
2013



226 F. FACCHINEI, C. KANZOW AND S. SAGRATELLA

include academic problems, problems arising from real-world applications (e.g. Walrasian
equilibrium problems) and problems resulting from the discretization of infinite-dimensional
QVIs modelling diverse engineering and physical problems. For each problem we provide a
succinct, but complete description, along with Matlab files which allow the user to easily
obtain function values and derivatives and that can be easily incorporated in any solu-
tion routine developed in order to solve QVIs. It is hoped that the availability of this
collection, which we plan to maintain and enlarge, will stimulate the development of new
solution methods and will permit a uniform and fair comparison of existing and future algo-
rithms. The collection can freely be obtained by writing to facchinei@dis.uniroma1.it,
kanzow@mathematik.uni-wuerzburg.de or sagratella@dis.uniroma1.it.

The paper is organized as follows. In the next section we give a general overview of how
the library is organized and a detailed description of the Matlab routines and of how they
can be used. In particular, we describe the format in which the QVIs are represented and
show how to extract the necessary data (function values, gradients, Jacobians, or Hessians)
from the implementation of each test problem. The test problems themselves together with
some relevant information are given in Section 3. Note that a subset of these test problems
were already used to obtain the numerical results in the authors’ paper [4].

2 Test Problem Library

This section describes several classifications of the test problems to be given in the next
section. It also discusses the details of the possible inputs and outputs that are available for
the test problem files.

2.1 Classification of Test Problems

Each QVI, see (1.1), is defined by the function F and the point-to-set mapping K(x). We
assume that K(x) is defined as the intersection of a fixed set K̄ and a set K̃(x) that depends
on the point x:

K(x) = K̄ ∩ K̃(x).

The sets K̄ and K̃(x) are described by inequalities and equalities:

K̄ := {y ∈ ℜn | gI(y) ≤ 0, M Iy + vI = 0},

K̃(x) := {y ∈ ℜn | gP (y, x) ≤ 0, MP (x)y + vP (x) = 0}.

The constraints defining the set K̄ are individual constraints that are independent of x,
hence we use the superscript “I” in our notation (for individual/independent of x). On the
other hand, the constraints defining K̃(x) are parametric due to their dependence on x,
therefore, we use the superscript “P” (for parametric). We assume that gI(·) is a vector of

convex functions and that each component function of gPi (·, x) is convex for all x. When we
refer to the whole set of inequality or (linear) equality constraints, we use the notation

g(y, x) :=

(
gI(y)

gP (y, x)

)
, M(x)y + v(x) :=

(
M I

MP (x)

)
y +

(
vI

vP (x)

)
.

For each test problem, we therefore report F and the functions defining K(x) along with
few more information concerning origin of the problem, known characteristics (for example
monotonicity of F , uniqueness of the solution, etc). Furthermore, in some cases we also
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give some more details on the construction of the test problem (for example in the case of
a discretization of an infinite-dimensional problem).

Each problem in the test set comes with a simple problem classification which we explain
below. A problem is classified by the label [XXX/XX/n-mI -pI -mP -pP ]. The first character
in the label defines the type of the operator F . Possible values are:

L : F is linear (L = linear)

N : F is nonlinear (N = nonlinear).

The second character in the label defines the type of constraints gI of the problem. Possible
values are:

A : there are no constraints gI (A = absent)

B : gI defines only bounds on the variables (B = box/bound)

L : gI is linear (L = linear)

Q : gI is quadratic (Q = quadratic)

N : gI is nonlinear (N = nonlinear).

The third character in the label defines the type of constraints gP of the problem. The
classification below is based on the classes of constraints analyzed in [4], which are briefly
recalled below. We refer the interested reader to [4] for a more complete discussion of
these classes of constraints. Here we only note that they include most type of constraints
considered in the literature and have proven to be meaningful when it comes to the analysis
of algorithms. Possible values are:

A : there are no constraints gP (A = absent)

B : gP defines separable box (in the y-part) constraints only: a generic constraint has the
form ayi + b(x)− c ≤ 0 (B = box/bound)

L : gP defines separable linear (in the y-part) constraints only: a generic constraint has the
form aTy + b(x)− c ≤ 0 (L = linear)

O : gP defines constraints different from any of the above (O = other).

Characters immediately following the first slash indicate the primary origin and/or interest
of the problem (one or two characters are allowed here). Possible values are:

A : the problem is academic, that is, has been constructed specifically by researchers to
test one or more algorithms (A = academic)

R : the problem models some real problem: economic, physical, etc. (R = real)

D : the problem is the discretization of an infinite-dimensional problem (D = discretized).

The numbers after the second slash indicate the “dimensions” of the problem, in particular:

- n is the number of variables;

- mI is the number of inequality constraints defining K̄;

- pI is the number linear equalities in K̄;
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- mP is the number of inequality constraints defining K̃(x);

- pP is the number of equalities in the definition of K̃(x).

In Table 1 we report the list of all problems currently in the library, with the corresponding
labels.

Table 1: Problem list.
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2.2 Description of Matlab Functions

Each QVI test problem described in the next section is distributed as a single Matlab M-file
function, whose name is the same as that of the problem. For some of the larger problems, a
data file is also necessary which, again, has the same name as the problem (see below). All
these files are contained in a folder called QVILIB. For each problem, and given two points
y and x, the quantities given in Table 2 can be computed.

