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• Bilevel Optimization Problem (BOP),

• General Semi-Infinite Programming (GSIP), and

• Nash Optimization Problem (NOP).

We study equilibrium optimization from a structural point of view. Our goal is to indicate
so-called local models in bilevel optimization, GSIP and Nash optimization. In what follows,
we define precisely what we mean by the term ”local models”. To this aim, we consider a
general optimization problem

P (f, F ) : min
x
f(x) s.t. x ∈M [F ], (1.1)

where f ∈ C∞(Rn) is a real-valued objective function, F ∈ C∞(Rn,Rl) is a vector-valued
function, and M [F ] ⊆ Rn is a feasible set defined by F in some structured way. For
simplicity reasons we assume that the functions f , F are smooth. We emphasize that bilevel
optimization, GSIP and Nash optimization can be written as P (f, F ) with appropriate data
functions f, F (cf. formulas (2.3), (3.1), (4.1) later on). Now, let x be a local minimizer of
P (f, F ). We consider the optimization problem P (f, F ) locally at x. For that, we define an
equivalence relation on the triples (f, F, x).

Definition 1.1 (Equivalence relation). Two triples (f, F, x) and (g,G, y) are called equiv-
alent w.r.t. (1.1), written

(f, F, x) ∼ (g,G, y),

if there exist open Rn-neighborhoods Ux of x, Vy of y, a C∞-diffeomorphism Ψ : Ux −→ Vy
and c ∈ R such that

(i) Ψ(x) = y,

(ii) f ◦Ψ−1(·) = g(·) + c on Vy, and

(iii) Ψ(M [F ] ∩ Ux) =M [G] ∩ Vy.

It is easy to see that ∼ is an equivalence relation. Note that the latter can be interpreted
as a local equivariant morphism between (f, F, x) and (g,G, y). We denote the equivalence
classes w.r.t. ∼ as [(f, F, x)].

For a subset of data functions H ⊂ C∞(Rn)× C∞(Rn,Rl) we put

TH := {[(f, F, x)] | (f, F ) ∈ H, x is a local minimizer of P (f, F )} ,

as the set of equivalence classes [(f, F, x)] corresponding to H.

Further, we define special classification sets of data functions for (1.1). For that, we
endow the space C∞(Rn)×C∞(Rn,Rl) with the strong (or Whitney) C∞-topology, denoted
by C∞

s (see [13, 15] and below).

Definition 1.2 (Classification set). H ⊂ C∞(Rn) × C∞(Rn,Rl) is called a classification
set of data functions for (1.1) if

(A) H is C∞
s -dense in the strong (or Whitney) topology, and
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(B) H is stable w.r.t. (1.1), i.e. for each (f, F ) ∈ H and each local minimizer x of P (f, F )
there exist neighborhoods O(f,F ) of (f, F ) and Ox of x, such that for all (f̃ , F̃ ) ∈ O(f,F )

it holds
(f, F, x) ∼ (f̃ , F̃ , x̃)

with the unique local minimizer x̃ ∈ Ox of P (f̃ , F̃ ).

It turns out that every classification set H defines the same set TH.

Theorem 1.3 (Uniqueness of equivalence classes). Let H1,H2 ⊂ C∞(Rn)×C∞(Rn,Rl) be
classification sets of data functions for (1.1). Then, TH1 = TH2 .

Proof. Let [(f1, F1, x1)] ∈ TH1 . We take neighborhoods O(f1,F1) of (f1, F1) and Ox1 of x1
from (B) in Definition 1.2 applied to H1. Due to (A) in Definition 1.2 applied to H2,
there exist (f2, F2) ∈ H2 ∩ O(f1,F1). Then, again using (B) for H1, we get the unique local
minimizer x2 ∈ Ox1 of P (f2, F2), such that

(f1, F1, x1) ∼ (f2, F2, x2).

Hence, TH1 ⊂ TH2 . Analogously, TH2 ⊂ TH2 and we are done.

For a classification set H we call the elements of TH the basic classes of the optimization
problem (1.1). Note that the basic classes are unique due to Theorem 1.3. Their represen-
tatives, having the simplest form, are called local models of (1.1). Altogether, the following
questions are to be addressed for a particular realization of (1.1):

(i) Does there exist a classification set?

(ii) How can we describe the basic classes in initial coordinates?

(iii) What are the local models after a change of coordinates?

We refer to the questions (i)-(iii) as a classification problem. Regarding the analysis
of equilibrium problems we will see that the solution of the classification problem leads espe-
cially to explicit local descriptions of feasible sets. In fact, after diffeomorphism the implicit
information which come from the solution sets and optimal value functions of parametric
problems are described directly. In this article, we focus on classification problems for bilevel
optimization, GSIP and Nash optimization. For bilevel optimization (x = upper level, y =
lower level), we describe basic classes and derive local models in the following cases:

• dim(y) = 1 without constraints (see Classification Theorem 2.2), and

• dim(x) = 1 (see Classification Theorem 2.3).

For GSIP, the classification problem is presented in Classification Theorem 3.4. It turns out
that for bilevel optimization and GSIP the number of basic classes is finite. As it will be
shown, the feasible sets of local models in the considered bilevel optimization problems and
GSIP are given by

{0}q1 ×Hq2 × Lq3 × Rq4 , with q1, q2, q3, q4 ∈ N, (1.2)

where
H := {x ∈ R | x ≥ 0} , L :=

{
(a, b) ∈ R2 | a ≥ 0, b ≥ 0, a · b = 0

}
.
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Figure 1: Typical feasible set

This means that the local models represent nonlinear programming problems and mathe-
matical programs with complementarity constraints (e.g., [25]). Hence, by considering local
models, we reduce the parametric dependencies given in the formulations of the considered
equilibrium problems to explicitly given constraints. By a further diffeomorphism we can
find a simple description of the objective function f . If, for example, a feasible set is given
by {0} ×H× L× R ⊂ R5 (see Figure 1) and zero is a nondegenerate local minimizer, then
(after a further diffeomorphism leaving the feasible set invariant) the objective function of
this local model has the form

f(x1, x2, x3, x4, x5) = x1 + x2 + (x3 + x4) + x25. (1.3)

Objective functions for other local models with feasible sets as in (1.2) can be described
analogously. We point out that the above representation of f can be obtained via the
so-called generalized Morse Lemma (see [15, 19]).

Convention 1.4. Throughout this article we omit the dependence of f on the first q1
variables belonging to {0}q1 in (1.2). Thus the function in (1.3) would become

f = f(0, x2, x3, x4, x5) = x2 + (x3 + x4) + x25.

In the context of the optimization problem this represents the essential information.

For bilevel optimization, we also discuss the classification problem in the following
cases:

• dim(y) = 1 with a one-side constraint (see Section 2.2),

• dim(y) > 1 without constraints (see Section 2.3).

• dim(x) = dim(y) with linear independent constraints (see Section 2.5).

It turns out that the obstacle here comes from globality issues. In fact, the appearance of
multiple global minimizers as well as their possible bifurcation still need to be understood
for a complete classification analysis. For details we refer to Sections 2.2, 2.1, 2.5.

In Nash optimization we treat the classification problem for two its subclasses: NEP and
GNEP0 (see Theorem 4.2). Moreover, we indicate how basic classes and local models can
be obtained for general Nash optimization (see Examples 4.3, 4.4).

