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We assume throughout the paper that F, f : Rn × Rm → R, G : Rn → Rk and g :
Rn × Rm → Rp are continuously differentiable functions.

Additional equality constraints can easily be included in both upper and lower level of
the bilevel programming problem. They can be handled by a slight modification of the
constraint qualifications related to (1.1). But since the complementarity structures we want
to examine stem from the inequality constraints, we dropped the equality constraints here
for ease of reference.

There exist various ways to reformulate (1.1) into a single level problem. One possibility
is the usage of the lower level parameter-dependent nondifferentiable optimal value function

φ(x) := min
y

{f(x, y) : g(x, y) ≤ 0}.

The resulting problem, which is fully equivalent to (1.1), has been extensively studied in
[3, 24].

In this paper, we want to examine another approach. Therefore, let the objective function
f(x, ·) as well as the lower level constraints g(x, ·) ≤ 0 be convex for every x with G(x) ≤ 0.
Furthermore, we assume that the lower level fulfills a certain constraint qualification like
the Mangasarian-Fromovitz constraint qualification (MFCQ). Then it is possible to apply
the Karush-Kuhn-Tucker (KKT) conditions to the lower level which leads to the following
reformulation of the bilevel programming problem, the KKT reformulation

min
x,y,λ

F (x, y)

s.t.


G(x) ≤ 0, g(x, y) ≤ 0

λ ≥ 0, λ⊤g(x, y) = 0

L(x, y, λ) := ∇yf(x, y) +∇yg(x, y)
⊤λ = 0.

(1.2)

Problem (1.2) is fully equivalent to the bilevel programming problem if global optimal
solutions are considered [1]. However, this is not true for local optimal solutions, as was
recently shown in [2]. Only if a point (x, y, λ) is a local optimal solution of (1.2) for every
feasible Lagrange multiplier

λ ∈ Λ(x, y) :=
{
λ ∈ Rp : λi ≥ 0 (i = 1, ..., p), L(x, y, λ) = 0, λ⊤g(x, y) = 0

}
,

then (x, y) is also locally optimal for (1.1).

The programming problem (1.2) is referred to as classical KKT reformulation. The lower
level reformulation via a generalized equation is called primal KKT approach; investigations
regarding this problem can be found in [4].

Since (1.2) contains complementarity terms of the form λ⊤g(x, y) = 0, the problem relies
on the theory of mathematical problems with equilibrium constraints (MPEC). A detailed
analysis of this class of problems, including optimality conditions and solution algorithms,
can be found in [14].



BILEVEL PROGRAMMING: STATIONARITY AND STABILITY 185

For a feasible point (x, y, λ) of (1.2), we define the following index sets which will be the
basis for our analysis:

θ := θ
(
x, y, λ

)
= {i : Gi(x) = 0}

η := η
(
x, y, λ

)
= {i : λi = 0, gi(x, y) < 0}

µ := µ
(
x, y, λ

)
= {i : λi = 0, gi(x, y) = 0}

ν := ν
(
x, y, λ

)
= {i : λi > 0, gi(x, y) = 0}.

As we will see in Section 3, the classification of stationarity concepts strongly depends
on the so-called degenerate set µ.

For a feasible point (x, y, λ) of (1.2), let (A,B) be a partition of µ, i.e. A ∩ B = ∅,
A ∪ B = µ. Then, for every such pair (A,B), we can define the nonlinear programming
problem

min
x,y,λ

F (x, y)

s.t.


G(x) ≤ 0

gi(x, y) = 0, λi ≥ 0 i ∈ ν ∪A

gi(x, y) ≤ 0, λi = 0 i ∈ η ∪B

L(x, y, λ) = 0.

(1.3)

One can easily deduce that the union over the feasible sets of the arising problems for all
tuples (A,B) is equal to the feasible set of (1.2) in a sufficiently small neighborhood of the
point (x, y, λ). Unfortunately, the number of partitions equals 2|µ| and may become large if
there exist many degenerate constraints.

The following notations are used throughout the paper. The closure of a set M ⊆ Rn is
denoted by cl M . The graph of a point-to-set-mapping Ψ : Rn → 2R

m

reads

gph Ψ = {(x, y) : y ∈ Ψ(x)} .

For a differentiable function F : Rn → R, ∇F (x) = (∇x1F (x), ...,∇xnF (x)) denotes the
gradient of F at x. U(x) := Uε(x) denotes the open ball around x with a sufficiently small
radius ε > 0. The unit ball is denoted by B. The i-th component of a vector a ∈ Rn,
a = (a1, ..., an)

⊤ is denoted by ai. For a matrix A ∈ Rn×m, the transposed matrix is A⊤.