<QVI_name>(0) initializes the data that are used when invoking <QVI_name> with
other flags; does not return anything.
In particular sets, as global variables, the following “dimensions”:
nVar: number of variables
nIneq: total number of inequality constraints
nEq: total number of equality constraints
nIneqInd: number of inequality constraints independent of x
nEqInd: number of equality constraints independent of x

<QVI_name>(1,x) returns F (x)
<QVI_name>(2,x) returns JF (x), the Jacobian of F at x
<QVI_name>(3,x,y) returns g(y, x)
<QVI_name>(4,x,y) returns Jyg(y, x), the partial Jacobian of g with respect to y
<QVI_name>(5,x) returns Jh(x), the Jacobian of h(x) := g(x, x)
<QVI_name>(6,x) returns Jsi(x) for all i, the Jacobian of all functions

si(x) := Jygi(y, x)|y=x

<QVI_name>(7,x,y) returns M(x)y + v(x)
<QVI_name>(8,x) returns M(x)
<QVI_name>(9,x) returns Jt(x), the Jacobian of t(x) := M(x)x+ v(x)
<QVI_name>(10,x) returns J(Mi∗(x)

T ) for all i, where Mi∗(x) denotes the
ith row of the matrix M(x)

<QVI_name>(11) clears all problem data from memory; does not return anything

Table 2: Description of all possible calls to a generic QVI function in the library.

Let us give some more explanations. To this end, consider a generic problem whose name
is <QVI_name>; in the folder QVILIB one can find the M-file <QVI_name>.m and, for some
of the problems, a second data file <QVI_name>.dat. The function <QVI_name> can have up
to three input arguments. The first input argument of <QVI_name> is a mandatory flag and
it is used to select the behavior of the function as detailed in the previous list.

In this list, it is also shown how many additional input arguments should be used in
correspondence to each admissible value for the flag i, which can take any integer value
between 0 and 11. If the flag value i is out of range or if the number of input arguments
is not correct an exception will be thrown. Note that, if present, the second and third
input argument of <QVI_name> must be column vectors with nVar elements; otherwise, a
corresponding exception will be thrown.

When the function is called with the first argument equal to 0, some preliminary op-
erations are performed, in particular in the scope of the function some global variables
are initialized. This set of global variables always contains the positive integer nVar, i.e.
the number of variables, the nonnegative integer nIneq, i.e. the total number of inequality
constraints, the nonnegative integer nEq, i.e. the total number of equality constraints, the
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nonnegative integer nIneqInd, i.e. the number of inequality constraints independent of x,
and the nonnegative integer nEqInd, i.e. the number of equality constraints that do not
depend on x. In order to make these quantities available to the user’s calling function, one
should define them as global also in the user’s calling function(s). When the function is
called with the first argument equal to 0, other global variables might be defined that store
data used by the function when invoked with other flags. All these further variables begin
with the string “QVItest” and therefore it is better to avoid the use of any quantities which
includes this string in the user’s functions. <QVI_name>(0) must be called before any other
function call. If this rule is not respected, an exception will be thrown. If it is called more
than one time, a warning will be displayed since unnecessary operations are performed.

When the function is called with the first argument equal to 11, then all global variables
in the scope of the function will be cleared. If used, it must be the last function call.

The function <QVI_name>.m can have one output, or no output at all, depending on the
value of the flag i. When present, the output can be either a column vector, a sparse matrix
or a cell array of sparse matrices. Table 3 summarizes in detail all possible output formats.

Input Flag Output
i= 0 or i= 11 no output
i= 1 column vector of dimension nVar

i= 2 sparse square matrix of dimensions nVar × nVar

i= 3 column vector of dimension nIneq

if nIneq= 0 the output is the empty matrix
i= 4 or i= 5 sparse matrix of dimension nIneq × nVar

if nIneq= 0 the output is the empty matrix
i= 6 cell array of dimension nIneq, each cell in the array contains

a sparse square matrix of dimension nVar × nVar

(the matrices contained in the cells are the evaluations of Jsi(x))
if nIneq= 0 the output is the empty cell array

i= 7 column vector of dimension nEq

if nEq= 0 the output is the empty matrix
i= 8 or i= 9 sparse matrix of dimension nEq × nVar

if nEq= 0 the output is the empty matrix
i= 10 cell array of dimension nEq, each cell in the array contains

a sparse square matrix of dimension nVar × nVar

(the matrices contained in the cells are the evaluations
of J(Mi∗(x)

T ))
if nEq= 0 the output is the empty cell array

Table 3: Description of outputs of a generic QVI function in the library.

We already observed that, in order to help the user debugging, some simple checks are
performed when the <QVI_name>.m function is invoked. If these checks fail, a corresponding
error message is provided by throwing an exception or a warning. Some of these have been
mentioned already; we report the complete list in Table 4.

For users’ convenience short string aliases for the mandatory flag i are enabled. The
complete list of aliases, which are case insensitive, is reported in Table 5.



QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY TEST PROBLEMS 231

Table 4: Description of exceptions.

Table 5: String aliases for flag i.

The library also includes an M-file startingPoints.m that can be used to get the start-
ing points of each test problem. If the function startingPoints is called without any
input arguments, it displays a list of all test problems available with a brief description of
their starting points. The function startingPoints returns the number of starting points
available for one specific test problem by accepting a string of characters, corresponding to
the test problem name, as the only input argument. Finally the function startingPoints

returns a starting point for a test problem by accepting in input two arguments: a string of
characters corresponding to the test problem name and a positive integer which selects the
desired starting point of such problem. Table 6 summarizes all possible utilizations of the
function startingPoints.

Table 6: Possible utilizations of the M-file startingPoints.m
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Finally, the library also contains the M-file solution.m that can be used to get one
solution for each test problem. The function solution returns a solution for a test problem
by accepting in input a string of characters corresponding to the test problem name. Note
that, in general, we do not know whether the problems in the library have only one solution.
The solutions we provide are computed by using the algorithm in [4] and are therefore only
approximated. The only exceptions are problems OutZ40, OutZ41 and OutZ43 for which
exact solutions are known.