The article is organized as follows. Section 2 is devoted to bilevel optimization. In
Section 3 we address the classification problem for GSIP. Finally, Section 4 deals with Nash
optimization.

Our notation is standard. The n-dimensional Euclidean space is denoted by Rn. Given
an arbitrary set K ⊆ Rn we denote its topological closure by K. For x ∈ Rn we write
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dim(x) to denote the number of components of x, i.e. dim(x) = n. Given a differentiable
function F : Rn → Rl, DF denotes its Jacobian matrix. Given a differentiable function
f : Rn → R, Df denotes the row vector of partial derivatives of first order and DT f stands
for the transposed vector. For a matrix A we write A ≽ 0, A ≻ 0 if A is positive semi-definite
or positive definite, respectively.

Let C∞(Rn) denote the space of smooth real-valued functions. Let C∞(Rn) be endowed
with the strong (or Whitney) C∞-topology, denoted by C∞

s (see [13, 15]). Roughly speaking,
the C∞

s -topology is generated by allowing perturbations of the functions and their deriva-
tives which are controlled by means of continuous positive functions. The product space
of continuously differentiable functions will be topologized with the corresponding product
topology. The space of C∞-functions endowed with the strong C∞

s -topology constitutes a
Baire space. A set is called C∞

s -generic if it contains a countable intersection of C∞
s -open,

-dense subsets. A generic subset of a Baire space is dense as well.

2 Bilevel Optimization

We consider bilevel optimization problems as hierarchical problems of two decision makers,
the so-called leader and follower. The follower selects his decision knowing the choice of the
leader, whereas the latter has to anticipate the follower’s response in his decision. Bilevel
optimization problems have been studied in the monographs [1] and [3]. We model the
bilevel optimization problem in the so-called optimistic formulation. To this aim, assume
that the follower solves the parametric optimization problem (lower level problem L)

L(x) : min
y
g(x, y) s.t. hj(x, y) ≥ 0, j ∈ J (2.1)

and that the leader’s optimization problem (upper level problem U) is the following:

U : min
(x,y)

f(x, y) s.t. y ∈ Argmin L(x). (2.2)

Above we have x ∈ Rn, y ∈ Rm and the real-valued mappings f, g, hj , j ∈ J belong to
C∞(Rn × Rm). Argmin L(x) denotes the solution set of the optimization problem L(x).

Note that U can be written as follows

U : min
(x,y)

f(x, y) s.t. (x, y) ∈M [g, hj , j ∈ J ], (2.3)

where
M =M [g, hj , j ∈ J ] := {(x, y) | y ∈ Argmin L(x)} (2.4)

is the bilevel feasible set given by data functions g, hj , j ∈ J .
In order to avoid asymptotic effects, we assume the following technical assumption (cf.

[4]) for all considered bilevel optimization problems:

Assumption 2.1. The function g belongs to the set O ⊂ C∞(Rn × Rm) with

O :=

{
g ∈ C∞(Rn × Rm)

∣∣∣∣ for all (x̄, c) ∈ Rn × R the set
{(x, y) | ∥x− x̄∥ ≤ 1, g(x, y) ≤ c} is compact

}
.

Let G be the subset of all data functions where g belongs to O. In the following we
consider classification sets H ⊂ G. Accordingly, the density property (A) in Definition 1.2
is meant w.r.t. G. Since O is a C∞-open, Theorem 1.3 remains true, i.e. the basic classes
are unique.

Throughout the whole article we use the notion of a nondegenerate (local) minimizer for
nonlinear programming problems (NLPs), see [15] for details. The latter refers to
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ND1: linear independence constraint qualification (LICQ),
ND2: strict complementarity slackness, and
ND3: the restriction of the Lagrange function’s Hessian

to the tangent space to the feasible set is positive definite.

2.1 Unconstrained Lower Level (dim(y) = 1)

In this section we consider the case where J = ∅ in (2.1) and where dim(y) = 1. This case
was already treated in [4]. There it has been shown, that, generically, at a solution (x̄, ȳ) of
the bilevel problem, all lower level solutions, i.e. points from the set

Argmin L(x̄) = {ȳ(1), . . . , ȳ(p)}, where ȳ = ȳ(p),

are nondegenerate (global) minimizers. This means that locally for x ≈ x̄ the local mini-
mizers emerging from ȳ(i) can be described by a smooth function y(i) = y(i)(x). Moreover,
it has been shown that in the latter situation the bilevel problem can locally be reduced to
a nondegenerate NLP in the variable x. The following Classification Theorem 2.2 is a result
of [4, Theorem 3].

Classification Theorem 2.2 (dim(y) = 1, y unconstrained).
Let the lower level problem L(·) in (2.1) be unconstrained (J = ∅) and let dim(y) = 1. Then,
the bilevel optimization problem (2.3) has the basic classes Kp, 1 ≤ p ≤ n+ 1, with:

Kp :



Argmin L(x̄) = {ȳ(1), . . . , ȳ(p)}, where ȳ = ȳ(p).

Each ȳ(i) is a nondegenerate (global) minimizer of L(x̄), i.e. there are
smooth functions y(i) = y(i)(x) with y(i)(x̄) = ȳ(i), such that y(i)(x) is
the unique local minimizer near ȳ(i) (for x close to x̄).

The point x̄ is a nondegenerate local minimizer of the following NLP:

min
x
f̄(x) s.t. gj(x) ≥ 0, 1 ≤ j ≤ p− 1,

where gj(x) := g(x, y(j)(x)) − g(x, y(p)(x)), 1 ≤ j ≤ p − 1, and f̄(x) :=

f(x, y(p)(x)).

For 1 ≤ p ≤ n+ 1 the class Kp is represented† by the following local model:

min
z∈Rn+m

m+(p−1)∑
i=m+1

zi +

n+m∑
i=m+(p−1)+1

z2i

 s.t. z ∈ {0}m × Hp−1 × Rn−(p−1)

2.2 Constrained One-Dimensional Lower Level (dim(y) = 1)

We consider the case, where the lower level problem L(·) from (2.1) is one-dimensional, i.e.
dim(y) = 1, and exactly one constraint is given:

L(x) : min
y∈R

g(x, y) s.t. y ≥ 0 (2.5)

Problem (2.5) is the simplest form of dealing with lower level constraints. It turns out that
in this case a kink might occur as a new situation in the lower level. As this kink originated

†According to Convention 1.4.
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as a preimage of the typical set L, the new local models turn out to be MPCCs in general.
Thus in the following we use the notion of a nondegenerate minimizer for mathematical pro-
grams with complementarity constraints (MPCCs). The latter refers to linear independence
constraint qualification, strict complementarity, positivity of biactive Lagrange multipliers
and second order sufficiency condition (see [9, 19, 24, 26] for details).

We present the following Classification Conjecture. Here, we omitted the explicit de-
scription of the basic classes in initial data, since the combinatorial number of possibilities
is too high.