2 Foundations and Definitions

In this section, some background material which is needed in the paper is provided.

Definition 2.1. Let F : Rn → R be lower semicontinuous at x. The proximal subdifferential
of F at x is defined by

∂πF (x) = { d ∈ Rn : ∃L > 0, ε > 0 with

F (x) ≥ F (x) + ⟨d, x− x⟩ − L ∥x− x∥2 ∀x ∈ Uε(x) } ,

and the limiting subdifferential of F at x is

∂F (x) =

{
d ∈ Rn : d = lim

k→∞
dk, dk ∈ ∂πF (xk), xk k→∞−→ x

}
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These definitions come from [16]. It follows directly from the definitions that ∂πF (x) ⊆
∂F (x). Furthermore, if the function F is strictly differentiable, the subdifferential can be
characterized via ∂F (x) = {∇F (x)}.

Definition 2.2. The directional derivative of F : Rn → R at x in a direction h ∈ Rn is
given by

F ′(x, h) = lim
t↓0

F (x+ th)− F (x)

t
.

If F is differentiable at x, then the directional derivative at x exists for every direction
h ∈ Rn. Furthermore, it holds that F ′(x, h) = ∇ F (x)⊤h.

Definition 2.3. The proximal normal cone of a closed set M ⊆ Rn at x ∈ M is defined by

Nπ
M (x) =

{
d ∈ Rn : ∃L > 0 with ⟨d, x− x⟩ ≤ L ∥x− x∥2 ∀x ∈ M

}
,

the limiting normal cone of M at x ∈ M is its upper limit in the sense of Kuratowski-
Painlevé:

NM (x) =

{
lim
k→∞

dk ∈ Rn : dk ∈ Nπ
M (xk), xk k→∞−→ x

}
.

We complete this section with some properties of point-to-set-mappings.

Definition 2.4. A point-to-set-mapping Ψ : Rn → 2R
m

is lower semicontinuous at x if for
every open set Ω with Ω ∩Ψ(x) ̸= ∅, there exists ε = ε(Ω) > 0 such that

Ψ(x) ∩ Ω ̸= ∅ ∀x ∈ Uε(x).

Definition 2.5. A point-to-set-mapping Ψ : Rn → 2R
m

is called locally upper-Lipschitzian
at x with modulus L if there exists ε > 0 such that

Ψ(x) ⊆ Ψ(x) + L ∥x− x∥B

holds for every x ∈ Uε(x).

Finally, we need to introduce a suitable substitute for the definition of a derivative for
point-to-set-mappings which goes back to Mordukhovich [16].

Definition 2.6. Let Ψ : Rn → 2R
m

be a point-to-set-mapping and let (x, y) ∈ cl gph Ψ.
Then, the coderivative D∗Ψ : Rm → 2R

n

of Ψ at (x, y) is defined by

D∗Ψ(x, y)(y∗) = {x∗ ∈ Rn : (x∗,−y∗) ∈ Ngph Ψ(x, y))} .

For a detailed analysis and properties of the aforementioned concepts, the reader is
referred to [16] and [18].

3 Stationarity Concepts

At the beginning of this section, we formulate optimality concepts for the KKT reformulation
(1.2). There exist different stationarity concepts for mathematical problems with equilibrium
constraints, see for example [6]. The special structure of the bilevel programming problem,
especially the lower level stationary conditions, make a direct application difficult. Great
contribution to the refinement of the conditions was done for example in [4]. We want to
confine our studies to two approaches. M-stationarity was first introduced in [23].
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Definition 3.1. Consider (1.2). A feasible point (x, y) ∈ gph Ψ with G(x) ≤ 0 is called M-
stationary if there exist multipliers (α, β, γ, λ) ∈ Rk ×Rp ×Rm ×Rp such that the following
conditions hold

∇xF (x, y) +∇G(x)⊤α+∇xg(x, y)
⊤β +∇xL(x, y, λ)⊤γ = 0 (3.1)

∇yF (x, y) +∇yg(x, y)
⊤β +∇yL(x, y, λ)⊤γ = 0 (3.2)

α ≥ 0, α⊤G(x) = 0 (3.3)

λ ≥ 0, λ
⊤
g(x, y) = 0 (3.4)

βi = 0 ∀i : i ∈ η (3.5)

∇ygi(x, y)γ = 0 ∀i : i ∈ ν (3.6)

βi > 0, ∇ygi(x, y)γ > 0 ∨ βi(∇ygi(x, y)γ) = 0 ∀i : i ∈ µ. (3.7)

Conditions (3.1) - (3.7) are called M-stationary conditions for problem (1.2).

The second concept we consider is an intensification of Definition 3.1.