3 Test Problem Descriptions

In this section we report the test problems. The section is divided into three subsections.
Subsection 3.1 contains pure academic problems, subsection 3.2 contains QVIs modelling
some real problems, while subsection 3.3 contains discretization of infinite dimensional prob-
lems.

3.1 Academic Problems

OutZ40 [LBB/A/2-4-0-2-0]

source: [13, p. 13]

description:

F (x) :=

(
2 8/3
5/4 2

)
x−

(
34

24.25

)
,

gI(y) :=


−1 0
1 0
0 −1
0 1

 y −


0
11
0
11

 ,

gP (y, x) :=

(
1 0
0 1

)
y +

(
0 1
1 0

)
x−

(
15
15

)
JF: positive definite (everywhere)

comments: this problem was built so that it does not satisfy the assumptions for the
local convergence of the Newton method discussed in [13] at the known solution
listed below

known solutions: x∗ = (10, 5) and x∗ = (5, 9)

OutZ41 [LBB/A/2-4-0-2-0]

source: [13, Example 4.1]

description:

F (x) :=

(
2 8/3
5/4 2

)
x−

(
100/3
22.5

)
,

gI(y) :=


−1 0
1 0
0 −1
0 1

 y −


0
11
0
11

 ,

gP (y, x) :=

(
1 0
0 1

)
y +

(
0 1
1 0

)
x−

(
15
20

)



QVILIB: A LIBRARY OF QUASI-VARIATIONAL INEQUALITY TEST PROBLEMS 233

JF: positive definite (everywhere)

comments: a variant of the OutZ40 that satisfies the assumptions for the local con-
vergence of the Newton method discussed in [13] at the known solution listed
below

known solution: x∗ = (10, 5)T

OutZ42 [LBB/A/4-4-0-4-0]

source: [13, Example 4.2]

description:

F (x) :=


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

x+


1
1
1
1

 ,

gI(y) := y,

gP (y, x) :=

 −y1 − 2.5 + x1 + x2
1

...
−y4 − 2.5 + x4 + x2

4


JF: positive definite (everywhere)

known solution: x∗ ≈ (−1.291,−1.5811,−1.5811,−1.291)T

OutZ43 [LAB/A/4-0-0-4-0]

source: [13, Example 4.3]

description:

F (x) := same as for problem OutZ42,

gP (y, x) := −y −


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

x−


1.5
1.5
1.5
1.5


JF: positive definite (everywhere)

comments: this problem satisfies conditions of Theorem 7 in [4]

known solution: x∗ = (−0.9,−1.2,−1.2,−0.9)T

OutZ44 [LAB/A/4-0-0-4-0]

source: [13, Example 4.4]
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description:

F (x) := same as for problem OutZ42

gP (y, x) := −y − 1.5


2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

x−


2
2
2
2



+0.25


(2x1 − x2 + 1)2

(−x1 + 2x2 − x3 + 1)2

(−x2 + 2x3 − x4 + 1)2

(−x3 + 2x4 + 1)2


JF: positive definite (everywhere)

known solution: x∗ ≈ (−1.0021,−1.36,−1.36,−1.0021)T

Moving set problems

This is the most studied class of QVIs, namely problems where the set K̃(x) is given by

K̃(x) := c(x) +Q

for some function c : Rn → Rn and a fixed setQ ⊆ Rn. Assuming thatQ has a representation
of the form

Q := {x ∈ ℜn | q(x) ≤ 0},

for some function q : ℜn → ℜmP , it is easy to see that K̃(x) can be rewritten as

K̃(x) := {y ∈ Rn | q(y − c(x)) ≤ 0}

which corresponds to the general setting considered in this paper of a QVI with gP : Rn →
RmP being defined by

gP (y, x) := q(y − c(x)). (3.1)

MovSet1A - MovSet1B [LAO/A/5-0-0-1-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) := ∥y − αx∥2 − 0.5

with

A :=

(
19.8699 0.5369 2.9482 0.3358 7.1239
4.1819 16.3484 −5.2030 5.4332 2.7143

−5.6554 0.9422 19.0981 7.1556 −7.3810
−1.8770 0.1918 −5.3596 18.3565 −7.8847
−6.0303 −3.6171 −1.4658 4.6238 15.4085

)
, b :=

(
10
10
10
10
10

)
, (3.2)

and α := 0.1 for MovSet1A and α := 10 for MovSet1B

JF: positive definite (everywhere)

comments: referring to the general description (3.1) of gP : q(z) := ∥z∥2−0.5, c(x) :=
αx. Note that MovSet1A satisfies conditions of Theorem 4 in [4], while MovSet1B
does not
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MovSet2A - MovSet2B [LAO/A/5-0-0-1-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) := ∥y − α
(
cos(xi)

)n
i=1

∥2 − 0.5

with A and b as in (3.2) and α := 0.1 for MovSet2A and α := 10 for MovSet2B

JF: positive definite (everywhere)

comments: referring to the general description (3.1) of gP : q(z) := ∥z∥2−0.5, c(x) :=
α
(
cos(xi)

)n
i=1

. Note that MovSet2A satisfies conditions of Theorem 4 in [4], while
MovSet2B does not

MovSet3A1 - MovSet3B1 [LAO/A/1000-0-0-1-0]

MovSet3A2 - MovSet3B2 [LAO/A/2000-0-0-1-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) := (y −Mx)TQ(y −Mx)− d

where A, b, M , Q and d are available in the corresponding Matlab functions
(MovSet3A1 and MovSet3A2 differ from MovSet3B1 and MovSet3B2, respec-
tively, only in the matrix M)

JF: positive definite (everywhere)

comments: referring to the general description (3.1) of gP : q(z) := zTQz−d, c(x) :=
Mx. Note that MovSet3A1 and MovSet3A2 satisfy conditions of Theorem 4 in
[4], while MovSet3B1 and MovSet3B2 do not

MovSet4A1 - MovSet4B1 [LAO/A/400-0-0-801-0]

MovSet4A2 - MovSet4B2 [LAO/A/800-0-0-1601-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) :=

 −y +Mx
y −Mx− 1

1T

ny − 1T
nMx− n

2


whereA, b andM are available in the corresponding Matlab functions (MovSet4A1
and MovSet4A2 differ from MovSet4B1 and MovSet4B2, respectively, only in the
matrix M)

JF: positive definite (everywhere)
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comments: referring to the general description (3.1) of gP :

q(z) :=

 −z
z − 1

1T
nz − n

2

 , c(x) := Mx.

