) + (1− λ)y(vi, u
γ′
n

−i).

As discussed at the beginning of this section, the assumed regularity of ∂Ω, with r > d,

d ∈ {2, 3}, yields y(vi, ·) : L2(Ω)
N−1 → W 1,r

0 (Ω). Thus, by the Sobolev and Rellich-
Kondrachov theorems, we can continuously and compactly embed solutions of the state
equation into the space of continuous functions over Ω. This renders the solution operator

y(vi, ·) completely continuous from L2(Ω)
N−1 → C(Ω). It follows from the convergence

of y(vi, u
γ′
n

−i) → y(vi, u
∗
−i) in C(Ω) that there exists a subsequence k(n) ∈ N such that

y(vi, u
k(n)
−i ) ≥ ψ−1/2n on Ω for all n ≥ 1. By defining λn := (1/2n) /(ε+ 1/2n) , we obtain a

null sequence, whose elements all lie in the interval (0, 1), and for which y(v
k(n)
i (λn), u

k(n)
−i ) ≥

ψ, a.e.Ω. Then since

||vk(n)i (λn)− vi||L2(Ω) = ||λnvk(n)i + (1− λn)vi − vi||L2(Ω)

= |λn|||vk(n)i − vi||L2(Ω)

≤ |λn|(||vk(n)i ||L2(Ω) + ||vi||L2(Ω)),

it follows that v
k(n)
i (λn) → vi, and therefore in L2(Ω). This implies then that any element

vi ∈ Ui such that y(vi, u
∗
−i) ≥ ψ, a.e.Ω can be obtained by such a sequence

{
v
k(n)
i (λn)

}∞

n=1
.

Upon substitution of this sequence into (2.6), passing to the limit inferior over γ′n yields
the following inequality for all i = 1, . . . , N :

1

2
||y(u∗i , u∗−i)− yid||2L2(Ω) +

αi

2
||u∗i ||2L2(Ω) ≤

1

2
||y(vi, u∗−i)− yid||2L2(Ω) +

αi

2
||vi||2L2(Ω), ∀vi ∈ Xi

as was to be shown.
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Remark 2.7. Note that by relaxing the SUFR condition to only hold for those u−i ∈ U−i

such that Γi(u−i) ̸= ∅, we cannot guarantee that Γi(u
n
−i) ̸= ∅. Hence, there may exist

vi ∈ Xi for some i that cannot be “reached” be a sequence of feasible vni as constructed in
the proof.

Now that we have shown the existence of a Nash equilibrium for the GNEP (2.3), we
derive first order optimality conditions, which will be needed in the coming sections for the
development of an implementable solution method.

Proposition 2.8 (Necessary and Sufficient Optimality Conditions NEPγ). For any
γ > 0, a feasible strategy uγ is a Nash equilibrium for NEPγ (2.5) if and only if there exists
a yγ ∈ H1

0 (Ω) and for all i = 1, . . . , N , a pγi ∈ H1
0 (Ω) such that

uγi =
1

αi
χBip

γ
i − (

1

αi
χBip

γ
i − bi)+ + (−(

1

αi
χBip

γ
i − ai))+, (2.7)

−∆yγ = χBiu
γ
i +

N∑
k=1
k ̸=i

χBk
uγk + f, (2.8)

−∆pγi = yid − yγ + γ(ψ − yγ)+. (2.9)

Proof. By applying the argument used for (2.4) to the current setting, we can derive first-
order necessary and sufficient optimality conditions for a Nash equilibrium uγ of the form:
Find uγ ∈ U such that for all i = 1, . . . , N

(αiu
γ
i , v−u

γ
i )L2(Ω)+(yui(u

γ
i , u

γ
−i)

∗(y(uγi , u
γ
−i)−y

i
d−γ(ψ−y(u

γ
i , u

γ
−i))+), v−u

γ
i )L2(Ω) ≥ 0,∀v ∈ Ui.

By letting −pγi = (−∆)−1(y(uγi , u
γ
−i) − yid − γ(ψ − y(uγi , u

γ
−i))+), we obtain the equivalent

coupled system for each i = 1, . . . , N :

(αiu
γ
i − χBip

γ
i , v − uγi )L2(Ω) ≥ 0, ∀v ∈ Ui

The nonsmooth equation (2.7) arises from the equivalence between the variational inequality
and the projection of 1

αi
χBip

γ
i onto Ui, (cf. [28, 42]), whereas (2.8) and (2.9) follow from

the definitions of pγ and yγ .

The following constraint qualification is based on one developed in [41], see also [24, 32].