Definition 3.2. Consider (1.2). A feasible point (x, y) ∈ gph Ψ with G(x) ≤ 0 is called
S-stationary if there exist multipliers (α, β, γ, λ) ∈ Rk×Rp×Rm×Rp such that (3.1) - (3.6)
and additionally

βi ≥ 0, ∇ygi(x, y)γ ≥ 0 ∀i : i ∈ µ. (3.8)

holds. These conditions are called S-stationary conditions for problem (1.2).

It follows directly from the definitions that every S-stationary point of (1.2) also fulfills
the M-stationary conditions, i.e. every S-multiplier is also an M-multiplier.

In [5], another approach is used to derive necessary optimality conditions for the KKT
problem (1.2). There, the basis is the Guignard constraint qualification [17] which demands
the equivalence between the dual of the linearized tangent cone and the negative of the
normal cone. The Guignard constraint qualification corresponds to the dualized Abadie
constraint qualification [17]. The following necessary optimality conditions for problem
(1.2) are achieved for σ ∈ R+ := {t ∈ R : t ≥ 0}:

∇xF (x, y) +∇G(x)⊤α+∇xg(x, y)
⊤(β − σλ) +∇xL(λ, x, y)⊤γ = 0

∇yF (x, y) +∇yg(x, y)
⊤(β − σλ) +∇yL(λ, x, y)⊤γ = 0

α ≥ 0, α⊤G(x) = 0

β ≥ 0, β⊤g(x, y) = 0

λ ≥ 0, λ
⊤
g(x, y) = 0

∇yg(x, y)γ − σg(x, y) ≥ 0, λ
⊤
(∇yg(x, y)γ) = 0.

(3.9)

The explicit derivation of the conditions (3.9) can be found in [5]. Our aim now is to
establish a connection between the conditions (3.9) and S-stationarity. Related relations
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between S-stationarity conditions for an MPEC and KKT conditions of a nonlinear opti-
mization problem can be found in [7].

First, let
(
α, β, γ, σ

)
be the multiplier of a point (x, y) fulfilling the conditions (3.9) with

the corresponding multiplier λ. We show that (α, β − σλ, γ, λ) is an S-stationary multiplier
for (x, y). Obviously, conditions (3.1)-(3.4) follow directly from (3.9). Condition (3.5)
is also valid since βi − σλi = βi = 0 for i ∈ η because of the complementarity conditions

β
⊤
g(x, y) = 0 in (3.9). We get condition (3.6) from λ

⊤
(∇yg(x, y)γ) = 0 since λi > 0

for i ∈ ν. Finally, we verify condition (3.8). For the index set µ, it holds that βi − σλi =
βi ≥ 0 as demanded in (3.9). From ∇yg(x, y)γ − σg(x, y) ≥ 0 we get ∇ygi(x, y)γ ≥ 0 since
gi(x, y) = 0 for i ∈ µ. Hence, (x, y) is an S-stationary point of (1.2) with the multiplier
(α, β − σλ, γ).

For the reverse direction, i.e. in order to derive the stationarity conditions (3.9) from
the S-stationary conditions in Definition 3.2, some conditions on the value of σ need to be
imposed. They are formulated in the following theorem.

Theorem 3.3. Let (x, y) be an S-stationary point of problem (1.2) with the corresponding
multiplier

(
α, β, γ, λ

)
∈ Rk+p+m+p and the index sets η, ν, µ. Then, there exists σ ∈ R with

βi + σλi ≥ 0 ∀i ∈ ν (3.10)

∇ygi(x, y)γ − σgi(x, y) ≥ 0 ∀i ∈ η. (3.11)

Then (x, y) fulfills (3.9) with the corresponding multipliers
(
α, β + σλ, γ, σ

)
.

Proof. We only need to ensure the validity of

β + σλ ≥ 0(
β + σλ

)⊤
g(x, y) = 0

∇yg(x, y)γ ≥ σg(x, y)

λ
⊤∇yg(x, y)γ = 0

in the conditions (3.9) for all three index sets η, ν, µ. The complementarity conditions follow
easily by the definition of η, ν, µ. For the nonnegativity of

βi + σλi ∀i ∈ ν,

we only have λi > 0 and further need to assume (3.10). Analogously, for i ∈ η we only know
that gi(x, y) < 0 which demands assumption (3.11).

A correct selection of the multiplier σ is ensured by choosing

σ ≥ max

{
0,max

i∈ν

{
−βi

λi

}
;max

i∈η

{
∇ygi(x, y)γ

gi(x, y)

}}
(3.12)

because the other conditions in (3.9) are trivially fulfilled. Due to the assumptions on
the occurring variables in (3.12), the maximum is well-defined, hence the existence of the
multiplier is ensured.
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Note that conditions (3.10) and (3.11) do not pose additional assumptions since the
right-hand side of inequality (3.12) is finite if (x, y) is an S-stationary point.