Note that MovSet4A1 and MovSet4A2 satisfy conditions of Theorem 4 in [4],
while MovSet4B1 and MovSet4B2 do not

Problems with box constraints

This class of QVIs have a set K̃(x) defined by constraints of the form

gP (y, x) :=

(
(yi − sixi − ci)

n
i=1

(−yi + tixi − di)
n
i=1

)
. (3.3)

We call this a QVI with box constraints since, given a fixed vector x, the feasible set describes
box constraints for the variables y. The particular values of the box constraints for a variable
yi, however, varies with xi.

Box1A - Box1B [LAB/A/5-0-0-10-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) :=

(
(yi − αxi − ci)

n
i=1

(−yi + αxi − ci)
n
i=1

)
where A and b are defined as in (3.2),

c :=

(
0.1202
1.7418
2.7064
2.0502
4.4616

)

and α := 0.1 for Box1A and α := 2 for Box1B

JF: positive definite (everywhere)

comments: Box1A satisfies conditions of Corollary 6 in [4], while Box1B does not

Box2A - Box2B [NAB/A/500-0-0-1000-0]

source: this paper

description:

F (x) := Ax+ b+ (exp(xi))
500
i=1 ,

gP is defined as in (3.3), where A, b, s, t, c and d are available in the corresponding
Matlab functions (Box2A differs from Box2B only in the vectors s and t)

JF: positive definite (everywhere)

comments: Box2A satisfies conditions of Corollary 6 in [4], while Box2B does not
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Box3A - Box3B [NAB/A/500-0-0-1000-0]

source: this paper

description: these problems are identical to Box2 except the function F :

F (x) := Ax+ b+M
(
x3
i

)500
i=1

,

A, b, M , s, t, c and d are available in the corresponding Matlab functions (Box3A
differs from Box3B only in the vectors s and t)

JF: positive definite (everywhere)

comments: Box3A satisfies conditions of Corollary 6 in [4], while Box3B does not

Problems with bilinear constraints

In these problems, the set K̃(x) is defined by the following inequality constraints only:

gP (y, x) :=

 xTQ1y − c1
...

xTQqy − cq

 .

BiLin1A - BiLin1B [LBO/A/5-10-0-3-0]

source: this paper

description:

F (x) := Ax+ b,

gI(y) :=

(
l − y
y − u

)
,

gP (y, x) :=

 xTQ1y − c1
...

xTQ3y − c3

 ,

where A and b are defined as in (3.2),

l :=

(
−0.1202
−1.7418
−2.7064
−2.0502
−4.4616

)
, u := −l, c :=

(
0.3070
1.1186
2.6149

)
,

Q1 :=

(
1.9073 0.2403 0.2352 −0.4903 −0.2651
0.2403 1.1319 1.2087 −0.3268 0.2540
0.2352 1.2087 1.6862 0.2941 0.6732

−0.4903 −0.3268 0.2941 1.8258 0.1363
−0.2651 0.2540 0.6732 0.1363 1.5527

)
+ α

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
,

Q2 :=

(
2.7307 0.5988 1.5728 1.4072 −0.3082
0.5988 2.2435 0.7546 1.3632 1.5852
1.5728 0.7546 2.3809 1.2625 1.0403
1.4072 1.3632 1.2625 1.7612 0.3071

−0.3082 1.5852 1.0403 0.3071 2.6305

)
+ α

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
,

Q3 :=

(
2.5189 2.1947 1.7697 2.2753 1.9885
2.1947 3.8143 1.3839 1.5636 1.8451
1.7697 1.3839 3.3655 1.6441 1.9946
2.2753 1.5636 1.6441 3.6885 2.3272
1.9885 1.8451 1.9946 2.3272 2.2883

)
+ α

(
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

)
and α := 0 for BiLin1A and α := 10 for BiLin1B

JF: positive definite (everywhere)

comments: BiLin1A satisfies conditions of Corollary 7 in [4], while BiLin1B does not
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Problems with linear constraints with variable right-hand side

In this class of problems, the feasible set K̃(x) is defined by

gP (y, x) := Ey − d+ c(x),

where E ∈ ℜm×n is a given matrix, c : ℜn → ℜmP and d ∈ ℜmP . In this class of QVIs, the
feasible set is defined by linear inequalities in which the right-hand side depends on x.

RHS1A1 - RHS1B1 [LAL/A/200-0-0-199-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) := Ey − d+ C (sin(xi))
n
i=1

where A, b, E, d and C are available in the corresponding Matlab functions
(RHS1A1 differs from RHS1B1 only in the matrix C)

JF: positive definite (everywhere)

comments: RHS1A1 satisfies conditions of Theorem 5 in [4], while RHS1B1 does not

RHS2A1 - RHS2B1 [LAL/A/200-0-0-199-0]

source: this paper

description:

F (x) := Ax+ b,

gP (y, x) := Ey − d+ Cx

where A, b, E, d and C are available in the corresponding Matlab functions
(RHS2A1 differs from RHS2B1 only in the matrix C)