Classification Conjecture 1 (dim(y) = 1, y ≥ 0).
Let the lower level problem given as in (2.5). Then, the basic classes of the bilevel optimiza-
tion problem are represented‡ by the following local models:

min
z∈Rn+1

 p−δ∑
i=2−δ

zi +

p∑
i=p−δ+1

(zi + zi+1) +
n+1∑

i=p+δ+1

z2i


s.t. z ∈ {0}1−δ ×Hp−1 × Lδ × Rn−(p−1)−δ,

where δ ∈ {0, 1}, and 1 ≤ p ≤ n+ 1− δ.

Classification Conjecture holds if Argmin L(x̄) = {ȳ} is a singleton, i.e. p = 1. In fact,
without loss of generality, we may assume that x̄ = 0, ȳ = 0 and, by a change of coordinates
in y only, g(0, y) = yk, k ≥ 1. Analogously to [4], it is sufficient to focus on the universal
unfolding of the (constrained) singularity yk, y ≥ 0:

g(x, y) = yk + xk−1y
k−1 + xk−2y

k−2 + . . .+ x1y, y ≥ 0, (2.6)

where k ≥ 1 and x = (x1, . . . , xk−1, xk, . . . , xn).
The situation k = 1 corresponds to the case δ = 0 in the assertion of Classification Con-

jecture. Indeed, ȳ is a nondegenerate minimizer of L(x̄), hence, M is locally diffeomorphic
to {0} × Rn. Next, k = 2 corresponds to the case δ = 1. Here, ȳ is a degenerate minimizer
for L(x̄) of the so-called Type 2 (see below), i.e. the Lagrange multiplier vanishes. M is
locally diffeomorphic to L×Rn−1. Now, we turn our attention to k ≥ 3 and show that this
situation can be generically avoided. The key idea is indicated in [18] and [4]. In order to
avoid certain higher order singularities in the description of the feasible set M , we have to
focus on a neighborhood of (local) solutions of the bilevel problem. Suppose that the feasible
set M contains a smooth curve, say C, through the point (x̄, ȳ) ∈ M . Let the point (x̄, ȳ)
be a local solution of the bilevel problem U , i.e. (x̄, ȳ) is a local minimizer for the objective
function f on the set M . Then, (x̄, ȳ) is also a local minimizer for f|C , the restriction of f
to the curve C. If, in addition, (x̄, ȳ) is a nondegenerate local minimizer for f|C , then we
may shift this local minimizer along C by means of a linear perturbation of f . After that
perturbation with resulting f̃ , the point (x̄, ȳ) is not any more a local minimizer for f̃|C and,

hence, it is not any more a local minimizer for f̃|M . Now, if the singularities in M outside
of the point (x̄, ȳ) are of lower order, then in this way we are able to move away from the
higher order singularity. The key point however is to find a smooth curve through a given
point of the feasible set M .

In order to do so, we put

x1 = x2 = . . . = xk−3 = 0.

‡According to Convention 1.4.
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So, we are left with the reduced lower level problem function

L̃(xk−2, xk−1) : min
y
g̃(xk−2, xk−1, y) s. t. y ≥ 0

with reduced feasible set M̃ , where

g̃(xk−2, xk−1, y) = yk + xk−1y
k−1 + xk−2y

k−2.

Firstly, let xk−1 < 0 and xk−2 > 0 and consider the curve defined by the equation

xk−2 −
1

4
x2k−1 = 0.

One calculates, that for points on this curve, the lower level L̃ has two different global
minimizers on the set y ≥ 0 (with g̃-value zero), one of them being y = 0. Secondly, we note

that the set {(xk−1, xk−2, 0) |xk−1 ≥ 0, xk−2 ≥ 0} belongs to M̃ . Altogether, we obtain that
the curve C defined by the equations

x1 = x2 = . . . = xk−3 = y = 0, xk−2 −
1

4
x2k−1 = 0,

belongs to M , and we are done.
The proof of Classification Conjecture in case of multiple set Argmin L(x̄) is still open.

In fact, in order to apply the above “curve”-construction, we need to guarantee that minima
along this curve remain global ones for the lower level objective function. However, the
latter property could be affected by curves starting at other points from Argmin L(x̄). Here,
a careful multi-jet analysis as in [4] has to be performed. This is a topic of current research.

2.3 Unconstrained Lower Lever (dim(y) > 1)

In [4] it has been conjectured that Classification Theorem 2.2 also holds true for arbitrary
dimensions of y. However, the techniques which have been used in [4] can not directly be
generalized. In the latter paper the proof was based on explicit unfoldings of singularities
with finite codimension. For dim(y) > 1 this is not possible anymore.

We present a new idea, how to prove the general result for the case where global optimal-
ity in the lower level is replaced by local optimality. This is of course a relaxation since the
feasible set is enlarged. But since the arguments we use hold true for arbitrary dimensions
of y, it might be possible to treat the globality aspect by some additional arguments as
indicated below. Here, the problem of possible bifurcations of global minimizers is the
main challenge.

First, we present the arguments for the case of local minimizers. We replace M in (2.4)
by

Mloc := {(x, y) | y is a local minimizer of L(x)}.

For the sake of simplicity we restrict our considerations to dim(y) = 2, since the higher
dimensions can be treated analogously. Further, we assume that (x̄, ȳ) ∈ Mloc minimizes f
onMloc. The optimality of ȳ for the lower level problem L(x̄) implies the following necessary
optimality conditions:

Dyg(x̄, ȳ) = 0 ∈ Rm and D2
yyg(x̄, ȳ) ≽ 0.

Note that if D2
yyg(x̄, ȳ) is positive definite, then ȳ is a nondegenerate local minimizer of

L(x̄). Our goal is to show that the cases where D2
yyg(x̄, ȳ) is not positive definite do not
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occur generically. For that, the space of symmetric (2, 2)-matrices (where the Hessian D2
yyg

lies in) can naturally be identified with R3 by using the data (∂2y1y1
g, ∂2y1y2

g, ∂2y2y2
g). This

way the cone of positive semi-definite matrices C is diffeomorphic to the so-called “ice cream
cone” C∗, i.e.

C = ϕ(C∗), C∗ :=
{
(a, b, c) ∈ R3 |

√
a2 + b2 ≤ c, c ≥ 0

}
,

where ϕ is a smooth diffeomorphism. We can partition C into three submanifolds of R3 as
follows:

C = C0 ∪ C1 ∪ C3, C0 := ϕ(int(C∗)), C1 := ϕ(∂C∗ \ {0}), C3 := ϕ({0}).

Note that the codimension of Ci ⊂ R3 is

cod(Ci) = i, i ∈ {0, 1, 3}.

The fact that the Hessian D2
yyg belongs to Ci for a i ∈ {0, 1, 3} corresponds to three different

cases:

Case A: both eigenvalues of D2
yyg are positive (regular case),

Case B: exactly one eigenvalue of D2
yyg vanishes,

Case C: both eigenvalues of D2
yyg vanish.

In Case B the other eigenvalue is positive due to the positive semi-definiteness of D2
yyg.

After a change of coordinates (in y only) it holds:

g(0, y) = y21 + η(y2),
dη

dy2
(0) =

d2η

dy22
(0) = 0.

Thus, the y1-dependence can be neglected here and Case B can be treated by using argu-
ments from Classification Theorem 2.2. Hence, Case B does not occur in a generic situation.