In order to formulate optimality conditions for the KKT reformulation (1.2), suitable
constraint qualifications need to be introduced. Due to the complementarity terms in (1.2),
it is easy to prove that the usual constraint qualifications used for nonlinear problems like
the MFCQ and therefore also the linear independence constraint qualification (LICQ) do
not hold at any feasible point of (1.2), see for example [24].

A constraint qualification for M-stationary points is the no nonzero abnormal multiplier
constraint qualification (NNAMCQ). For the definition and proof of the lemma regarding
the standard MPEC version see for example [22]. For nonlinear programs, NNAMCQ is
equivalent to the MFCQ.

Definition 3.4. At a feasible point (x, y, λ) of (1.2), NNAMCQ is said to be fulfilled if
there does not exist any nonzero vector (α, β, γ) satisfying

∇G(x)⊤α+∇xg(x, y)
⊤β +∇xL(x, y, λ)⊤γ = 0

∇yg(x, y)
⊤β +∇yL(x, y, λ)⊤γ = 0

L(x, y, λ) = 0

αi ≥ 0 ∀i : i ∈ θ

βi = 0 ∀i : i ∈ η

∇ygi(x, y)γ = 0 ∀i : i ∈ ν

either βi > 0,∇ygi(x, y)γ > 0

or βi(∇ygi(x, y)γ) = 0 ∀i : i ∈ µ.

Lemma 3.5. Let (x, y, λ) be a local optimal solution of (1.2) at which NNAMCQ is fulfilled.
Then, there exist multipliers (α, β, γ) such that the M-stationarity conditions (3.1) - (3.7)
are fulfilled at (x, y).

The proof of this Lemma is similar to the respective proof in [22]. We add it for the sake
of completeness and since the considered problems here and in [22] are different.

Proof. Let (x, y, λ) be locally optimal for (1.2). This is equivalent to (x, y, λ, a, b) with
a = −g(x, y), b = λ being a local optimal solution of the problem

min
x,y,λ,a,b

F (x, y)

s.t.


G(x) ≤ 0

g(x, y) + a = 0, −λ+ b = 0

L(x, y, λ) = 0

(a, b) ∈ Ω

(3.13)

which is equivalent to (1.2) for Ω =
{
(a, b) ∈ Rp × Rp : a ≥ 0, b ≥ 0, a⊤b = 0

}
. Since

(x, y, λ, a, b) is locally optimal for (3.13), there exist multipliers χ ≥ 0, (α, β, γ, ξ) ̸= (0, 0, 0, 0)
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and (a∗, b∗) ∈ NΩ(a, b) with

0 = χ


∇xF (x, y)⊤

∇yF (x, y)⊤

0

0

0

+


∇G(x)⊤α

0

0

0

0

+


∇xg(x, y)

⊤β

∇yg(x, y)
⊤β

0

β

0



+


∇xL(x, y, λ)⊤γ
∇yL(x, y, λ)⊤γ
∇yg(x, y)γ

0

0

+


0

0

−ξ

0

ξ

+


0

0

0

a∗

b∗


αi ≥ 0 ∀i : i ∈ θ

α⊤G(x) = 0

(3.14)

as follows from [16]. It holds that (a∗, b∗) ∈ NΩ(a, b) with

NΩ(a, b) = {(a∗, b∗) : a∗ = 0 if a > 0

b∗ = 0 if b > 0

a∗, b∗ > 0 or a∗
⊤
b∗ = 0 if a = b = 0} .

(3.15)

NNAMCQ means that w.l.o.g., χ can be chosen as 1. Conditions (3.1) and (3.2) of the
definition of M-stationarity follow directly from (3.14). Furthermore, from (3.14) we also
conclude∇yg(x, y)γ−ξ = 0, hence ξ = ∇yg(x, y)γ. Taking into account that a > 0 whenever
g(x, y) < 0, which follows from problem (3.13), as well as considering the formulation of the
normal cone (3.15), we deduce from β + a∗ = 0 that βi = 0 for i ∈ η. Following analogous
argumentations for the sets ν and µ, we get the relations (3.6) and (3.7). The proof is
complete.

A constraint qualification for S-stationarity is an adjustment of the MPEC-LICQ, for
the standard version see [14], see also [21].

Definition 3.6. Let (x, y, λ) be feasible for (1.2). MPEC-LICQ holds at the point (x, y, λ)
if the matrix  ∇Gθ(x) 0 0

∇xgν∪µ(x, y) ∇ygν∪µ(x, y) 0

∇xL(x, y, λ) ∇yL(x, y, λ) ∇yg
⊤
ν (x, y)


has full row rank.