Definition 2.9 (A Uniform Range Space Condition). We say that the GNEP satisfies
the uniform range space constraint qualification (URS) with respect to the control and
state spaces L2(Ω),W 1,r

0 (Ω), respectively, with 1 ≤ r ≤ +∞, if the following holds for all
i = 1, . . . , N : There exists a δi > 0 and a bounded set

Mi ⊂
{
(v, z) ∈ L2(Ω)×W 1,r

0 (Ω) |v ∈ Ui, z ≥ ψ, a.e.Ω
}

such that for all u−i ∈ U−i

Bδi(0) ⊂

−∆y − χBiui −
N∑

k=1
k ̸=i

χBk
uk − f

∣∣∣∣∣∣∣ (ui, y) ∈Mi


where Bδi(0) is the open ball of radius δi in W

−1,r(Ω).
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The URS condition is needed to ensure the existence of an adjoint state for the GNEP
(2.3). Together the constraint qualifications will be needed to guarantee the convergence of
stationary points which satisfy (2.7)-(2.9). Nevertheless, we show in the following lemma
that the SUFR condition in fact implies the URS condition. Note that M(Ω) represents the
space of all regular bounded Borel measures, i.e. the topological dual of C(Ω).

Lemma 2.10 (SUFR ⇒ URS). Under the standing data assumptions, suppose that the
GNEP (2.3) satisfies the SUFR condition. Then the URS condition holds with respect to
the control and state spaces L2(Ω) and W 1,r

0 (Ω), where r > d, if d > 1.

Proof. Based on the data assumptions, there exists a constant C > 0 such that for all
y ∈ W 1,r

0 (Ω), ||y||W 1,r
0 (Ω) ≥ C||y||C(Ω). In addition, we know that the inverse operator

(−∆)−1 is bounded in the operator norm || · ||op from W−1,r(Ω) to W 1,r
0 (Ω). Suppose then

that δ > 0 with

δ ≤ Cε

2||(−∆)−1||op
,

where the positive constant ε is taken from the definition of the SUFR condition.

Fix an arbitrary feasible strategy u for the GNEP (2.3). By the SUFR condition and
regularity assumptions on ∂Ω, there exists a y ∈W 1,r

0 (Ω) and uδi ∈ Ui such that

−∆y − χBiu
δ
i −

N∑
k=1
k ̸=i

χBk
uk − f = 0 and y ≥ ψ + ε, a.e.Ω.

Now let wδ ∈ W−1,r(Ω) such that ||wδ||W−1,r(Ω) < δ and yδ ∈ W 1,r
0 (Ω) such that −∆yδ =

wδ. Then

C||yδ||C(Ω) ≤ ||yδ||W 1,r
0 (Ω) = ||(−∆)−1(wδ)||W 1,r

0 (Ω) ≤ ||(−∆)−1||op||wδ||W−1,r(Ω) <
Cε

2
.

Therefore, −ε/2 ≤ yδ ≤ ε/2 for all x ∈ Ω, from which it follows that y + yδ ≥ ψ + ε/2 ≥
ψ, a.e.Ω. Finally, we observe that

−∆(y + yδ)− χBiu
δ
i −

N∑
k=1
k ̸=i

χBk
uk − f = −∆yδ = wδ

and

||yδ+y||W 1,r
0 (Ω) ≤ Cε/2+||y||W 1,r

0 (Ω) = Cε/2+||(−∆)−1(χBiu
δ
i+

N∑
k=1
k ̸=i

χBk
uk+f)||W 1,r

0 (Ω) ≤

Cε/2 + C ′||(−∆)−1||op(V ol(Bi)
1/2||uδi ||L2(Ω) +

N∑
k=1
k ̸=i

V ol(Bk)
1/2||uk||L2(Ω) + ||f ||L2(Ω)),

where C ′ > 0 is the constant arising from the (continuous) embedding L2(Ω) ↪→W−1,r(Ω).
In light of the boundedness of the sets Ui, i = 1, . . . , N , the assertion follows.
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Theorem 2.11 (Convergence of Stationary Points). Suppose the GNEP (2.3) satisfies

the SUFR condition. Then there exist sequences γn → +∞, {un} ⊂ L2(Ω)
N
, {yn} ⊂

W 1,r
0 (Ω), and {pn} ⊂ W 1,s

0 (Ω)N along with u∗ ∈ L2(Ω)
N
, y∗ ∈ W 1,r

0 (Ω), p∗ ∈ W 1,s
0 (Ω)N ,

and λ∗ ∈ M(Ω) where, for all i = 1, . . . , N :

uni →L2(Ω) u
∗
i , yn →W 1,r

0 (Ω) y
∗, pni ⇀W 1,s

0 (Ω) p
∗
i , γn(ψ − yn)+ ⇀M(Ω) λ

∗

such that (uni , y
n, pni ) satisfies (2.7)-(2.9) and

u∗i =
1

αi
χBip

∗
i − (

1

αi
χBip

∗
i − bi)+ + (−(

1

αi
χBip

∗
i − ai))+ (2.10)

