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QP [5], another method has been put forward, namely support set sensitivity analysis. In
this context, the aim is to find the range of parameter variations where for each parameter
value in the range, an optimal solution exists with exactly the same set of positive variables
as for the current optimal solution. In [10], the author studied the sensitivity analysis for the
multi-parametric convex quadratic optimization problem, and then in [11] he extended this
analysis for the dual and the primal-dual linear optimization, and showed that the stability
regions are convex polyhedral sets which described by the basis vectors of the lineality space
and the extreme directions of the defined cone. Here by using the technique in [11], we
extend this analysis for QP case, also we point out the cases in which this analysis is the
same as LO case.

2 Preliminaries

Let us consider the primal problem

min cTx+ 1
2x

TQx
s.t : Ax = b (QP )

x ≥ 0,

and its Wolfe dual
max bTy − 1

2x
TQx

s.t : ATy + s−Qx = c (QD)
s ≥ 0,

where, Q ∈ Rn×n is a symmetric positive semidefinite matrix, A ∈ Rm×n, b ∈ Rm and c ∈
Rn are fixed data and x, s ∈ Rn and y ∈ Rm are unknown vectors. We denote the sets of
feasible solutions for the primal and dual problems by

QP = {x : Ax = b, x ≥ 0},
QD = {(x,y, s) : ATy + s−Qx = c, x, s ≥ 0},

respectively. Feasible solutions x ∈ QP and (x,y, s) ∈ QD are optimal if and only if xT s = 0
[3]. Also let QP∗ and QD∗ denote the corresponding sets of optimal solutions. Then for
any x ∈ QP∗ and (x,y, s) ∈ QD∗ we have

xisi = 0, i = 1, 2, . . . , n.

The support set of a nonnegative vector x is defined as

σ(x) = {i : xi > 0}.

The index set {1, 2, . . . , n} can be partitioned into three subsets

B = {i : xi > 0 for some x ∈ QP∗},
N = {i : si > 0 for some (x,y, s) ∈ QD∗},
T = {1, 2, . . . , n} \ (B ∪N )

= {i : xi = si = 0 for all x ∈ QP∗ and (x,y, s) ∈ QD∗},

where is known as the optimal partition of the index set {1, 2, . . . , n} for problems (QP ) and
(QD), and is denoted by π = (B,N , T ). The uniqueness of the optimal partition follows
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from the convexity of the optimal solution sets QP∗ and QD∗. A maximally complementary
solution [7] (x,y, s) is a pair of primal-dual optimal solutions of QP and QD for which

xi > 0 if and only if i ∈ B,

si > 0 if and only if i ∈ N .

The existence of maximally complementary solution is a consequence of the convexity of the
optimal solution setsQP∗ andQD∗ [12]. Knowing a maximally complementary solution, one
can easily determine the optimal partition as well. If T = ∅ for some optimal partition, then
any maximally complementary solution is strictly complementary. It is worth to mention
that we have σ(x∗) ⊆ B and σ(s∗) ⊆ N for any pair of primal-dual optimal solutions
(x∗,y∗, s∗).

Let λ ∈ Rk and ϵ ∈ Rk
′

be two vectors of parameters. We consider the parametric primal
problem in the general form

min cT (ϵ)x+ 1
2x

TQx
s.t : Ax = b(λ) (QPP )

x ≥ 0,

with its dual
max bT (λ)y − 1

2x
TQx

s.t : ATy + s−Qx = c(ϵ) (QDP )
s ≥ 0,

where, b(λ) = b+

k∑
j=1

αjλj and c(ϵ) = c+

k
′∑

j=1

βjϵj in which αj and βj are given. Also let

QPP∗ and QPD∗ denote the sets of optimal solutions of the problems (QPP ) and (QPD),
respectively. Let x∗ and (x∗,y∗, s∗) be optimal solutions of (QP ) and (QD), respectively.
The corresponding optimal partition is denoted by π = (B,N , T ). Let us define the support
set sensitivity analysis for the dual problem and the primal-dual problem.