JF: positive definite (everywhere)

comments: RHS2A1 satisfies conditions of Theorem 5 in [4], while RHS2B1 does not

3.2 Problems from Real-World Models

Walrasian equilibrium problems

Problems in this subsection are QVI reformulations of a Walrasian pure exchange economy
with utility function without production whose general structure is described [1]; the specific
data used here are taken from [3]. In this model there are C agents, whose preferences are
given by a utility function ui, exchanging P goods. Each agent controls a variable xi ∈ ℜP

(representing quantity of goods) and has an initial endowment of ξi ∈ ℜP . There is also one
extra, 0-th “player” controlling a vector x0 ∈ ℜP representing prices. Therefore, the vector
of variables is x = (xi)Ci=0 ∈ ℜ(C+1)P . The dimensions and the description of the QVI model
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depend on the parameters C and P :

n := P (C + 1), mI := P (C + 1), pI := 1, mP := C, pP := 0,

F (x) :=


∑C

i=1 ξ
i − xi

∇x1u1(x
1)

...
∇xCuC(x

C)

 , gI(y) := −y, M I := (1T

P 0T

PC), (3.4)

vI := −1, gP (y, x) :=


∑P

j=1 x
0
j (y

1
j − ξ1j )

...∑P
j=1 x

0
j (y

C
j − ξCj )

 .

The utility functions u of the agents, as well as the parameters C and P and the endowment
ξ, are specified for each test problem.

WalEq1 [LBO/R/18-18-1-5-0]

source: model from [1], data from [3]

description: the general description is (3.4) where C := 5, P := 3, the utility func-
tions are quadratic and convex:

ui(x
i) :=

1

2
(xi)TQixi − (bi)Txi, i = 1, . . . , 5,

Qi :=
(

6 −2 5
−2 6 −7
5 −7 20

)
, bi :=

(
32 + i
32 + i
32 + i

)
, i = 1, 2,

Qi :=
(

6 1 0
1 7 −5
0 −5 7

)
, bi :=

(
30 + (i + 2) ∗ 2
30 + (i + 2) ∗ 2
30 + (i + 2) ∗ 2

)
, i = 3, 4, 5,

and

ξi :=
(

2
3
4

)
, i = 1, 2, ξi :=

(
6
5
4

)
, i = 3, 4, 5

JF: P0 (everywhere) but never positive semidefinite

WalEq2 [NBO/R/105-105-1-20-0]

source: model from [1], data from [3]

description: the general description is (3.4) where C := 20, P := 5, the utility
functions are of logarithmic type:

ui(x
i) := −

5∑
k=1

(ak + i+ 4) log(xi
k + bk + 2(i+ 4)), i = 1, . . . , 10,

ui(x
i) := −

5∑
k=1

(ck + i+ 4) log(xi
k + dk + i+ 4), i = 11, . . . , 20,

a :=

(
1
2
4
6
8

)
, b :=

(
20
30
30
40
50

)
, c :=

(
10
6
4
10
1

)
, d :=

(
50
40
30
20
20

)
,
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and

ξi :=

(
2
3
4
1
6

)
, i = 1, . . . , 10, ξi :=

(
6
5
4
3
2

)
, i = 11, . . . , 20

JF: P0 (everywhere) but never positive semidefinite

WalEq3 [LBO/R/186-186-1-30-0]

source: model from [1], data from [3]

description: the general description is (3.4) where C := 30, P := 6, the utility
functions are quadratic and convex:

ui(x
i) :=

1

2
(xi)TQixi − (bi)Txi, i = 1, . . . , 30,

Qi := A, bi :=

56 + i
66 + i
76 + i
66 + i
66 + i
56 + i

, i = 1, . . . , 15,

Qi := B, bi :=

50 + 2 ∗ (i + 6)
60 + 2 ∗ (i + 6)
50 + 2 ∗ (i + 6)
70 + 2 ∗ (i + 6)
70 + 2 ∗ (i + 6)
60 + 2 ∗ (i + 6)

, i = 16, . . . , 30,

and

ξi :=

2
3
4
1
6
1

, i = 1, . . . , 15, ξi :=

6
5
4
3
2
8

, i = 16, . . . , 30.

Set A equal to

68.22249416536778 12.12481199690621 -8.35496210217478 -6.81177486915109 -4.66752803051747 3.64100170417482

12.12481199690621 53.51450780426463 -21.77618227261339 -15.00376305863444 -0.11788350473544 2.03354709400720

-8.35496210217478 -21.77618227261339 35.44033408387684 4.35160649036518 19.17472558234163 -3.40090742729160

-6.81177486915109 -15.00376305863444 4.35160649036518 52.25155022199242 -5.99490328518247 20.40443259092577

-4.66752803051747 -0.11788350473544 19.17472558234163 -5.99490328518247 23.32798561358070 -3.58535668529727

3.64100170417482 2.03354709400720 -3.40090742729160 20.40443259092577 -3.58535668529727 10.21258119890765

and B equal to

61.74633559943146 -23.83006225091380 16.78581949473039 14.42073900860500 -2.75188745616575 13.44307656650567

-23.83006225091380 37.64246654306209 -3.76510322128227 16.32022449045404 -39.90743633716275 11.38657250296817

16.78581949473039 -3.76510322128227 53.34843665848310 4.60388415537161 -23.04611587657949 -25.31392346426841

14.42073900860500 16.32022449045404 4.60388415537161 40.69699687713468 -30.78019133996427 17.08866411420883

-2.75188745616575 -39.90743633716275 -23.04611587657949 -30.78019133996427 66.22678445157413 -12.28091080313848

13.44307656650567 11.38657250296817 -25.31392346426841 17.08866411420883 -12.28091080313848 41.37849544246254