Scholtes and Stöhr showed in [21] that MPEC-LICQ holds generically for the problem
(1.2).

It is commonly known that MPEC-LICQ is equivalent to the usual nonlinear LICQ for
the relaxed problem
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min
x,y,λ

F (x, y)

s.t.


G(x) ≤ 0

g(x, y) ≤ 0, λ ≥ 0,

L(x, y, λ) := ∇yf(x, y) +∇yg(x, y)
⊤λ = 0

(3.16)

since the complementarity terms λ⊤g(x, y) = 0 are dropped in this problem; for an explicit
proof see [14]. Under MPEC-LICQ, the multipliers corresponding to an S- (hence M-)
stationary point are uniquely defined which implies that the two stationarity definitions
coincide. Furthermore, this means that for every branch of (1.3) arising from a partition
(A,B) of µ, the multiplier is unique, and therefore the multiplier is independent of the
partition (A,B).

The following lemma gives some relations between local optimal solutions and S-stationary
points of problem (1.2) under MPEC-LICQ. It is an application of results in [20].

Lemma 3.7. Let (x, y, λ) be a local optimal solution of (3.16), and let LICQ hold at this
point. Then, there exist multipliers (α, β, γ) such that (x, y) is an S-stationary point for
(1.2) with multipliers (α, β, γ, λ).

Proof. The optimality conditions for the relaxed problem (3.16) with respect to (x, y, λ) are

0 =

∇xF (x, y)⊤

∇yF (x, y)⊤

0

+

∇G(x)⊤α

0

0



+

∇xg(x, y)
⊤β

∇yg(x, y)
⊤β

0

+

∇xL(x, y, λ)⊤γ
∇yL(x, y, λ)⊤γ
∇yg(x, y)γ

−

0

0

ξ

 (3.17)

αi ≥ 0 ∀i : i ∈ θ (3.18)

βi ≥ 0 ∀i : i ∈ ν ∪ µ (3.19)

ξi ≥ 0 ∀i : i ∈ η ∪ µ (3.20)

α⊤G(x) = 0 (3.21)

β⊤g(x, y) = 0 (3.22)

ξ⊤λ = 0. (3.23)

From (3.22) we deduce that βi = 0 for i ∈ η which is condition (3.5) of S-stationarity. Since
ξ = ∇yg(x, y)γ which we get from (3.17), we can use (3.23) in order to derive∇ygi(x, y)γ = 0
for all i ∈ ν which equals the S-stationarity condition (3.6). Finally, the nonnegativity (3.8)
of βi and ∇ygi(x, y)γ for i ∈ µ follows from (3.19) and (3.20). The proof is complete.

4 Strongly Stable M- and S-Stationary Points

Our aim is to provide conditions for strong stability of the introduced stationary points.

Definition 4.1. An M-stationary (S-stationary) point (x, y) of (1.2) is called strongly stable
in the sense of Kojima [13] if for some r > 0 and each ε ∈ (0, r] there exists a δ = δ(ε) > 0
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such that for every (F̃ , f̃ , G̃, g̃) ∈ C2 with

∥(F − F̃ , f − f̃ , G− G̃, g − g̃)∥C
2

Ur(x,y)
≤ δ,

there exists (x̃, ỹ) which is M-stationary (S-stationary) for (1.2) in Uε(x, y) and unique in
Ur(x, y).

Turning our attention to problem (1.2) and the corresponding index sets µ, ν, η, potential
problems arise whenever the degenerate index set µ is nonempty. Having a closer look at the
stationarity conditions, it becomes obvious that a deeper classification is possible. Therefore,
considering an M-stationary point (x, y) and the corresponding multipliers (α, β, γ, λ) of
(1.2), we introduce for ζi := ∇ygi(x, y)γ the following partition of the index set µ:

p := {i ∈ µ : βi > 0, ζi > 0}

q := {i ∈ µ : βi > 0, ζi = 0}

r := {i ∈ µ : βi = 0, ζi > 0}

s := {i ∈ µ : βi < 0, ζi = 0}

t := {i ∈ µ : βi = 0, ζi < 0}

v := {i ∈ µ : βi = 0, ζi = 0}.

(4.1)

Now, the possibly degenerate structure is reduced to the set v ⊆ µ.

Remark 4.2. Regarding S-stationary points, the index sets s and t are by definition empty.

The next lemma provides a characterization of stationary points of the KKT problem
(1.2) using the partition (4.1).