In the following we will show how Case C can be excluded. For that, we apply the Jet
Transversality Theorem (cf. [15]). The latter says that generically the jet mapping

J(x, y) :=
(
f, g,Df,Dg,D2f,D2g,D3g

)
|(x,y)

∈ Rσ

meets a manifold M ⊆ Rσ transversally at (x̄, ȳ). In particular this means

cod(M) ≤ #variables = n+ 2. (2.7)

By showing that Case C corresponds to an intersection of J(·) with a manifold M of
cod(M) > n + 2, the former can be generically excluded (cf. [15] for details). To do
so, we may generically assume that the (reduced) jet mapping

j : (x, y) 7→
(
∂y1g, ∂y2g, ∂

2
y1y1

g, ∂2y1y2
g, ∂2y2y2

g
)
|(y1,y2)

meets the manifold {0}2×C3 ⊂ R5 transversally, i.e. the matrix Dj(x̄, ȳ) has full rank. This
implies that there exist smooth mappings zi = zi(x, y), 6 ≤ i ≤ n+ 2, such that

Ψ(x, y) :=
(
∂y1g, ∂y2g, ∂

2
y1y1

g, ∂2y1y2
g, ∂2y2y2

g, z6, z7, . . . , zn+2

)
|(x,y)

,
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is a local diffeomorphism with Ψ(x̄, ȳ) = 0 ∈ Rn+2. We set z = Ψ(x, y) as new local
coordinates. Since the conditions Dyg(x, y) = 0 and D2

yyg(x, y) ≻ 0 are locally sufficient for
y to be a local minimizer of L(x) we obtain for the feasible set Mloc:

Ψ−1
(
{0}2 × C0 × Rn−3

)
⊆Mloc. (2.8)

(Note that D2
yyg ∈ C0 means that D2

yyg is positive definite.) The latter inclusion implies

Ψ−1 ({0}2 × C0 × Rn−3) = Ψ−1
(
{0}2 × C × Rn−3

)
⊆Mloc (2.9)

Since the optimality of f at (x̄, ȳ) ∈Mloc is equivalent to the optimality of f at (x̄, ȳ) ∈Mloc,
we get that (x̄, ȳ) is a minimizer of f on Mloc. In new coordinates this means, in particular,
that

∂(f ◦Ψ−1)

∂zi
(0) = 0, for 6 ≤ i ≤ n+ 2. (2.10)

Thus Df(x̄, ȳ) lies in a linear space with codimension n − 3. The situation of Case C now

corresponds to an intersection of jet mapping j(·) with a manifold M̃ with

cod(M̃) = cod({0}2 × C3︸ ︷︷ ︸
Case C

) + (n− 3)︸ ︷︷ ︸
optimality of f

= 5 + (n− 3) = n+ 2. (2.11)

Again using the optimality of ȳ for L(x̄) and applying a Taylor approximation, one easily
verifies thatD3

yyy(x̄, ȳ) must be equal to the 0-tensor. This implies that all third-order partial
derivatives (w.r.t. y) of g vanish at (x̄, ȳ). The latter fact corresponds to an intersection of
the jet mapping J(·) with a manifold of additional codimension 4. In fact, together with
(2.11) we find that Case C corresponds to an intersection with a manifold M of cod(M) =
(n + 2) + 4 = n + 6. Thus, we obtain a contradiction to (2.7). We conclude that for
local optimality in the lower level problem the result in Classification Theorem 2.2 can be
generalized for dim(y) > 1 as outlined above.

The adjustment of the arguments above for M itself (rather than Mloc) remains chal-
lenging. A submanifold of an appropriate dimension has to be identified within the set M
(instead of Mloc) in order to obtain additional codimensions from the optimality of f on
this submanifold (as in (2.10)). Instead of analyzing M explicitly, we propose to identify
directions in the parameter space where bifurcations can be excluded. This means that only
the subset of Mloc is considered where local optimality and global optimality coincide. For
the latter it becomes crucial to analyze how the mapping

z 7→ (Πx ◦Ψ−1)(z), Πx : (x, y) 7→ x

acts on the set S, where S represents the sufficient optimality conditions in the jet space (as
the set {0}2 × C0 × Rn−3 in (2.8)). The latter issue is a topic of current research.

2.4 One-Dimensional Upper Level (dim(x) = 1)

In the case where dim(x) = 1 the lower level is one-parametric. Now, the classification
can be done by using the so-called five types of parametric optimization given in [14]. In
the following the five Types will shortly be introduced. For that, we consider parametric
optimization problems for x ∈ R1

NLP(x) : min
y
f(x, y) s.t. gj(x, y) ≥ 0, j ∈ J.
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Here, J = {1, . . . , |J |} is a finite index set and all appearing functions f, gj , j ∈ J , are
real-valued and from C∞(R× Rm).

A classification of generalized critical points was given in [14]. We recall that y is called
a generalized critical point for NLP(x), if the vectors

Dyf(x, y), Dygj(x, y), j ∈ J0(x, y)

are linearly dependent, i.e. there exist real numbers λ0, λj , j ∈ J0(x, y) (Lagrange multipli-
ers) - not all vanishing - such that

λ0Dyf(x, y) =
∑

j∈J0(x,y)

λjDygj(x, y).

It was shown in [14] that for and open and dense subset of problem data, every generalized
critical point ȳ for NLP(x̄) is one of the five types. The Five Types originate from degenera-
cies of the generalized critical points occurring in one-parametric problems. A degeneracy
describes the failure of at least one of the nondegeneracy properties ND1-ND3 from above.
The following table introduces the five types of a generalized critical point ȳ for NLP(x̄):

ND1 ND2 ND3 description
Type 1

√ √ √
nondegenerate generalized critical point

Type 2
√

fails
√

exactly one active λj vanishes
Type 3

√ √
fails exactly one eigenvalue (in ND3) vanishes

Type 4 fails
√ √

rank of active Dygj is |J0| − 1
Type 5 fails

√ √
|J0| = m+ 1

Note, that the description above only indicates the failure of the properties ND1-ND3 (for
fixed x). For a precise definition some additional regularity conditions on the derivatives
w.r.t. x and y have to be imposed (see [14]). In what follows, we are only interested in
those generalized critical points ȳ for NLP(x̄), which are global minimizers of NLP(x̄). This
means that Type 3, which is not a global minimizer, will not be considered. The remaining
generalized critical points are subdivided into Types 1, 2, 4, 5.1, and 5.2, where Types 5.1
and 5.2 are subtypes of Type 5. We recall that in Type 5 exactly m+ 1 constraints in the
lower level problem are active, where m is the dimension of the y-variable. This leads to
two possible scenarios: The feasible set ends at the critical value x̄ (Type 5.1) or the local
exchange of active constraints leads to a kink (Type 5.2). For details we refer to [18]. The
corresponding typical sets of local minimizers are depicted in Figure 2.

Note that outside x̄ the sets of local minimizers are graphs of smooth functions (cf. [18]).
For those sets we write locally around (x̄, ȳ)

Type 1: {(x, y(x)) |x ≈ x̄}

Type 2, Type 5.2:

{
(x, y(x))

∣∣∣∣∣ y(x) =
{

y(1)(x), x ≤ x̄,

y(2)(x), x ≥ x̄.