−∆y∗ = χBiu
∗
i +

N∑
k=1
k ̸=i

χBk
u∗k + f (2.11)

−∆p∗i = yid − y∗ + λ∗, (2.12)

⟨λ∗, φ⟩M(Ω),C(Ω) ≥ 0, ∀φ ∈ C(Ω) : φ ≥ 0, y∗ ≥ ψ, a.e.Ω, ⟨λ∗, y∗ − ψ⟩M(Ω),C(Ω) = 0.

(2.13)

Proof. According the Theorem 2.6, there exists a sequence γn → +∞ along with a sequence

{un} ⊂ L2(Ω)
N

of Nash equilibria for the NEPγn that converges weakly to a Nash equilib-
rium u∗ for the GNEP (2.3) in the sense that for each i, uni ⇀L2(Ω) u

∗
i . It follows then from

Proposition 2.8 that there exists a yn ∈ H1
0 (Ω) and, for each i ∈ {1, . . . , N}, a pni ∈ H1

0 (Ω)
such that the relations (2.7)-(2.9) hold at (uni , y

n, pni ) with γ = γn. Clearly, {yn} is bounded
in L2(Ω). Given the assumptions of ∂Ω, the sequences {yn} and {pni }n are contained in

W 1,r
0 (Ω), for all i = 1, . . . , N . We begin by demonstrating the assertions on the sequences

of adjoint states {pni }.
Let (ui, y) ∈Mi, where Mi is the bounded subset of L2(Ω)×W 1,r

0 (Ω) given by the URS
condition. Multiplying (2.9) by yn − y, we obtain

⟨−∆pni , y
n − y⟩H−1,H1

0
− γn

∫
Ω

(ψ − yn)+(y
n − y)dx =

∫
Ω

(yid − yn)(yn − y)dx

⇔ ⟨−∆pni , y
n − y⟩H−1,H1

0
− γn

∫
Ω

(ψ − yn)+(y
n − ψ + ψ − y)dx =

∫
Ω

(yid − yn)(yn − y)dx

⇔ ⟨−∆pni , y
n − y⟩H−1,H1

0
+ γn

∫
Ω

(ψ − yn)2+ = γn

∫
Ω

(ψ − yn)+(ψ − y)dx

+

∫
Ω

(yid − yn)(yn − y)dx

Then since ψ − y ≤ 0, a.e.Ω, it must hold that

⟨−∆pni , y
n−y⟩H−1,H1

0
≤ ⟨−∆pni , y

n−y⟩H−1,H1
0
+γn

∫
ω

(ψ−yn)2+ ≤
∫
Ω

(yid−yn)(yn−y)dx.

(2.14)

Clearly, yn−y ∈W 1,r
0 (Ω), which in turn implies that−∆(yn−y) ∈W−1,r(Ω). It follows then

that ⟨−∆pni , y
n − y⟩H−1,H1

0
= ⟨pni ,−∆(yn − y)⟩W 1,s

0 ,W−1,r . Since r > 2, W 1,r
0 (Ω) ↪→ L2(Ω)

continuously. Thus, every L2(Ω)-function φ defines a bounded linear functional on W 1,r
0 (Ω)
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via (φ, ·)L2(Ω). This allows us to make the following calculation

⟨pni ,−∆(yn − y)⟩W 1,s
0 ,W−1,r =

⟨pni ,−∆yn − χBi
ui −

N∑
k=1
k ̸=i

χBk
unk − f +∆y + χBi

ui +
N∑

k=1
k ̸=i

χBk
unk + f⟩W 1,s

0 ,W−1,r =

⟨pni , χBi(u
n
i − ui) + ∆y + χBiui +

N∑
k=1
k ̸=i

χBk
unk + f⟩W 1,s

0 ,W−1,r =

(pni , χBi(u
n
i − ui))L2(Ω) + ⟨pni ,∆y + χBiui +

N∑
k=1
k ̸=i

χBk
unk + f⟩W 1,s

0 ,W−1,r . (2.15)