Lemma 4.3. Let (x, y) be M-stationary for (1.2) with the multiplier (α, β, γ, λ). Assume
that the set v is empty. Let the mapping H be defined by

H(x, y, α, β, γ, λ) :=



∇xF (x, y) +∇G(x)⊤α+∇xg(x, y)
⊤β +∇xL(x, y, λ)⊤γ

∇yF (x, y) +∇yg(x, y)
⊤β +∇yL(x, y, λ)⊤γ

min{α,−G(x)}
min{λ,−g(x, y)}

L(x, y, λ)
gν(x, y)

λη

gp(x, y)

λp

gq(x, y)

min{ζq, λq}
min{βr,−gr(x, y)}

λr

gs(x, y)

ζs

βt

λt



.
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Then, in a sufficiently small neighborhood of (x, y), every M-stationary point (x̂, ŷ) of (1.2)

with multipliers (α̂, β̂, γ̂, λ̂) sufficiently close to (α, β, γ, λ) is a root of the mapping H and
vice versa.

Proof. That every M-stationary point is a root of H follows directly from Definition 3.1 and
the partition of the index set µ. The closeness condition is used to guarantee that the index
sets ν, µ, and η do not change. For the reverse direction of the Lemma, the validity of
M-stationary conditions (3.4) and (3.7) have to be verified for the respective index sets ν,
µ, and η.

The condition that (α̂, β̂, γ̂, λ̂) is sufficiently close to (α, β, γ, λ) is guaranteed under
MPEC-LICQ.

Proposition 4.4. Let (x, y) be an S-stationary point of (1.2) for the multipliers
(
α, β, γ, λ

)
.

The first direction of Lemma 4.3, i.e. H(x, y, α, β, γ, λ) = 0 for every S-stationary point
(x, y, α, β, γ, λ) ∈ U(x, y, α, β, γ, λ), holds automatically since S-stationarity implies M-
stationarity. For the reverse direction, we further need to assume that besides v, also the
index sets s, t are empty since S-stationarity requires the multipliers βi, ζi to be nonnegative
for every i ∈ µ.

A standard way to achieve strong stability for nonlinear programs is via LICQ and
sufficient conditions of second order. We formulate such conditions in Theorem 5.6 of Section
5. Another approach appears in [12] where regularity of the matrices ∂H is used. The next
theorem is based on the latter principle and provides sufficient conditions for strong stability.

Theorem 4.5. Let (x, y) be an M-stationary point of (1.2) with the multipliers (α, β, γ, λ).
Consider H(x, y, α, β, γ, λ) as introduced above. If v = ∅, all the matrices ∂H(x, y, α, β, γ, λ)
are regular and MPEC-LICQ holds, then (x, y) is a strongly stable M-stationary point of
(1.2).

Proof. With the help of Lemma 4.3, we get H(x, y, α, β, γ, λ) = 0. This allows us to apply
Theorem 4.3 and Remark 4.4 of [12] which states the equivalence of non-singularity of all
the matrices in the Clarke’s subdifferential ∂H(x, y, α, β, γ, λ) and strong stability of (x, y)
under LICQ.

Proposition 4.6. Under the assumptions of Theorem 4.5, the statement can be applied
directly to an S-stationary point of (1.2) since every S-stationary point is also M-stationary.

For the investigation of C-stationarity, a concept that is weaker than M-stationarity,
we refer the interested reader to [11]. There, a full characterization of strongly stable C-
stationary points is given under similar assumtions.

5 Properties of the Nonlinear Program

We turn our attention to the nonlinear program (1.2) and split it into a patchwork of
problems (1.3). Then, properties of solutions and of the optimal value functions of these
problems can be used to derive properties of the problem (1.2).

For a feasible point (x, y, λ) of the KKT problem (1.2), we consider one nonlinear problem
(1.3) arising from a special partition (A,B) of the degenerate index set µ. In order to study
the stability of a locally optimal solution of (1.3), we need to investigate its parameterized
optimal value function
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φNLP (x) := min
(y,λ)∈Rm

{F (x, y) : (y, λ) ∈ MNLP (x)}

with the set of feasible points

MNLP (x) :=
{
(y, λ) ∈ Rm+p : G(x) ≤ 0,

gi(x, y) = 0, λi ≥ 0 i ∈ ν ∪A

gi(x, y) ≤ 0, λi = 0 i ∈ η ∪B

L(x, y, λ) = 0}

and the set of optimal solutions

ΨNLP (x) = Argmin
(y,λ)∈MNLP (x)

F (x, y).

We get the relation

φ(x) = min
(A,B)

φNLP (x)

for the optimal value function of the original problem.

First, we get the following representation for the directional derivative of the optimal
value function. The idea for this representation stems from [8] and [19].