}
Type 4, Type 5.1: {(x, y(x)) |x ≥ x̄}

where y(x), y(1)(x), y(2)(x) are unique local minimizers for NLP(x) in a neighborhood of x̄
with y(x̄) = y(1)(x̄) = y(2)(x̄) = ȳ corresponding to the particular type. The description of
the lower level solutions sets leads to the following classification theorem:
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Figure 2: Types of local minimizers

Classification Theorem 2.3 (dim(x) = 1, y constrained).
Let dim(x) = 1. Then, the bilevel optimization problem has the following basic classes:

K1 :


The point (x̄, ȳ) is a nondegenerate minimizer of the (implicitly given) NLP

min
(x,y)

f(x, y) s.t. (x, y) ∈ {(x, y(x)) | x ≈ x̄},

where y = y(x) is a smooth curve.

K2/5.2 :



The point (x̄, ȳ) is a nondegenerate minimizer of the (implicitly given) MPCC

min
(x,y)

f(x, y) s.t. (x, y) ∈ {(x, y(x)) | x ≈ x̄},

where y(x) =

{
y(1)(x) x ≤ x̄

y(2)(x) x ≥ x̄
is a piecewise smooth curve.

K4/5.1 :


The point (x̄, ȳ) is a nondegenerate minimizer of the (implicitly given) NLP

min
(x,y)

f(x, y) s.t. (x, y) ∈ {(x, y(x)) | x ≈ x̄, x ≥ x̄},

where y = y(x) is a smooth curve.
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These basic classes are represented§ by the following local models:

min
z∈R1+m

(
m−δ1+δ2∑
i=m−δ1+1

zi +

m+δ2∑
i=m−δ1+δ2+1

(zi + zi+1) +

1+m∑
i=m+δ1+δ2

z2i

)
s.t. z ∈ {0}m−δ1 ×Hδ2 × Lδ1 × R1−δ1−δ2 ,

where (δ1, δ2) ∈ {(0, 0), (1, 0), (0, 1)}.

Note that the basic class K2/5.2 is not only induced by the Types 2 and 5.2, but also the

case where Argmin L(x̄) = {ȳ(1), ȳ(2)} is included here; cf. [5], and the nondegenerate case
in Classification Theorem 2.2.

2.5 Copositive Lower Level

In this section we assume that the linear independence constraint qualification at the lower
level is fulfilled, that the dimensions of the variables x and y coincide (i.e. n = m), that
J0(x̄, ȳ) = m and that x̄ = ȳ = 0. Taking the constraints hj in (2.1) as new coordinates,
we may assume that the lower level feasible set is the nonnegative orthant. In this setting,
the Lagrange multipliers of the lower level function g at the origin just become the partial
derivatives with respect to the coordinates yj , j = 1, . . . ,m. Now we suppose that all these
partial derivatives vanish (generalization of Type 2, cf. Section 2.4). This means, that the
Hessian D2

yyg(0, 0) comes into play and we assume that it is nonsingular. A stable condition
for the origin to be a (local) minimizer for L(0) is that the positive cone of the Hessian
D2

yyg(0, 0) contains the nonnegative orthant with deleted origin. The latter fact refers to the
so-called copositivity of the matrix D2

yyg(0, 0) (cf. [22] and also [2, 7]). There are several
combinatorial possibilities, depending on the number of negative eigenvalues of D2

yyg(0, 0).
In the next Examples 2.4,2.5, we restrict ourselves to two dimensions, i.e. n = m = 2. Note
that the feasible sets of the corresponding local models now can not be written as

{0}q1 ×Hq2 × Lq3 × Rq4 , with q1, q2, q3, q4 ∈ N

anymore. Instead, multidimensional complementarity constraints appear.

Example 2.4 (cf. [18]). Let dim(x) = dim(y) = 2 and the bilevel optimization problem be
given as follows:

f(x1, x2, y1, y2) = (−x1 + 2y1) + (−x2 + 2y2)

L(x1, x2) : min
y
g(x1, x2, y1, y2) := (y1 − x1)

2 + (y1 − x1) · (y2 − x2) + (y2 − x2)
2

s.t. y1 ≥ 0, y2 ≥ 0.

In this example the Hessian D2
yyg(0, 0) has two distinct positive eigenvalues. In particular,

D2
yyg(0, 0) is positive definite. In order to obtain the feasible set M , we have to consider

critical points of L(x1, x2) for the following four cases I-IV. These cases result from the
natural stratification of the nonnegative orthant in y-space:

I : y1 > 0, y2 > 0 II : y1 = 0, y2 > 0

III : y1 > 0, y2 = 0 IV : y1 = 0, y2 = 0.

It turns out that the feasible setM is piecewise smooth two-dimensional manifold. Moreover,
it can be parametrized via the x-variable by means of a subdivision of the x-space into four
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Figure 3: Illustration of Example 2.4

regions according to the above cases I-IV, see Figure 3. On the regions I-IV the corresponding
global minimizer (y1(·), y2(·)) is given by:

(y1(x), y2(x)) =


(x1, x2), if (x1, x2) ∈ I,

(0, x1

2 + x2), if (x1, x2) ∈ II,

(x2

2 + x1, 0), if (x1, x2) ∈ III,

(0, 0), if (x1, x2) ∈ IV.

(2.12)

In particular, we obtain M = {(x, y(x)) | y(x) as in (2.12)}. A few calculations show that
the origin (0, 0) solves the corresponding bilevel problem U .

The corresponding local model is

min
z

4∑
i=1

zi s.t.

{
(z1 + z2)(z2 + z3)(z3 + z4)(z4 + z1) = 0,

z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z4 ≥ 0.

Example 2.5 (cf. [5, 18]). Let dim(x) = dim(y) = 2 and the bilevel optimization problem
be given as follows:

f(x1, x2, y1, y2) = −3x1 + x2 + 4y1 + 5y2

L(x1, x2) : min
y
g(x1, x2, y1, y2) := (y1 − x1)

2 + 4(y1 − x1) · y2 + 3(y2 +
1

3
x2)

2

s.t. y1 ≥ 0, y2 ≥ 0.

It is easy to see that (y1, y2) = (0, 0) is the global minimizer for L(0, 0). In order to obtain
the feasible set M , we have to consider critical points of L(x1, x2) for the four cases I-IV as
in Example 2.4. We subdivide the parameter space (x1, x2) into regions on which the global
minimizer (y1(x), y2(x)) for L(x) is a smooth function. Here, we obtain three regions II-IV,
see Figure 4. Note that the region corresponding to the case I is empty. In addition, for the
parameters (x1, x2) lying on the half-line

G : x1 = (2 +
√
3)x2, x1 ≥ 0

the problem L(x1, x2) exhibits two different global minimizers. It is due to the fact that
(y1, y2) = (0, 0) is a saddlepoint of the objective function g(0, y1, y2). Moreover, (y1, y2) =
(0, 0) is not strongly stable for L(0, 0).

§According to Convention 1.4.
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Figure 4: Illustration for Example 2.5

On the regions II-IV and on G the corresponding global minimizers (y1(·), y2(·)) are
given by:

(y1(x), y2(x)) =


(0, 23x1 −

1
3x2), if (x1, x2) ∈ II,

(x1, 0), if (x1, x2) ∈ III,

(0, 0), if (x1, x2) ∈ IV,{
(0, 23x1 −

1
3x2), (x1, 0)

}
if (x1, x2) ∈ G.