Next, we show that the term (pni , χBi(u
n
i −ui))L2(Ω) is bounded. Using (2.7), we deduce the

existence of multipliers λ
n

i , λ
n
i ∈ L2(Ω) such that

λ
n

i ≥ 0, a.e.Ω, (λ
n

i , u
n
i − bi)L2(Ω) = 0, λni ≥ 0, a.e.Ω, (λni , ai − ui)L2(Ω) = 0.

and χBip
n
i = αiu

n
i + λ

n

i − λni . But then

(pni , χBi(u
n
i − ui))L2(Ω) = (χBip

n
i , u

n
i − ui)L2(Ω)

= (αiu
n
i + λ

n

i − λni , u
n
i − ui)L2(Ω)

= (αiu
n
i , u

n
i − ui)L2(Ω) + (λ

n

i , u
n
i − bi + bi − ui)L2(Ω)

− (λni , u
n
i − ai + ai − ui)L2(Ω)

= (αiu
n
i , u

n
i − ui)L2(Ω) + (λ

n

i , bi − ui)L2(Ω) − (λni , ai − ui)L2(Ω)

≥ (αiu
n
i , u

n
i − ui)L2(Ω). (2.16)

Combining (2.14)-(2.16), we obtain the inequality

⟨pni ,∆y+χBiui+
N∑

k=1
k ̸=i

χBk
unk +f⟩W 1,s

0 ,W−1,r ≤ (αiu
n
i , ui−uni )L2(Ω)+

∫
Ω

(yid−yn)(yn−y)dx

≤ |αi|||uni ||L2(Ω)||ui − uni ||L2(Ω) + ||yid − yn||L2(Ω)||yn − y||L2(Ω). (2.17)

Since (ui, y) ∈ Mi was arbitrarily chosen and Mi is bounded, taking the supremum over
both sides of (2.17) implies there exists a constant C > 0 such that

sup
φ∈W−1,r(Ω)

||φ||W−1,r(Ω)=1

⟨pni , φ⟩W 1,s
0 ,W−1,r ≤ δC.

It follows that {pni }n ⊂ W 1,s
0 (Ω) is bounded. Given 1 < r < +∞, W 1,s

0 (Ω) is a reflexive
Banach space. Therefore, there exists a subsequence of {pni }n, denoted still by n, and an

element p∗i ∈ W 1,s
0 (Ω) such that pni ⇀W 1,s

0 (Ω) p
∗
i . By the Rellich-Kondrachov theorem, the

embedding W 1,s
0 (Ω) ↪→ L2(Ω) is compact, in which case, there exists a further subsequence

of {pni }n, denoted still by n, such that pni →L2(Ω) p
∗
i . As the max(0, ·)-operator is Lipschitz
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continuous from L2(Ω) to L2(Ω), the strong convergence of pni to p∗i implies that uni →L2(Ω)

u∗i for each i = 1, . . . , N . Furthermore, we know that the solution operator y(·) of the state
equation is (completely) continuous from L2(Ω) to W 1,r

0 (Ω), from which can deduce the
strong convergence of the sequence yn := y(un) in W 1,r

0 (Ω) to y∗. These implications lead
to the equations (2.10) and (2.11).

Next, we turn our attention to the sequence λn := γn(ψ − yn)+. By the previous
arguments, in particular due to the uniform boundedness of ∆pni in W−1,s(Ω), we have
from (2.9) that {λn} is bounded in W−1,s(Ω). Moreover, the SUFR condition yields the
existence of a constant ε > 0 and a (bounded) sequence of controls {ũni } ⊂ Ui such that
the sequence {ỹn} defined by ỹn := y(ũni , u

n
−i) satisfies ỹn − ψ ≥ ε, a.e.Ω for all n ≥ 1.

Since ỹn must also solve the state equation, it enjoys the increased regularity of yn, i.e.,
ỹn ∈W 1,r

0 (Ω). Multiplying (2.9) by ỹn yields the relation∫
Ω

λnỹ
n = ⟨−∆pni , ỹ

n⟩W−1,s,W 1,r
0

+ (yn − yid, ỹ
n)L2(Ω).

Using the continuity of the embeddingW 1,r
0 (Ω) ↪→ L2(Ω), the boundedness of the sequences

{ũni } and
{
un−i

}
, and the definition of the solution operator y(·), we can deduce the existence

of constants C,C ′ > 0 such that

||ỹn||L2(Ω) ≤ C||ỹn||W 1,r
0

= C||(−∆)−1(χBi ũ
n
i +

N∑
k=1
k ̸=i

χBk
unk + f)||W 1,r

0
≤

C||(−∆)−1||L(L2(Ω),W 1,r
0 )((Vol(Bi))

1/2||ũni ||L2(Ω)+
N∑

k=1
k ̸=i

(Vol(Bk))
1/2||unk ||L2(Ω)+||f ||L2(Ω)) ≤ C ′.