Support set sensitivity analysis for the dual and the primal-dual problem: Let
(x∗,y∗, s∗) be a primal-dual optimal solution of (QP ) and (QD) with P = σ(x∗) and P̂ =
σ(s∗). Thus, the index set {1, 2, . . . , n} can be partitioned as (P̂ , Ẑ), where P̂ = {i : s∗i > 0}
and Ẑ = {1, 2, . . . , n} \ P̂ . Further, another partition of the index set can be defined as
(P, Z̃, P̂ ), where P = {i : x∗

i > 0} and Z̃ = {1, 2, . . . , n} \ (P ∪ P̂ ). Support set sensitivity
analysis for the dual problem (QD) deals with finding a region of variation of parameters
(λ, ϵ) , such that there is a primal-dual optimal solution (x,y, s) with the property σ(s) = P̂ .
In other words, we want the active set of constraints in the dual problem (QD) remains active
in the perturbed problem (QDP ) for any (λ, ϵ) in this region. On the other hand, in support
set sensitivity analysis for the primal-dual problems, we want the positive variables in the
given primal optimal solution of the problem (QP ) remain positive in the perturbed problem
(QPP ), as well as keeping the active set of constraints in the dual problem (QD), active in
the perturbed problem (QDP ) for any (λ, ϵ) in this region.

The corresponding sets of sensitivity analysis are denoted by ΥP̂ (s
∗) and Υ(x∗, s∗),

respectively, which are referred to critical regions.
The purpose of this paper is to extend support set sensitivity analysis of the dual and

the primal-dual problems when two independent sets of parameters applied for the objective
function and the right-hand-side of the constraints, simultaneously.

The following definitions and Theorem are quoted from [13].
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Definition 2.1. A set C ⊆ Rn is a polyhedron if and only if there exist an m × n matrix
H and a vector h ∈ Rm such that C = {x ∈ Rn : Hx ≤ h}.

Definition 2.2. The lineality space of C is defined as LC = {x ∈ Rn : Hx = 0}.

Clearly, 0 ∈ LC and we have LC = {0} if and only if r(H) = n, where r(H) denotes the
“rank” of matrix H. Let

L⊥
C = {x ∈ Rn : yTx = 0 for all y ∈ LC},

be the orthogonal complement of LC in Rn. In this way, we have dimLC = n − r(H) and
dimL⊥

C = r(H) and LC = {0} if and only if L⊥
C = Rn. Let the rows of the matrix G

correspond to the vectors of a basis of the space LC . Then G has n − r(H) rows and n
columns r(G) = n− r(H) and L⊥

C = {x ∈ Rn : Gx = 0}.

Definition 2.3. Let S ⊆ Rn be any set. Then the set

{x ∈ Rn : x =
t∑

i=1

µix
i,

t∑
i=1

µi = 1, µi ≥ 0, xi ∈ S, 0 ≤ t < ∞},

is the convex hull of S, denoted by conv(S), and the set

{x ∈ Rn : x =
t∑

i=1

µix
i, µi ≥ 0, xi ∈ S, 0 ≤ t < ∞},

is the conical hull of S, denoted by cone(S).

Theorem 2.4. Let C be a polyhedron, LC its lineality space and C0 = C ∩ L⊥
C . Denote by

S = {x1, . . . ,xq} the extreme points and by T = {y1, . . . ,yr} the extreme directions of C0.
Then C0 = conv(S) + cone(T) and C = LC + conv(S) + cone(T).

3 Stability Regions

To identify the sets ΥP̂ (s
∗) and Υ(x∗, s∗), a computational method is introduced in this

section.

3.1 Support Set Sensitivity Analysis for Dual Problem

Let (x∗,y∗, s∗) be a primal-dual optimal solution of (QP ) and (QD) with P̂ = σ(s∗) and
Ẑ = {1, 2, . . . , n}\P̂ . Consider the partition (P̂ , Ẑ) of the index set {1, 2, . . . , n} for matrices
Q, A and the vectors x, c and s as follows:

Q =

(
QP̂ P̂ QP̂ Ẑ

QT
P̂ Ẑ

QẐẐ

)
, A =

(
AP̂ AẐ

)
,

c =

(
cP̂
cẐ

)
, x =

(
xP̂

xẐ

)
and s =

(
sP̂
sẐ

)
.

(3.1)

We want to identify the set ΥP̂ (s
∗). Let I and J be the index set of a basis of the lin-

eality space and the extreme directions of the convex polyhedron cone corresponded to a
polyhedron, respectively.
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Theorem 3.1. Let (hẐ
i ,hi), i ∈ I, be a basis of the lineality space

L = {(u,v) : AT
Ẑ
u−QT

P̂ Ẑ
vP̂ −QT

ẐẐ
vẐ = 0, Av = 0, vP̂ = 0},

and let (gẐ
j ,gj), j ∈ J , be all extreme directions of the convex polyhedron cone

S = {(u,v) : AT
Ẑ
u−QT

P̂ Ẑ
vP̂ −QT

ẐẐ
vẐ ≥ 0, Av = 0, vP̂ ≥ 0} ∩ L⊥,

where I and J are indices of the basis and directions, respectively. Then

ΥP̂ (s
∗) = {(λ, ϵ) : b(λ)ThẐ

i + c(ϵ)Thi = 0, i ∈ I, b(λ)TgẐ
j + c(ϵ)Tgj > 0, j ∈ J}.