Lemma 5.1. Suppose that there exist κ ∈ R and a compact set S ⊆ Rm+p with φNLP (x) < κ
and

{(y, λ) ∈ MNLP (x) : F (x, y) ≤ κ} ⊆ S ∀x ∈ U(x). (5.1)

Furthermore, let LICQ be fulfilled for every (y, λ) ∈ ΨNLP (x). Then,

φ′
NLP (x, h) = min

(y,λ)∈ΨNLP (x)
{∇xL(x, y, α, β, γ, λ)h}

with the Lagrangian function

L(x, y, α, β, γ, λ) = F (x, y) + α⊤G(x) + β⊤g(x, y) + γ⊤L(x, y, λ).

Proof. Consider the problem (1.3). Under LICQ, the Lagrangian multiplier is defined
uniquely. The existence of a solution (y, λ) in a sufficiently small neighborhood of x as
long as MNLP (x) ̸= ∅ is ensured by the condition (5.1). In order to derive the result from
[8], we only need to ensure that ΨNLP is uniformly compact. This follows from condi-
tion (5.1) which ensures the boundedness of the level sets {(y, λ) ∈ MNLP (x) : F (x, y) ≤ κ}
together with [16] which ensures the closedness.

Remark 5.2. Condition (5.1) is called inf-compactness condition. The formula for the
directional differentiability in the form used here can also been found in the paper [10].

Remark 5.3. It is possible to presuppose the inf-compactness condition with respect to the
KKT problem (1.2), its parameter-dependent feasible set M(x) and optimal value function
φ(x). This is valid because for every branch, i.e. for every partition (A,B), and for κ and
S as introduced in Lemma 5.1 we get φ(x) = φNLP (x) < κ and

{(y, λ) ∈ MNLP (x) : F (x, y) ≤ κ} ⊆ {(y, λ) ∈ M(x) : F (x, y) ≤ κ} ⊆ S
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for all x ∈ U(x). Analogously, the LICQ condition for the nonlinear program can be sub-
stituted by MPEC-LICQ for the KKT reformulation since in a small neighborhood of (x, y)
and for every partition (A,B), the feasible set of (1.3) is contained in the one of the original
problem (1.2). This means that MPEC-LICQ ensures LICQ for every branch of (1.3).

Example 5.4. We want to examine the bilevel programming problem

min
x,y

F (x, y) = (x− 1)2

s.t. y ∈ Ψ(x) := Argmin
z

{ x2 + z2 : g1(x, z) = 1− x+ z ≤ 0 } .

The solution of the KKT formulation

min
x,y,λ

F (x, y) = (x− 1)2

s.t. g1(x, y) = 1− x+ y ≤ 0, λ ≥ 0, g1(x, y) · λ = 0

L(x, y, λ) = 2y + λ = 0

is (x, y, λ) = (1, 0, 0). Hence, the index set µ = {1} leads to the two possible partitions
(A,B) = ({1} , ∅) and (A,B) = (∅, {1}). Therefore, two nonlinear surrogate problems arise.
We confine our studies to the following one with (A,B) = ({1} , ∅), namely

min
x,y,λ

F (x, y) = (x− 1)2

s.t. g1(x, y) = 1− x+ y = 0, λ1 ≥ 0

L1(x, y, λ) = 2y + λ = 0.

It can be easily deduced that the only feasible solution of the latter problem is (x, y, λ) =
(1, 0, 0) and that LICQ holds at this point. Then, the calculation of the directional derivative
for h ∈ R reads

φ′
NLP (1, h) = h(2(x− 1)− β).

Evaluating the optimality conditions, we get β = 0 belonging to the constraint g1(x, y) =
1 − x + y = 0, and γ = 0 which is the multiplier of the constraint L(x, y, λ) = 2y + λ = 0.
Hence, φ′

NLP (1, h) = 0 for every h ∈ R.

In order to formulate continuity statements for the optimal value function φNLP , we
need to introduce a second order condition.

Definition 5.5. Let (x, y) be S-stationary for (1.2) with the unique multiplier (α, β, γ, λ).
The strong second order sufficient condition (MPEC-SSOSC) holds at (x, y) if

d⊤∇2L(x, y, α, β, γ, λ)d > 0

for every nonzero vector d = (dx, dy, dλ)⊤ ∈ Rn+m+p satisfying

∇Gi(x)dx = 0 ∀i : αi > 0

∇xgi(x, y)dx = 0 ∀i : i ∈ ν ∪ µ

∇ygi(x, y)dy = 0 ∀i : i ∈ ν ∪ µ

∇xL(x, y, λ)dx = 0

∇yL(x, y, λ)dy = 0

(∇ygi(x, y)γ) dλ = 0 ∀i : i ∈ η ∪ µ

with L(x, y, α, β, γ, λ) = F (x, y) + α⊤G(x) + β⊤g(x, y) + γ⊤L(x, y, λ).
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Theorem 5.6. Let (x, y) be an S-stationary point of (1.2) at which MPEC-LICQ and
MPEC-SSOSC are fulfilled. Then, φNLP is Lipschitz-continuous over U(x) and there exists
a unique, continuous function (y(x), λ(x)) of optimal solutions with (y(x), λ(x)) = (y, λ).