Therefore, there exists a constant C ′′ > 0, independent of n, such that∫
Ω

λnỹ
ndx ≤ |

∫
Ω

λnỹ
ndx| = |⟨λn, ỹn⟩W−1,s,W 1,r

0
| ≤ ||λn||W−1,s ||ỹn||W 1,r

0
≤ C ′′. (2.18)

Moreover, we have∫
Ω

λnỹ
ndx =

∫
Ω

λn(ỹ
n − ψ + ψ)dx =

∫
Ω

λn(ỹ
n − ψ)dx+

∫
Ω

λnψdx.

By substitution into (2.18), it follows that∫
Ω

λn(ỹ
n − ψ)dx ≤ C ′′ −

∫
Ω

λnψdx

Defining the subset An := {x ∈ Ω |ψ − yn > 0}, we then deduce∫
Ω

λnψdx =

∫
An

λnψdx ≥
∫
An

λny
ndx =

∫
Ω

λny
ndx = ⟨λn, yn⟩W−1,s,W 1,r

0
.

Thus,

0 ≤ ε

∫
Ω

λndx ≤
∫
Ω

λn(ỹ
n − ψ)dx ≤ C ′′ −

∫
Ω

λnψdx < C ′′ − ⟨λn, yn⟩W−1,s,W 1,r
0

≤ C ′′ + |⟨λn, yn⟩W−1,s,W 1,r
0

| ≤ 2C ′′.
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Using the SUFR condition and the pointwise almost-everywhere non-negativity of λn, it
holds that

0 ≤
∫
Ω

λndx = ||λn||L1 ≤ 2ε−1C ′′,

from which it follows that the sequence {λn} is bounded in L1(Ω). Therefore, there exists a
subsequence of λn, denoted still by n and an element λ∗ ∈ M(Ω) such that {λn} converges
in the weak topology σ(M(Ω), C(Ω)) to λ∗ (see e.g., Theorem IV.6.2 in [11] or Corollary
2.4.3 in [3]). The limiting adjoint equation (2.12) thus follows.

It remains to verify the complementarity relations (2.13). The feasibility of y∗ fol-
lows from the fact that yn →W 1,r

0 (Ω) y
∗ implies yn − ψ →L1(Ω) y

∗ − ψ. Hence, there

exists a subsequence of {yn − ψ} that converges pointwise almost everywhere to y∗ − ψ,
in which case, y∗ ≥ ψ, a.e.Ω. Now let φ ∈ C(Ω) such that φ ≥ 0 on Ω. Then 0 ≤
(λn, φ)L2(Ω) = ⟨λn, φ⟩M(Ω),C(Ω). Passing to the limit in n, yields ⟨λ∗, φ⟩M(Ω),C(Ω) ≥ 0.

Since W 1,r
0 (Ω) ↪→ C(Ω) is continuous and 0 ≥ (λn, y

n − ψ)L2(Ω) = ⟨λn, yn − ψ⟩M(Ω),C(Ω),

⟨λ∗, y∗ −ψ⟩M(Ω),C(Ω) ≤ 0 holds. By the feasibility of y∗, the latter holds as an equality.

Remark 2.12. Due to the convexity and differentiability properties of the individual prob-
lems, any feasible strategy u∗, for which there exist y∗ and multipliers p∗ and λ∗ as in
Theorem 2.11 such that (2.10)-(2.13) hold for all i, is a generalized Nash equilibrium. Thus,
these conditions are both necessary and sufficient for a generalized Nash equilibrium.

This concludes our theoretical study of the GNEP. Before continuing, we note that one
could easily extend some of these arguments to include bilateral constraints on the state
and/or more general (linear) differential operators than −∆, provided the solutions are
regular enough. One could also consider more control constraints, assuming they remain
convex and bounded, however the simple reformulation of the variational inequality used in
the previous proposition may no longer be available.