Proof. To prove, we identify the set of (λ, ϵ) such that support set of the given solution
remains invariant, that is,

ΥP̂ (s
∗) = {(λ, ϵ) : ∃(x,y, s) ∈ QPP∗ ×QDP∗ with σ(s) = P̂}

= {(λ, ϵ) : ∃(x,y, s) ∈ QPP∗ ×QDP∗ s.t. Ax = b(λ),

ATy + s−Qx = c(ϵ), x, s ≥ 0, xT s = 0, σ(s) = P̂}

= {(λ, ϵ) : ∃(x,y) ∈ QPP∗ ×QDP∗ s.t. AẐxẐ = b(λ),xẐ ≥ 0,

AT
P̂
y −QP̂ ẐxẐ < cP̂ (ϵ),A

T
Ẑ
y −QẐẐxẐ = cẐ(ϵ)}.

Therefore, it is sufficient to determine the set of (λ, ϵ) for which the system

AẐxẐ = b(λ)

AT
P̂
y −QP̂ ẐxẐ < cP̂ (ϵ) (3.2)

AT
Ẑ
y −QẐẐxẐ = cẐ(ϵ)

xẐ ≥ 0,

is solvable. But the system (3.2) is solvable if and only if the corresponding problem

max 0Ty + 0TxẐ

s.t : AẐxẐ = b(λ)

AT
P̂
y −QP̂ ẐxẐ ≤ cP̂ (ϵ)− ηP̂ (3.3)

AT
Ẑ
y −QẐẐxẐ = cẐ(ϵ)

xẐ ≥ 0,

has an optimal solution for sufficiently small ηP̂ > 0. By duality theory in linear program-
ming, it is equivalent to the optimality of the following dual problem

min b(λ)Tu+ c(ϵ)Tv − ηP̂ (ϵ)
TvP̂

s.t : AT
Ẑ
u−QT

P̂ Ẑ
vP̂ −QT

ẐẐ
vẐ ≥ 0 (3.4)

Av = 0

vP̂ ≥ 0.

Now, let L denote the lineality space of the problem (3.4), that is,

L = {(u,v) : AT
Ẑ
u−QT

P̂ Ẑ
vP̂ −QT

ẐẐ
vẐ = 0, Av = 0, vP̂ = 0}.
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Let (hẐ
i ,hi), i ∈ I, denote the vectors of basis of L, and (gẐ

j ,gj), j ∈ J , denote the extreme

directions of S = {(u,v) : AT
Ẑ
u − QT

P̂ Ẑ
vP̂ − QT

ẐẐ
vẐ ≥ 0, Av = 0, vP̂ ≥ 0} ∩ L⊥. Any

solution of problem (3.4) can be written as

(u,v) =
∑
i∈I

µi(h
Ẑ
i ,hi) +

∑
j∈J

µ
′

j(g
Ẑ
j ,gj)

=
(∑

i∈I

µih
Ẑ
i +

∑
j∈J

µ
′

jg
Ẑ
j ,

∑
i∈I

µihi +
∑
j∈J

µ
′

jg
)
, µ

′

j ≥ 0, ∀j ∈ J, (3.5)

by Theorem 2.4. It follows from weak duality theorem that

b(λ)T (
∑
i∈I

µih
Ẑ
i +

∑
j∈J

µ
′

jg
Ẑ
j )+

c(ϵ)T
(∑

i∈I

µihi +
∑
j∈J

µ
′

jgj

)
− ηP̂ (ϵ)

T
(∑

i∈I

µihi +
∑
j∈J

µ
′

jgj

)
P̂
≥ 0,

which holds if and only if b(λ)ThẐ
i + c(ϵ)Thi − ηP̂ (ϵ)

T (hi)P̂ = 0, i ∈ I,

b(λ)TgẐ
j + c(ϵ)Tgj − ηP̂ (ϵ)

T (gj)P̂ ≥ 0, j ∈ J.
(3.6)

Since ηP̂ (ϵ)
T (hi)P̂ = 0 for each i ∈ I and ηP̂ (ϵ)

T (gj)P̂ > 0 for every j ∈ J , it follows from
(3.6) that {

b(λ)ThẐ
i + c(ϵ)Thi = 0, i ∈ I,

b(λ)TgẐ
j + c(ϵ)Tgj > 0, j ∈ J.