(2.13)

Here, M = {(x, y(x)) | y(x) as in (2.13)}. We point out that along the half-line G the
bifurcation of lower level solutions occurs. The origin (0,0) solves the corresponding bilevel
problem U .

The corresponding local model is

min
z

4∑
i=1

zi s.t.

{
(z1 + z2)(z3 + z4)(z4 + z1) = 0,

z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z4 ≥ 0.

3 General Semi-Infinite Programming

General semi-infinite programming problems (GSIPs) have the form

GSIP: min
x
f(x) s.t. x ∈M [g0, . . . , gs] (3.1)

with
M [g0, . . . , gs] := {x ∈ Rn | g0(x, y) ≥ 0 for all y ∈ Y (x)}

and
Y (x) := {y ∈ Rm | gk(x, y) ≤ 0, 1 ≤ k ≤ s} .

Here, f ∈ C∞(Rn) and gk ∈ C∞(Rn×Rm), 0 ≤ k ≤ s, are real-valued functions. In the case
of a constant mapping Y (·) = Y , we refer to semi-infinite programming problems (SIPs).

Note that testing feasibility for xmeans that ψ(x) := infy∈Y (x) g0(x, y) ≥ 0. The function
ψ(x) is the optimal value of the parametric optimization problem

min
y
g0(x, y) s.t. gk(x, y) ≤ 0, 1 ≤ k ≤ s.

From this perspective, one might think of GSIP as a game played by an agent against the
nature. Indeed, if the agent changes the x-variables, the nature affects his feasible set by
excluding or including some constraints. This can also be seen as a back coupling behavior.

Throughout this chapter we assume that the following standard assumption is fulfilled.
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Assumption 3.1. The set-valued mapping Y : Rn ⇒ Rm is locally bounded.

Recall that the set-valued mapping Y : Rn ⇒ Rm is called locally bounded if for each
x̄ ∈ Rn there exists a neighborhood U of x̄ such that

∪
x∈U Y (x) is bounded in Rm.

It is well-known that the feasible set M does not need to be closed (cf. [27]). Therefore,
one considers the topological closure M of M instead. In [12, Theorem 2.2] an explicit
description of M is provided. In fact, under Assumption 3.1 and the so-called Symmetric
Mangasarian-Fromovitz Constraint Qualification (Sym-MFCQ) (see Definition 3.3 below)
the closure of the feasible set is given by

M =Mmax,

where
Mmax = {x ∈ Rn | σ(x, y) ≥ 0 for all y ∈ Rm} and

σ(x, y) := max
0≤k≤s

gk(x, y).

Note that the above description of M is symmetric in the functions gk, 0 ≤ k ≤ s. This
means that the function g0 does not play any special role. It is shown in [12] that Sym-
MFCQ on Mmax is generic and stable under C1-perturbations of the data functions. Thus,
let the following assumption be fulfilled throughout this article.

Assumption 3.2. Sym-MFCQ is satisfied at all points of Mmax.

Note that x̄ ∈ M is a local minimizer of the continuous function f on M if and only if
it is a local minimizer of f on M . Hence, in the following we consider the relaxed problem

GSIP : min
x
f(x) s.t. x ∈M.

Let x̄ ∈M . We set
M(x̄) := {y ∈ Rm | σ(x̄, y) = 0} .

Note that M(x̄) consists of the global minimizers of σ(x̄, ·) with vanishing optimal value.
We consider the well-known epigraph reformulation: ȳ is a global minimizer of σ(x̄, ·) with
vanishing optimal value if and only if (ȳ, 0) is a global minimizer of

Q(x̄) : min
(y,z)∈Rm×R

z s.t. z − gk(x̄, y) ≥ 0, 0 ≤ k ≤ s.

From the first-order optimality condition for (ȳ, 0) we obtain that the corresponding polytope
of Lagrange multipliers ∆(x̄, ȳ) is nonempty:

∆(x̄, ȳ) :=

(γk)k∈K0(x̄,ȳ) ∈ R|K0(x̄,ȳ)|

∑
k∈K0(x̄,ȳ)

γkDygk(x̄, ȳ) = 0,

∑
k∈K0(x̄,ȳ)

γk = 1, γk ≥ 0, k ∈ K0(x̄, ȳ)

 .

K0(x̄, ȳ) := {k ∈ {0, . . . , s} | gk(x̄, ȳ) = 0} is the active index set for (ȳ, 0).
We set for x̄ ∈M and ȳ ∈M(x̄)

V (x̄, ȳ) :=

 ∑
k∈K0(x̄,ȳ)

γkDxgk(x̄, ȳ)

∣∣∣∣∣∣ (γk)k∈K0(x̄,ȳ) ∈ ∆(x̄, ȳ)

 .

Moreover, we put: V (x̄) :=
∪

ȳ∈M(x̄) V (x̄, ȳ).
We mention the definition of Sym-MFCQ from Assumption 3.2.
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Definition 3.3 (Sym-MFCQ, cf. [12]). Let x̄ ∈ Mmax. The Symmetric Mangasarian-
Fromovitz Constraint Qualification (Sym-MFCQ) is said to hold at x̄ if there exists a vector
ξ ∈ Rn such that for all v ∈ V (x̄) it holds:

v · ξ > 0.

Now, we are ready to specify the basic classes and local models for GSIP. The Classifi-
cation Theorem 3.4 follows mainly from [11] and [16].

Classification Theorem 3.4 (GSIP). Let Assumptions 3.1 and 3.2 be fulfilled. Then,
GSIP has the following basic classes Dp, 1 ≤ p ≤ n:

Dp :



M(x̄) = {ȳ(1), . . . , ȳ(p)},

(ȳ(j), 0), 1 ≤ j ≤ p, are nondegenerate minimizers of Q(x̄),

The point x̄ is a nondegenerate local minimizer of the following NLP:

min
x
f(x) s.t. zj(x) ≥ 0, 1 ≤ j ≤ p,

where (y(j)(x), zj(x)) are unique local minimizers of Q(x) in a neighbor-

hood of x̄ with (y(j)(x̄), zj(x̄)) = (ȳ(j), 0), 1 ≤ j ≤ p.

Moreover, for a given 1 ≤ p ≤ n the class Dp is represented by the following local model:

min
u

p∑
i=1

ui +
n∑

i=p+1

u2i s.t. u ∈ Hp × Rn−p.

Remark 3.5 (Basic classes for KKT points in GSIP). In [17] the critical point theory for
GSIP has been established. There, Karush-Kuhn-Tucker points for GSIP are considered.
The point x̄ ∈M is called a Karush-Kuhn-Tucker (KKT) point if there exist ȳ(1), . . . , ȳ(l) ∈
M(x̄), v̄(i) ∈ V (x̄, ȳ(i)) and µ̄i ≥ 0, 1 ≤ i ≤ l such that

Df(x̄) =

l∑
i=1

µ̄iv̄
(i).

We point out that the basic classes for KKT points can be easily deduced from [16]. The
corresponding local models fit into the context of the so-called disjunctive optimization (see
[20]).

4 Nash Optimization

In Nash optimization there are N agents competitive to each other. Their behavior is
governed by the so-called generalized Nash equilibrium problem (e.g., [8]). The latter is
given as follows

GNEP:
Find a vector x = (x1, . . . , xN ) ∈ Rn

such that xν solves Pν(x
−ν) for each ν ∈ N .