3 The Algorithm

Due to the constructive nature of Theorem 2.6 and 2.11, we can develop an infinite di-
mensional solution algorithm for the GNEP (2.3). The algorithm works by approximating
a generalized Nash equilibrium for (2.3) by Nash equilibria obtained for each NEPγ along
some sequence of constants {γ} with γ → +∞. We describe this outer loop in Algorithm 1.
It follows from Theorem 2.11 that the iterates (uγ , yγ , pγ) of Algorithm 1 converge (along

a subsequence of γ) to a point (u∗, y∗, p∗) in L2(Ω)
N ×W 1,r

0 (Ω) ×W 1,s
0 (Ω)N as γ → +∞

where u∗ is a Nash equilibrium for (2.3) and for which there exists a λ∗ ∈ M(Ω) such
that (u∗, y∗, p∗, λ∗) satisfies (2.10)-(2.13). Note that the data needed for Algorithm 1 also
includes the model data, e.g., αi, y

i
d, f , ai, bi, etc.

Algorithm 1
Data: γ0 > 0 N ∈ N.
1: Choose (u0, y0, p0) ∈ L2(Ω)

N ×H1
0 (Ω)×H1

0 (Ω)
N

and set k := 0.
2: repeat.
3: Solve the coupled optimality conditions derived from (2.7)-(2.9) with γ = γk to obtain
(uk+1, yk+1, pk+1) using initial values (uk, yk, pk) for the solution algorithm.
4: Choose γk+1 > γk.
5: Set k := k + 1.
6: until some stopping criterion is fulfilled.
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In order to find an equilibrium for each γk in Algorithm 1, we propose that one solves
the coupled system of necessary and sufficient first-order optimality conditions (2.7)-(2.9)
derived in Proposition 2.8.

Consider the conditions (2.7)-(2.9) for all i = 1, · · · , N as one comprehensive system

and let qi := (−∆)−1(yid), α̃i = 1/αi, f̃ :=
∑N

i=1 χBi α̃iqi + f , ãi := ai − α̃iχBiqi, and

b̃i := bi − α̃iχBiqi. Then we can condense the system of nonsmooth equations to a problem
in two variables:

−∆y =

N∑
i=1

χBi

(
α̃ip− (α̃iχBip− b̃i)+ + (ãi − α̃iχBip)+

)
+ f̃ (3.1)

−∆p = γk(ψ − y)+ − y (3.2)

Once this system is solved, then the controls ui can be easily obtained by reverse substitution.
By letting Fγk

: H1
0 (Ω)×H1

0 (Ω) → H−1(Ω)×H−1(Ω) be defined by

Fγk
(y, p) :=

[
−∆y −

∑N
i=1 χBi

(
α̃ip− (α̃iχBip− b̃i)+ + (ãi − α̃iχBip)+

)
− f̃

−∆p− γk(ψ − y)+ + y

]
,

we seek a solution to the equation Fγk
(y, p) = 0. Since Fγk

is nonsmooth, we will need
a generalized derivative concept in order to design an algorithm based on a (nonsmooth)
Newton step.

In the following definition, taken from [8] and [20], let X,Y be Banach spaces, D ⊂ X
an open subset of X, and F : D → Y .

Definition 3.1. The mapping F : D ⊂ X → Y is said to be Newton-differentiable on the
open subset U ⊂ D, if there exists a family of mappings G : U → L(X,Y ) such that

lim
h→0

1

||h||X
||F (x+ h)− F (x)−G(x+ h)h||Y = 0,

for every x ∈ U .

One typically refers to G as the Newton derivative for F on U . A well-known result from
[20], shows that

Gδ(y)(x) =

 1 if y(x) > 0
0 if y(x) < 0
δ if y(x) = 0

(3.3)

for every y ∈ X and δ ∈ R is a Newton-derivative of the max(0, ·), provided one has
max(0, ·) : Lp(Ω) → Lq(Ω) with 1 ≤ q < p ≤ ∞. Suppose now that we wish to solve the
equation F (x) = 0. If a Newton-derivative of F is available, then a generalized Newton step
can be derived. The following result is well known, see e.g., [8, 20].

Theorem 3.2. Suppose that F (x∗) = 0 and that F is Newton-differentiable on an open
neighborhood U of x∗ with Newton derivative G. If G(x) is nonsingular for all x ∈ U and
the set

{
||G(x)−1||L(Y,X) : x ∈ U

}
is bounded, then the semismooth Newton iteration

xl+1 = xl −G(xl)
−1F (xl), l = 0, 1, 2, ... (3.4)

converges superlinearly to x∗, provided ||x0 − x∗||X is sufficiently small.
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At this point, we have enough tools to develop a semismooth Newton algorithm. Suppose
(y, p) ∈ H1

0 (Ω)×H1
0 (Ω) is the current iterate. We define the following approximations of

the active sets:

Aa
i := {x ∈ Ω |ãi(x)− α̃ip(x) > 0} , Ab

i :=
{
x ∈ Ω

∣∣∣α̃ip(x)− b̃i(x) > 0
}
,

Ay := {x ∈ Ω |ψ(x)− y(x) > 0} .