JF: P0 (everywhere) but never positive semidefinite

WalEq4 [NBO/R/310-310-1-30-0]

source: model from [1], data from [3]
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description: the general description is (3.4) where C := 30, P := 10, the utility
functions are of logarithmic type:

ui(x
i) := −

10∑
k=1

(ak + i+ 6) log(xi
k + bk + 2(i+ 6)), i = 1, . . . , 15,

ui(x
i) := −

10∑
k=1

(ck + i+ 6) log(xi
k + dk + i+ 6), i = 16, . . . , 30,

a :=


1
2
4
6
8
7
8
10
1
5

, b :=


50
60
70
60
60
50
50
80
60
70

, c :=


10
6
4
10
1
2
6
4
9
4

, d :=


50
60
50
70
70
60
50
50
80
50

,

and

ξi :=


2
3
4
1
6
1
3
6
2
10

, i = 1, . . . , 15, ξi :=


6
5
4
3
2
8
4
6
2
0

, i = 16, . . . , 30

JF: P0 (everywhere) but never positive semidefinite

WalEq5 [NBO/R/492-492-1-40-0]

source: model from [1], data from [3]

description: the general description is (3.4) where C := 40, P := 12, the utility
functions are of logarithmic type:

ui(x
i) := −

12∑
k=1

(ak + i+ 7) log(xi
k + bk + 2(i+ 7)), i = 1, . . . , 20,

ui(x
i) := −

12∑
k=1

(ck + i+ 7) log(xi
k + dk + i+ 7), i = 21, . . . , 40,

a :=



1
2
4
6
8
7
8
10
1
5
2
4

, b :=



50
60
70
60
60
50
50
80
60
70
70
80

, c :=



10
6
4
10
1
2
6
4
9
4
5
1

, d :=



50
60
50
70
70
60
50
50
80
50
60
70

,
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and

ξi :=



2
3
4
1
6
1
3
6
2
10
3
4

, i = 1, . . . , 20, ξi :=



6
5
4
3
2
8
4
6
2
0
6
0

, i = 21, . . . , 40

JF: P0 (everywhere) but never positive semidefinite

Wal2 [NLO/AR/105-107-0-20-0]

source: model from [1], data from [3]

description: the general description is (3.4), except for

mI := P (C + 1) + 2, pI := 0,

gI(y) :=


−y∑P

i=0 y
0
i − 1

1−
∑P

i=0 y
0
i

 ,

where C := 20, P := 5 and the utility functions are of logarithmic type:

ui(x
i) :=

5∑
k=1

(ak + k + 4) log(xi
k + bk + 2(i+ 4)), i = 1, . . . , 10,

ui(x
i) :=

5∑
k=1

(ck + k + 4) log(xi
k + dk + i+ 4), i = 11, . . . , 20,

a, b, c, d and ξ are the same as for WalEq2

JF: never P0

comments: this QVI arises from an implementation mistake, in fact it differs from
WalEq2 essentially only in the sign and in one parameter of the ui functions;
furthermore the equality constraint

∑P
i=1 y

0
i = 1 is substituted by a double in-

equality. Since the problem proved challenging, we kept it in the library.

Wal3 [LLO/R/186-188-0-30-0]

source: model from [1], data from [3]

description: the general description is (3.4), except for

mI := P (C + 1) + 2, pI := 0,

gI(y) :=


−y∑P

i=0 y
0
i − 1

1−
∑P

i=0 y
0
i

 ,

where all parameters and functions are the same as for WalEq3
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JF: P0 (everywhere) but never positive semidefinite

comments: this QVI differs fromWalEq3 only for the fact that the equality constraint∑P
i=1 y

0
i = 1 is substituted by a double inequality.

Wal5 [NLO/AR/492-494-0-40-0]

source: model from [1], data from [3]

description: the general description is (3.4), except for

mI := P (C + 1) + 2, pI := 0,

gI(y) :=


−y∑P

i=0 y
0
i − 1

1−
∑P

i=0 y
0
i

 ,

where C := 40, P := 12, the utility functions are of logarithmic type:

ui(x
i) :=

12∑
k=1

(ak + k + 7) log(xi
k + bk + 2(i+ 7)), i = 1, . . . , 20,

ui(x
i) :=

12∑
k=1

(ck + k + 7) log(xi
k + dk + i+ 7), i = 21, . . . , 40,

a, b, c, d and ξ are the same as for WalEq5

JF: never P0

comments: this QVI arises from an implementation mistake, in fact it differs from
WalEq2 essentially only in the sign and in one parameter of the ui functions;
furthermore the equality constraint

∑P
i=1 y

0
i = 1 is substituted by a double in-

equality. Since the problem proved challenging, we kept it in the library.

Generalized Nash equilibrium problems

It is well known that finding an equilibrium of a generalized Nash game is equivalent to
solving a QVI problem, see [2]. This QVI model of an energy market Nash equilibrium is
taken from [9]. Let N agents owns l plants each one to generate electric energy for sale.
We denote as xi

j the energy produced by agent i in the j-th plant. The unitary energy
price in the market depends on the total amount of energy produced by all agents, it is
modelled by a quadratic concave function of one variable. Then the profit of each agent
depends on the generation level of the other agents in the market. In turn, each generation
level is constrained by technological limitations of the power plants. The coordination, or
regulation, of the market is done by the Independent System Operator (ISO), whose actions
in the market are considered as those of an additional player. Accordingly, letting the ISO
be player number 0, the ISO tries to maximize the social welfare by encouraging all other
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agents to satisfy the total market demand.

n := Nl + 1, mI := 2(Nl + 1), pP := N + 1,

F (x) :=



0

c
(∑N

i=1
∑l

j=1 xi
j

)2 − 120 + 2c
(∑N

i=1
∑l

j=1 xi
j

) (∑l
j=1 x1

j

)
.
.
.

c
(∑N

i=1
∑l

j=1 xi
j

)2 − 120 + 2c
(∑N

i=1
∑l

j=1 xi
j

) (∑l
j=1 x1

j

)
.
.
.

c
(∑N

i=1
∑l

j=1 xi
j

)2 − 120 + 2c
(∑N

i=1
∑l

j=1 xi
j

) (∑l
j=1 xN

j

)
.
.
.

c
(∑N

i=1
∑l

j=1 xi
j

)2 − 120 + 2c
(∑N

i=1
∑l

j=1 xi
j

) (∑l
j=1 xN

j

)


+



0

A1
1x1

1

.