Such a solution x of GNEP is called a (generalized) Nash equilibrium. Here, each player
ν from a finite player set N = {1, . . . , N}, N ∈ N, tries to solve the following parametric
optimization problem:

Pν(x
−ν): min

xν
fν(xν , x−ν) s.t. xν ∈Mν(x−ν),
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where the feasible set Mν(x−ν) is defined as

Mν(x−ν) :=
{
xν ∈ Rnν | gνj (xν , x−ν) ≥ 0, j ∈ Jν , Gj(x

ν , x−ν) ≥ 0, j ∈ J
}
.

For a given player ν ∈ N , the finite set Jν = {1, . . . , |Jν |} indexes player ν’s individual
constraints, and J = {1, . . . , |J |} is the index set for the common constraints, shared by all
players. All data functions fν , ν ∈ N , gνj , j ∈ Jν , ν ∈ N , and Gj , j ∈ J , are real-valued and
belong to C∞(Rn), with n :=

∑
n∈N nν . As in standard notation, the symbol x−ν denotes

the vector formed by all players’ variables except those of player ν. Occasionally, we write
(xν , x−ν) for x ∈ Rn to emphasize the ν-th players variables within x. We emphasize that
in the description of the feasible set Mν we explicitly distinguish between the player ν’s
individual constraints gνj ≥ 0, j ∈ Jν , and the common constraints Gj ≥ 0, j ∈ J , shared
by all players. The latter issue is motivated by various applications (see e.g. [8]).

Finally, we state the Nash optimization problem as follows

N: min
x
f(x) s.t. x ∈ NE[fν , gνj , j ∈ Jν , ν ∈ N , Gj , j ∈ J ], (4.1)

where NE[fν , gνj , j ∈ Jν , ν ∈ N , Gj , j ∈ J ] is the set of Nash equilibria w.r.t GNEP
given by data functions fν , gνj , j ∈ Jν , ν ∈ N , Gj , j ∈ J and f is a real-valued objective
function belonging to C∞(Rn). We refer to [21] for a generalization of Nash optimization
to a hierarchical case.

We identify two subclasses of Nash optimization w.r.t. NEP and GNEP0, where NEP ⊂
GNEP0 ⊂ GNEP. Here, GNEP0 is the subclass of GNEP, where only individual constraints
occur in the definition of the players’ feasible sets. This means that there are no common
constraints, which have to be fulfilled by all players. NEP consists of those problems from
GNEP0, where the constraint functions of different players’ subproblems only depend on
the player’s own decision variables. I.e., the choice of the opposing players has no influence
on the single player’s feasible set. Thus, the coupling in NEP is only due to the dependence
of the players’ objective functions on the other players’ decisions.

The subclasses NEP (the classical Nash equilibrium problem) and GNEP0 are defined
as follows:

GNEP0: As GNEP, but J = ∅ (i.e. no common constraints),

NEP: As GNEP0, but, additionally it holds:

gνj (x
ν , x−ν) = gνj (x

ν) for all x ∈ Rn and all ν ∈ N
(no coupling of the feasible sets).

Nash optimization w.r.t. NEP and GNEP0 are defined as in (4.1).
Now, suppose that J = ∅ and x̄ is a Nash equilibrium of GNEP0, moreover, for all ν ∈ N

the point x̄ν is a nondegenerate minimizer for Pν(x̄
−ν). Then, the system of necessary

optimality conditions for x̄ is given by concatenating the players’ KKT conditions. For
simplicity, we assume N = 2 and denote (x̄1, x̄2) as (x̄, ȳ). Thus, we obtain

Dxf
1(x̄, ȳ)−

∑
j∈J1

0 (x̄,ȳ)

λ̄1j ·Dxg
1
j (x̄, ȳ) = 0,

Dyf
2(x̄, ȳ)−

∑
j∈J2

0 (x̄,ȳ)

λ̄2j ·Dyg
2
j (x̄, ȳ) = 0,

g1j (x̄, ȳ) = 0 for all j ∈ J1
0 (x̄, ȳ),

g2j (x̄, ȳ) = 0 for all j ∈ J2
0 (x̄, ȳ)
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with multipliers λ̄1j > 0, j ∈ J1
0 (x̄, ȳ) and λ̄

2
j > 0, j ∈ J2

0 (x̄, ȳ).
Furthermore, we define the mapping

F(x, y, λ1, λ2) :=



Dxf
1(x, y)−

∑
j∈J1

0 (x̄,ȳ)

λ1j ·Dxg
1
j (x, y)

Dyf
2(x, y)−

∑
j∈J2

0 (x̄,ȳ)

λ2j ·Dyg
2
j (x, y)

g1j (x, y), j ∈ J1
0 (x̄, ȳ),

g2j (x, y), j ∈ J2
0 (x̄, ȳ)


,

where
λ1 :=

(
λ1j , j ∈ J1

0 (x̄, ȳ)
)
and λ2 :=

(
λ2j , j ∈ J2

0 (x̄, ȳ)
)
.

Note that F(x̄, ȳ, λ̄1, λ̄2) = 0. Moreover, every Nash equilibrium, sufficiently close to (x̄, ȳ),
solves F = 0 together with the corresponding unique multipliers. However, the Jacobian
DF might be singular at (x̄, ȳ, λ̄1, λ̄2), and - even more - the Nash equilibrium (x̄, ȳ) need
not to be isolated (in Rn). This occurs despite of the fact that x̄ is an isolated minimizer
(in Rn1) for P1(ȳ) and ȳ is an isolated minimizer (in Rn2) for P2(x̄) (cf. [5]). This fact
motivates the introduction of jointly nondegenerate Nash equilibria for GNEP0s. For the
case N > 2 the system F = 0 can be defined in an analogous way.

Definition 4.1 (Jointly nondegenerate Nash equilibrium). A Nash equilibrium x̄ of GNEP0

is called jointly nondegenerate, if for all ν ∈ N the point x̄ν is a nondegenerate minimizer
for Pν(x̄

−ν) and, additionally, it holds:

ND3* The matrix DF is nonsingular at (x̄, λ̄),

where λ̄ is the corresponding vector of unique multipliers.

Note that jointly nondegenerate Nash equilibria are isolated (in Rn). We mention that
the property ND3* does not imply ND3 (see Section 2.1), moreover, ND3* and ND3 are
independent from each other (cf. [5]).

Classification Theorem 4.2 presents the solution of the classification problem for GNEP0.
For its proof we refer to [5].

Classification Theorem 4.2 (GNEP0). GNEP0 has the unique basic class

C :



x̄ is a jointly nondegenerate Nash equilibrium of GNEP0,

locally around x̄ the set of Nash equilibria is given by

N∩
ν=1

{(
ξ
(
x−ν

)
, x−ν

)
|x−ν close to x̄−ν

}
= {x̄},

where ξ
(
x−ν

)
is the unique local minimizers for Pν(x

−ν) in a neighbor-

hood of x̄ν with ξ
(
x̄−ν

)
= x̄ν for all ν ∈ N .

Moreover, the corresponding local model is trivial.