Additionally, we define approximations for the inactive sets by

Ii := Ω \ (Aa
i ∪Ab

i ), Ji := Ω \Ay.

In the following, we let (δy, δp) denote the difference between the new iterate and previous
iterate (y, p) in the Newton step. Then by using G0 in (3.3) as the Newton-derivative of the
max(0, ·) operator, one can easily show that (3.4) (applied to Fγk

(y, p) = 0) is equivalent to
solving the following system in (δy, δp):[

−∆
∑N

i=1 α̃iχBiχIi

I + γkχAy −∆

] [
δy
δp

]
= −F (y, p), (3.5)

Clearly, for every fixed (y, p) ∈ H1
0 (Ω)×H1

0 (Ω) and γk > 0, the operator

Gγk
(y, p) =

[
−∆

∑N
i=1 α̃iχBiχIi

I + γkχAy −∆

]
is a bounded linear operator from H1

0 (Ω) × H1
0 (Ω) → H−1(Ω) × H−1(Ω). Moreover, this

operator can be shown, using standard PDE-theory, to be invertible independent of the
choice of y or p. Hence, the set{

||Gγk
(y, p)−1||L(H−1,H1

0 )
: (y, p) ∈ H1

0 (Ω)×H1
0 (Ω)

}
is uniformly bounded. Thus, for each γk we are guaranteed local superlinear convergence of
the nonsmooth Newton step. If, in addition, the SUFR condition holds, then the sequence
of iterates converges to a generalized Nash equilibrium.

In our future work, we will include the implementation of a more properly globalized
Newton step, following [14, 16, 34], see also [21] for a function space treatment of these
issues. Moreover, we note that one can easily implement a nonlinear multigrid method such
as the full approximation scheme for optimization problems, see [6].

4 Numerical Experiments

Throughout this section, we let N = 4 and Ω = (0, 1) × (0, 1). In order to discretize the
problem, we considered a uniform grid with mesh size h, and we discretized the Laplacian
−∆ by finite differences using a standard 5-point stencil.

In our experiments, we used a nested grid strategy using a standard 9-point prolongation
to pass from the coarse to the fine mesh, cf. [18]. For the inner loop, i.e. the Newton step,
we based the stopping criterion on the maximum of the observed rate of local superlinear
convergence and the H−1-norm of the reduced state and adjoint equations with tolerance
10−6 (for sufficiently fine mesh sizes). On coarse meshes, we used the less stringent stopping
criterion based only on the residual of the system.

Referring to [19] Section 4. Example 1, we updated γ according to the mesh size. That
is, given h, we updated γ until Cγ−1 > h2, for some constant C > 0, by setting γk+1 =
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h = 1/128 h = 1/256 h = 1/512
0.25911 0.305 0.29818

ql 0.065435 0.013243 0.016935
4.4273e-10 7.9809e-09 2.868e-08

0.035755 0.041051 0.035415
rl 0.0023397 0.00054362 0.00059974

1.0358e-12 4.3386e-12 1.7201e-11

6.9274 5.1778 13.9437
sl 1.0617e-10 9.1398e-10 7.502e-09

9.9346e-11 8.586e-10 7.5513e-09

Table 1: Behavior of the Newton Step in Example 4.1

2γk. Upon fulfillment of this inequality, we refined the mesh (reduced h) and continued.
This refinement strategy for γ and h is considered optimal when no extra assumptions
are made on the regularity of the solutions y. One topic of future research will be to
develop a path-following strategy for the γ-updates as developed in [23, 22], in order to avoid
unnecessary/costly iterations. For all our experiments, we initialized with (y, p) = (0, 0).

Example 4.1. For this example, we let ai = −10, bi = 10 for i = 1, . . . , 4, and randomly
generated the αi using: α1 = 2.1853, α2 = 2.0942, α3 = 2.8730, α4 = 2.0866. For (x1,x2) ∈ Ω
we defined the obstacle ψ by

ψ(x1,x2) = cos(5
√
(x2

1 − 0.5)2 + (x2
2 − 0.5)2).

We used the partition

B1 =

]
0,

1

2

[
×
]
0,

1

2

[
, B2 =

]
1

2
, 1

[
×
]
0,

1

2

[
, B3 =

]
0,

1

2

[
×
]
1

2
, 1

[
, B4 =

]
1

2
, 1

[
×

]
1

2
, 1

[
,

and by letting A := [0.25, 0.75]× [0.25, 0.75] ⊂ R2, we defined the fixed righthand side f by

f = −χA∆ψ − 11.