.

.

A1
l x1

l

.

.

.

AN
1 xN

1

.

.

.

AN
l xN

l


+



120

b11

.

.

.

b1l

.

.

.

bN1

.

.

.

bNl


,

(3.5)

gI(y) :=



−y0

−y1

...
−yN

y0 − u0

y1 − u1

...
yN − uN


, MP (x) :=


1

1T
l

. . .

1T
l

 ,

vP (x) :=


0 1T

l 1T
l

1T
l 0T

l 1T
l

. . .

1T
l 1T

l 0T
l




x0

x1

...
xN

−


d
d
...
d

 ,

where c ∈ ℜ, A ∈ ℜNl, b, u ∈ ℜNl and d ∈ ℜ.

LunSS1 [NBA/R/501-1002-0-0-6]

LunSS2 [NBA/R/1251-2502-0-0-6]

LunSS3 [NBA/R/5001-10002-0-0-6]

source: [9]

description: these problems are described by (3.5), where N := 5 and l := 100 for
LunSS1, l := 250 for LunSS2, l := 1000 for LunSS3. c, A, b, u and d are available
for all these problems in the corresponding Matlab functions.

It is possible to compute some equilibria (not all in general) of a jointly convex Nash problem
by solving a variational inequality instead. These points are called variational equilibria and
have some properties from the economic point of view, see [2]. The next 3 problems pursue
this goal. Note that those problems are pure VIs in which the parametric set K̃(x) vanishes
and K(x) = K̄.

LunSSVI1 [NBA/R/501-1002-1-0-0]
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LunSSVI2 [NBA/R/1251-2502-1-0-0]

LunSSVI3 [NBA/R/5001-10002-1-0-0]

source: [9]

description: F and gI are taken from (3.5) while M I := 1T
n, and vI := −d, where

N := 5 and l := 100 for LunSSVI1, l := 250 for LunSSVI2, l := 1000 for Lun-
SSVI3. c, A, b, u and d are available for all these problems in the corresponding
Matlab functions. Note that pP := 0.

comments: these problems are pure VIs

3.3 Discretized Problems

In this section consider finite dimensional QVIs obtained by making a discretization proce-
dure on infinite dimensional QVIs. This series of problems stemmed from different fields.

Transportation problems

In the modeling of competition on networks in [16] it is assumed that users either behave
following the Wardrop equilibrium or the Nash equilibrium concept. In the time-dependent
network model shared by two types of users: group users (Nash players) and individual
users (Wardrop players), both classes of users choose the paths to ship their jobs so as to
minimize their costs, but they apply different optimization criteria. The source of interaction
of users is represented by the travel demand, which is assumed to be elastic with respect
to the equilibrium solution. Thus, the equilibrium distribution is proved to be equivalent
to the solution of an appropriate time-dependent quasi-variational inequality problem. This
example taken from [16] is relative to a simple network with 4 nodes and 7 edges, in which
there are two users: one Nash user and one Wardrop user. The time interval considered
is [0, N ], and in particular it is discretized so that the time instants are 0, . . . , N . Then
the solution of the following QVI contains the flows on the paths of the network at the
equilibrium in the instants 1, . . . , N for the two users. The dimensions and the description
of the following two discretized models depend on the parameter N :

n := 4N, mI := 4N, pP := 2N,

F (x) :=

 A 0
. . .

0 A

x+

 b
...
b

 ,

(3.6)

gI(y) := −y, MP (x) :=

 C 0
. . .

0 C

 ,

vP (x) :=

 −E 0
. . .

0 −E

x+

 −d1 − d2(1− 1)/(N − 1)
...

−d1 − d2(N − 1)/(N − 1)

 ,
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where

A :=

(
4 2 0 0
2 10 0 4
0 0 2 1
0 2 1 5

)
, b :=

(
40
30
40
30

)
, C :=

(
1 1 0 0
0 0 1 1

)
,

E :=
(

2/3 0 0 0
0 0 0 0.5

)
, d1 :=

(
1
3

)
, d2 :=

(
10
4

)
Scrim11 [LBA/RD/2400-2400-0-0-1200]

Scrim12 [LBA/RD/4800-4800-0-0-2400]

source: [16]

description: the general description is (3.6) with N := 600 for Scrim11 and N :=
1200 for Scrim12

JF: positive definite (everywhere)

Scrim21 [LBL/RD/2400-2400-0-2400-0]

Scrim22 [LBL/RD/4800-4800-0-4800-0]

source: [16]

description: the general description is (3.6), but here

mP := 4N, pP := 0,

gP (y, x) :=


C 0

.
.
.

0 C

−C 0

.
.
.

0 −C

 y +


−E 0

.
.
.

0 −E

E 0

.
.
.

0 E

x+


−d1 − d2(1 − 1)/(N − 1)

.

.

.
−d1 − d2(N − 1)/(N − 1)

d1 + d2(1 − 1)/(N − 1)

.

.

.
d1 + d2(N − 1)/(N − 1)

 ,

with N := 600 for Scrim21 and N := 1200 for Scrim22

JF: positive definite (everywhere)

comments: Problems Scrim21 and Scrim22 are essentially the same as problems
Scrim11 and Scrim22, respectively, except that each equality constraint has been
rewritten as two inequalities. In particular, the standard linear independence
constraint qualification is therefore violated for problems Scrim21 and Scrim22.