The same result as in Theorem 4.2 holds for NEP (cf. [5]).
Now, we turn our attention to Nash optimization with J ̸= ∅. The presence of common

constraints makes the local structure of the set of Nash equilibria become rather involved.
To see this, let N = 2, J ̸= ∅. Let (x̄, ȳ) be a Nash equilibrium. Moreover, we assume that
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x̄ is a nondegenerate minimizer for P1(ȳ) and ȳ is a nondegenerate minimizer for P2(x̄). We
denote the vectors of corresponding Lagrange multipliers as (λ̄1, µ̄1) for x̄ and (λ̄2, µ̄2) for
ȳ. Hence, for (x̄, ȳ, λ̄1, µ̄1, λ̄2, µ̄2) the first order necessary optimality conditions are given
by the following KKT system

Dxf
1(x, y)−

∑
j∈J1

0 (x̄,ȳ)

λ1j ·Dxg
1
j (x, y)−

∑
j∈J0(x̄,ȳ)

µ1
j ·DxGj(x, y) = 0,

Dyf
2(x, y)−

∑
j∈J2

0 (x̄,ȳ)

λ2j ·Dyg
2
j (x, y)−

∑
j∈J0(x̄,ȳ)

µ2
j ·DyGj(x, y) = 0,

g1j (x, y) = 0, j ∈ J1
0 (x̄, ȳ),

g2j (x, y) = 0, j ∈ J2
0 (x̄, ȳ),

Gj(x, y) = 0, j ∈ J0(x̄, ȳ).

(4.2)

Note that (x̄, ȳ, λ̄1, µ̄1, λ̄2, µ̄2) solves (4.2). Moreover, every Nash equilibrium, sufficiently
close to (x̄, ȳ), is a solution of (4.2) together with the corresponding unique multipliers.
However, locally around (x̄, ȳ) the set of Nash equilibria need not to be a singleton. Indeed,
a calculation of the number of variables and equations in (4.2) yields:

variables: n1 + |J1
0 (x̄, ȳ)|+ |J0(x̄, ȳ)|︸ ︷︷ ︸

player 1

+n2 + |J2
0 (x̄, ȳ)|+ |J0(x̄, ȳ)|︸ ︷︷ ︸

player 2

,

equations: n1 + n2 + |J1
0 (x̄, ȳ)|+ |J2

0 (x̄, ȳ)|+ |J0(x̄, ȳ)|.

The KKT system (4.2) is underdetermined, namely, |J0(x̄, ȳ)| degrees of freedom are avail-
able in (4.2). This explains that locally around (x̄, ȳ) the set of Nash equilibria constitutes
a manifold of dimension |J0(x̄, ȳ)| (see Example 4.3). We recall that it happens despite
of the fact that x̄ (resp., ȳ) is a nondegenerate minimizer for P1(ȳ) (resp., P2(x̄)). For
N > 2, the degrees of freedom add up to (N −1) · |J0(x̄, ȳ)|. These available degrees of free-
dom not only cause the local non-uniqueness of the Nash equilibria set as described above.
But, in addition, possible violations of ND1-ND3 for players’ subproblems correspond to
(N − 1) · |J0(x̄, ȳ)| degrees of freedom (see Examples 4.3 and 4.4).

We present stable examples of GNEPs illustrating the phenomena described above. Note
that these examples provide some basic classes of the Nash optimization problem along with
their local models.

Example 4.3 (cf. [5, 6]). Let N = 2, J1 = J2 = ∅, J = {1, 2} and Nash optimization
problem be given by the following data functions

f(x, y) = −y,

f1(x, y) = −x, f2(x, y) = −y,
G1(x, y) = 1− x− y, G2(x, y) = x− y.

The global minimizers for both players are depicted in Figure 5. The set of Nash equilibria
is the intersection of both sets, i.e. the half-line starting at

(
1
2 ,

1
2

)
as its boundary point.

Note that x = 1
2 is of Type 5.1 for P1(

1
2 ), and y = 1

2 is of Type 5.2 for P2(
1
2 ). In particular,

Mangasarian-Fromovitz constraint qualification is violated at x = 1
2 for player 1, and the

linear independence constraint qualification is violated at y = 1
2 for player 2. These two

degeneracies correspond to the number (N − 1)|J0(
1
2 ,

1
2 )| = 2. The Nash equilibrium

(
1
2 ,

1
2

)
is the solution of the Nash optimization problem. The corresponding local model is

min
z
z s.t. z ∈ H.
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Figure 5: Global minimizers from Examples 4.3

Now, we consider the Nash equilibrium (1, 0). Note that x = 1 is of Type 1 for P1(0),
and y = 0 is also of Type 1 for P2(1). Hence, we have nondegenerate minimizers for both
players’ subproblems. Further, locally around (1, 0) the set of Nash equilibria constitutes
a one-dimensional manifold. This correspond to the crucial number (N − 1)|J0(1, 0)| = 1.
The Nash equilibrium (1, 0) is the solution of the Nash optimization problem with the new
objective function

f(x, y) = (x− 1)2 + y2.

The corresponding local model is

min
z
z2 s.t. z ∈ R.

Example 4.4 (cf. [5, 6]). Let N = 2, J1 = J2 = ∅, J = {1, 2} Nash optimization problem
be given by the following data functions

f(x, y, t) = t,

f1((x, y), t) = x, f2((x, y), t) = t,

G1((x, y), t) = 1− (x− t)2 − (y − (1− 2t))2, G2((x, y), t) = 1− x2 − (y + 1)2.

The feasible sets M1(t) of player 1’s subproblem P1(t) are depicted in Figure 6. The set of
Nash equilibria is a half-parabola NE starting at ((0, 0), 0) as its boundary point (see Figure
7). Here, (0, 0) is of Type 4.1 for P1(0). The point 0 can be seen as a point of Type 5.2 for
P2(0, 0), since dim(t) + 1 constraints are active there. These two degeneracies correspond
to the number (N − 1)|J0((0, 0), 0)| = 2. The Nash equilibrium ((0, 0), 0) is the solution of
the Nash optimization problem. The corresponding local model is

min
z
z s.t. z ∈ H.

Now, we consider an arbitrary Nash equilibrium ((x̄, ȳ), t̄) ∈ NE with ((x̄, ȳ), t̄) ̸=
((0, 0), 0). Note that (x̄, ȳ) is of Type 1 for P1(t̄) (i.e., a nondegenerate minimizer), and
t̄ is of Type 5.2 for P2(x̄, ȳ). Locally around ((x̄, ȳ), t̄)) the set of Nash equilibria is one-
dimensional. Altogether, one degeneracy of Type 5.2 and one dimension of the Nash equilib-
ria set correspond to the number (N − 1)|J0((x̄, ȳ), t̄)| = 2. The Nash equilibrium ((x̄, ȳ), t̄)
is the solution of the Nash optimization problem with the new objective function

f(x, y, t) = (x− x̄)2 + (y − ȳ)2 + (t− t̄)2.
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Figure 6: Feasible sets M1(t) from Example 4.4

The corresponding local model is

min
z
z2 s.t. z ∈ R.

Figure 7: Set of Nash equilibria from Example 4.4

Note that local models in Examples 4.3 and 4.4 coincide despite of the fact that mini-
mizers of the players’ subproblems are of different types. We point out that the complete
solution of the classification problem for Nash optimization is a topic of current research.
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