Finally, we set yid = χAψ. Refer to Table 2 for the performance of the outer loop, where
γmax represents the penalty parameter at which Cγ−1 > h2 and ‘iter’ is the total number
of iterations on mesh size h. Here C = 1e3. We plotted the generalized Nash equilibrium
in Figure 1 and associated state and multiplier λ∗ in Figure 2. In Table 1, we provide the
quantities

ql := ||yl+1 − yl||H1
0
/||yl − yl−1||H1

0
, rl := ||yl+1 − yl||H1

0

sl := ||∆yl +
N∑
i=1

χBi

(
α̃ipl − (α̃iχBipl − b̃i)+ + (ãi − α̃iχBipl)+

)
+ f ||H−1+

||∆pl + γ(ψ − yl)+ + yl||H−1

for three loops of the nonsmooth Newton step, for γ = γmax, to demonstrate the super-
linear convergence and overall behavior of the step. Note that ql → 0 implies superlinear
convergence (this is an immediate consequence of Lemma 8.2.3 in [10]).

Example 4.2. For this example, we let ai = −12; bi = 12 for i = 1, . . . , 4, and randomly
generated the αi using: α1 = 2.8859, α2 = 4.3374, α3 = 2.5921, α4 = 3.9481. For (x1,x2) ∈ Ω
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γmax iter h
8192 16 1/4
32768 5 1/8
131072 2 1/16
524288 6 1/32
2097152 5 1/64
8388608 8 1/128
33554432 8 1/256
134217728 8 1/512

Table 2: Behavior of the Outer Loop in Example 4.1

Figure 1: (u∗1, u
∗
2, u

∗
3, u

∗
4) for Example 4.1

we defined ψ(x1,x2) = cos(5
√
(x2

1 − z1i )
2 + (x2

2 − z2i )
2) + .1. We used here Bi = Ω for all i

and set f = 1. Finally, we defined ξi(x1,x2) = 1e3max(0, 4(0.25−max(|x1−z1i |, |x2−z2i |)))
with z1 := (0.25, 0.75, 0.25, 0.75, 0.5) and z2 = (0.25, 0.25, 0.75, 0.75, 0.5) and set y1d = ξ1−ξ4,
y2d = ξ2−ξ3, y3d = ξ3−ξ2, y4d := ξ4−ξ1. As in Example 4.1, we updated γ in accordance with
the mesh size h using Cγ−1

k > h2, with C = 1e3. We refer to Table 4 for the performance
of the outer loop algorithm, where γmax and iter are defined as in Table 2. To illustrate the
local superlinear convergent behavior of the algorithm, we provide Table 3. See Example 4.1
for the definition of ql, rl, sl. We plotted the generalized Nash equilibrium in Figure 3 and
associated state and multiplier λ∗ in Figure 4 and the active sets for the control constraints
in Figure 5.

h = 1/128 h = 1/256 h = 1/512
0.86665 2.7241 1.2221

ql 0.30953 0.40752 0.25405
0.77642 0.31822 0.3131

1.3829e-11 0.26581 0.40521
1.1597e-10 0.0026788

3.1146e-07

0.51824 1.6909 1.058
rl 0.16041 0.68906 0.26878

0.12455 0.21927 0.084154
1.7224e-12 0.058284 0.0341

6.7594e-12 9.1348e-05
2.8451e-11

21.8022 332.9043 222.4632
4.9505e-10 8.6492 3.2809e-08

sl 5.0033e-10 4.0237e-09 0.21287
4.7248e-10 3.9826e-09 0.25647

4.0435e-09 3.2643e-08
3.2628e-08

Table 3: Behavior of the Newton Step in Example 4.2
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Figure 2: l: y∗ (dark) and ψ (light); r: λ∗ for Example 4.1

Figure 3: (u∗1, u
∗
2, u

∗
3, u

∗
4) for Example 4.2

Figure 4: l: y∗ (dark) and ψ (light); r: λ∗ for Example 4.2

Figure 5: Active Sets for Example 4.2 (ui = bi) black
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γmax iter h
8192 17 1/4
32768 3 1/8
131072 4 1/16
524288 6 1/32
2097152 7 1/64
8388608 11 1/128
33554432 12 1/256
134217728 13 1/512

Table 4: Behavior of the Outer Loop in Example 4.2
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