Contact problems with Coulomb friction

This is the problem of an elastic body in contact to a rigid obstacle. In particular, this
is the most realistic model in which Coulomb friction is present (in this problem ϕ ∈ ℜ is
the friction coefficient). The problem is taken from Example 11.1 in [12]. Let x∗ ∈ ℜn

be a solution of the QVI, then odd elements of x∗ are interpreted as tangential stress
components on the rigid obstacle in different points of such obstacle, while even elements
are interpreted as outer normal ones. We consider different instances of this problem which
derive from different discretizations generating different fragmentations of the obstacle in
identical segments. In particular, the case in which the obstacle is divided into N segments
involves 2(N +1) variables in the model (since there are N +1 extreme segment points and
having to consider both tangential and outer normal stress components for all of them).
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The dimensions and the description of the following two discretized models depend on the
parameter N :

n := 2(N + 1), mI := 2(N + 1), mP := 2(N + 1),

F (x) := Ax− b, gI(y) :=

 (−y2i − 10)
N+1
i=1

(y2i)
N+1
i=1

 , (3.7)

gP (y, x) :=

 (−y(2i−1) + ϕx2i

)N+1

i=1(
y(2i−1) + ϕx2i

)N+1

i=1

 ,

where the positive definite square matrix A and the vector b depend on N and are available
in the library for N := 30 and N := 40 (data for these problems have been kindly provided
by J.V. Outrata, M. Kočvara and J. Zowe).

OutKZ31 [LBB/RD/62-62-0-62-0]

OutKZ41 [LBB/RD/82-82-0-82-0]

source: [12]

description: the general description is (3.7) with friction coefficient ϕ := 10 and
fragmentation N := 30 for OutKZ31 and N := 40 for OutKZ41

JF: positive definite (everywhere)

QVIs with gradient constraints

The problems considered here are taken from [8] (see also [7]) and represent a stationary
model for the magnetization of type-II superconductors.

Specifically, let Ω ⊆ R2 be an open and convex domain, let W := W 1,2(Ω) be the
corresponding Sobolev space, and let jc be a nonnegative continuous function. Then the
infinite-dimensional problem from [8] (using p = 2) is to find a solution u ∈ K(u) satisfying∫

Ω

∇u(ξ)T∇(v − u)(ξ)dξ ≥ 0 ∀v ∈ K(u), (3.8)

where the feasible set K(u) is defined by

K(u) :=
{
v ∈ W | v

∣∣
∂Ω

= u1, ∥∇v(ξ)∥ ≤ jc
(
|u(ξ)|

)
a.e. in Ω

}
(3.9)

for a given function u1.
In our realizations of this problem, we always take Ω = (0, 1)× (0, 1) and jc(t) := t. To

discretize the problem, we choose a number N ∈ N, a stepsize h := 1
N+1 , and the discrete

points

ξ
(1)
i := ih =

i

N + 1
, ξ

(2)
j := jh =

j

N + 1
∀ i, j = 0, 1, . . . , N + 1.

Furthermore, let

ui,j := u(ξ
(1)
i , ξ

(2)
j ), vi,j := v(ξ

(1)
i , ξ

(2)
j ) ∀ i, j = 0, 1, . . . , N + 1
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and note that the values of ui,j , vi,j are known for i, j ∈ {0, N+1} due to the given boundary
condition. Therefore, the discrete unknowns are the components ui,j for i, j ∈ {1, . . . , N}.
We approximate the partial gradients of u and v by using forward finite differences. More-
over, an integral of the form

∫
Ω
f(ξ)dξ for a suitable function f is approximated by a

piecewise constant function in such a way that we get∫
Ω

f(ξ)dξ ≈ h2
N∑

i,j=0

fi,j ,

where fi,j := f
(
ξ
(1)
i , ξ

(2)
j

)
. We then reorder the unknows ui,j and define

vec(u) := (u1,1, u2,1, . . . , uN,1, u1,2, u2,2, . . . , uN,2, . . . , uN,N )T ∈ Rn, n := N2.

In a similar way, we also define vec(v). To get back to our standard notation, we finally set

x := vec(u) and y := vec(v).

Altogether, this results in a QVI with a linear function F of the form

F (x) := AT (Ax+ a) + CT (Cx+ c) (3.10)

for certain matrices A,C ∈ R(n+N)×n, and vectors a, c ∈ Rn+N (these vectors take into
account the boundary conditions). Furthermore, the constraints take the form

gPk (y, x) := (A · y + a)2k+1+⌊(k−1)/N⌋ + (C · y + c)2N+k − h2x2
k (3.11)

for all k = 1, . . . n, where ⌊·⌋ denotes the floor-function. The precise data of A,C, a, c are
given in the corresponding Matlab files. Different instances of the discretized problems arise
from different choices of the discretization parameter N ∈ N and the boundary function u1.

KunR11 - KunR21 - KunR31 [LAO/RD/2500-0-0-2500-0]

KunR12 - KunR22 - KunR32 [LAO/RD/4900-0-0-4900-0]

source: [8]

description: These problems arise from the general description with F and gP de-
scribed in (3.10) and (3.11). We took N = 50 for problems KunR11, KunR21
and KunR31, and N = 70 for KunR12, KunR22 and KunR32. The boundary
function is u1(ξ

(1), ξ(2)) := 1 + ξ(1) + ξ(2) for problems KunR11 and KunR12,

u1(ξ
(1), ξ(2)) := 1− sin(2πξ(1))+cos(2πξ(2))

10 for problems KunR21 and KunR22, and

u1(ξ
(1), ξ(2)) := eξ

(1)+ξ(2) for problems KunR31 and KunR32. Matrices A,C and
vectors a, c can be found in the corresponding Matlab source files.

JF: positive definite (everywhere)
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