Proof. We begin with the proof second part of the theorem. From MPEC-LICQ and MPEC-
SSOSC we derive that both LICQ and SSOSC hold with respect to every branch (i.e. every
partition of µ) of the nonlinear program (1.3). It follows that (x, y) with (y, λ) ∈ ΨNLP (x)
is a unique optimal solution for every partition (A,B). This remains true in a sufficiently
small neighborhood, i.e. for every x ∈ U(x), there exists a unique solution (y(x), λ(x)) with
(y, λ) : Rn × Rp → R being continuous as follows from the implicit function theorem.
The Lipschitz-continuity of φNLP can be deduced analogously.

Since for every partition, the corresponding nonlinear program (1.3) respresents a part
of the feasible set of the original problem, the investigation in certain directions is of special
interest. Therefore, consider the curve

x(t) = x+ th+ o(t) 0 ≤ t < ε

for some ε > 0. Now we want to prove a Lipschitzian property for the optimal set mapping
Ψ of (1.3).

Theorem 5.7. Suppose that LICQ holds for every (y, λ) ∈ ΨNLP (x) and that the inf-
compactness condition (5.1) is fulfilled. For all (y, λ) ∈ ΨNLP (x) with

φ′
NLP (x, h) = ∇xL(x, y, α, β, γ, λ)h,

let there be a sufficiently small neighborhood U(y, λ) such that the active index sets

{i ∈ ν ∪A : λ′
i = 0} ∪ {i ∈ η ∪B : gi(x, y

′) = 0} (5.2)

do not change for all (y′, λ′) ∈ U(y, λ), (y′, λ′) ∈ ΨNLP (x) with ΨNLP being compact. Then,
the optimal set mapping ΨNLP is locally upper Lipschitzian at x along the direction h, i.e.
there exists L > 0 such that

ΨNLP (x(t)) ⊆ ΨNLP (x) + LtB

holds.

Proof. First, we need to introduce the critical cone toMNLP at (x, y) with (y, λ) ∈ ΨNLP (x),

C(y, λ) = { (dy, dλ) ∈ Rm+p : ∇ygi(x, y)dy = 0 if i ∈ ν ∪A

dλi = 0 if i ∈ ν ∪A, ∇ygi(x, y)γ > 0, λi = 0

dλi ≥ 0 if i ∈ ν ∪A, ∇ygi(x, y)γ = λi = 0

∇ygi(x, y)dy = 0 if i ∈ η ∪B, βi > 0, gi(x, y) = 0

∇ygi(x, y)dy ≤ 0 if i ∈ η ∪B, βi = gi(x, y) = 0

dλi = 0 if i ∈ η ∪B

∇yL(x, y, λ)dy +∇λL(x, y, λ)dλ = 0 }

and the linearized cone

T lin(y, λ) = { (dy, dλ) ∈ Rm+p : ∇ygi(x, y)dy = 0 if i ∈ ν ∪A

dλi ≥ 0 if i ∈ ν ∪A, λi = 0

dλi = 0 if i ∈ η ∪B

∇ygi(x, y)dy ≤ 0 if i ∈ η ∪B, gi(x, y) = 0

∇yL(x, y, λ)dy +∇λL(x, y, λ)dλ = 0 } .
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It follows readily that{
(dy, dλ) ∈ C(y, λ) : dy⊤∇2

yyL(x, y, λ)dy + dλ⊤∇2
λλL(x, y, λ)dλ = 0

}
⊆ C(y, λ) ⊆ T lin(y, λ)

holds. Since LICQ holds for every (y, λ) ∈ ΨNLP (x), also the Abadie constraint qualification
is fulfilled [17] which means that we get the inclusion

T lin(y, λ) ⊆ TMNLP (x)(y, λ)

for every (y, λ) ∈ MNLP (x).
Furthermore, the compactness of ΨNLP allows the formulation of the coderivative at (x, y, λ) ∈
gph ΨNLP for every (y, λ) ∈ MNLP (x), see Definition 2.6. As a result from Theorem 5.6,
ΨNLP is a smooth manifold at (y, λ).
Now, all assumptions are fulfilled in order to apply [19, Theorem 3.1].

Remark 5.8. A sufficient condition for the index sets (5.2) being constant is that µ = ∅.
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