(3.7)

Therefore, (3.7) describes the set ΥP̂ (s
∗).

Remark 3.2. If Q = 0, then the problems (QPP) and (QDP) reduce to linear optimization
problems. In this case, we have

ΥP̂ (s
∗) = {λ : AẐxẐ = b(λ),xẐ ≥ 0} × {ϵ : AT

P̂
y < cP̂ (ϵ), AT

Ẑ
y = cẐ(ϵ)}.

Therefore,

ΥP̂ (s
∗) = {λ : b(λ)ThẐ

i = 0, i ∈ I, b(λ)TgẐ
j ≥ 0, j ∈ J}×

{ϵ : c(ϵ)Thi = 0, i ∈ I, c(ϵ)Tgj > 0, j ∈ J},
where, hẐ

i (i ∈ I) are the basis vectors of

L1 = {u : AT
Ẑ
u = 0},

and gẐ
j (j ∈ J) are the extreme directions of

S1 = {u : AT
Ẑ
u ≥ 0} ∩ L⊥

1 ,

respectively. Also hi (i ∈ I) are the basis vectors of

L2 = {v : Av = 0, vP̂ = 0},
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and gj (j ∈ J) are the extreme directions of

S2 = {v : Av = 0, vP̂ ≥ 0} ∩ L⊥
2 .

This is matched with Theorem 2.1 in [11].

Remark 3.3. Let Q = 0 and ϵ = 0. In this case, the set of the dual optimal solutions are
invariant [14]. Therefore,

ΥP̂ (s
∗) = {λ : b(λ)ThẐ

i = 0, i ∈ I, b(λ)TgẐ
j ≥ 0, j ∈ J},

where, hẐ
i (i ∈ I) and gẐ

j (j ∈ J) are the same as Remark 3.2.

Remark 3.4. Let Q = 0 and λ = 0. In this case, the optimal solution set of the primal
problem is invariant [14]. Therefore,

ΥP̂ (s
∗) = {ϵ : c(ϵ)Thi = 0, i ∈ I, c(ϵ)Tgj > 0, j ∈ J},

where, hi (i ∈ I) and gj (j ∈ J) are the same as Remark 3.2.

3.2 Support Set Sensitivity Analysis for the Primal-Dual Problems

Let (x∗,y∗, s∗) be a primal-dual optimal solution of (QP ) and (QD) with P = σ(x∗),
P̂ = σ(s∗), Z = {1, . . . , n}\P and Ẑ = {1, 2, . . . , n}\ P̂ . Consider the partitions (P̂ , Ẑ) and
(P,Z) of the index set {1, 2, . . . , n} for matrices Q, A and vectors x, c and s as follows:

Q =

(
QP̂P QP̂Z

QẐP QẐZ

)
, A =

(
AP AZ

)
, AT =

(
AT

P̂

AT
Ẑ

)
,

c =

(
cP̂
cẐ

)
, x =

(
xP

xZ

)
and s =

(
sP̂
sẐ

)
.

(3.8)

We want to identify the set Υ(x∗, s∗).

Theorem 3.5. Let (hP
i ,hi), i ∈ I, be a basis of the lineality space

L = {(u,v) : AT
Pu−QT

P̂P
vP̂ −QT

ẐP
vẐ = 0, Av = 0, vP̂ = 0},

and let (gP
j ,gj), j ∈ J , be all extreme directions of the convex polyhedron cone

S = {(u,v) : AT
Pu−QT

P̂P
vP̂ −QT

ẐP
vẐ ≥ 0, Av = 0, vP̂ ≥ 0} ∩ L⊥.

Then
Υ(x∗, s∗) = {(λ, ϵ) : b(λ)ThP

i + c(ϵ)Thi = 0, i ∈ I,

b(λ)TgP
j + c(ϵ)Tgj > 0, j ∈ J}.

Proof. To prove, we identify the set of (λ, ϵ) such that support set of the primal-dual of the
given solution remains invariant, that is,

Υ(x∗, s∗) = {(λ, ϵ) : ∃(x,y, s) ∈ QPP∗ ×QDP∗ with P = σ(x), σ(s) = P̂}
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= {(λ, ϵ) : ∃(x,y, s) ∈ QPP∗ ×QDP∗ s.t. Ax = b(λ),

ATy + s−Qx = c(ϵ),x, s ≥ 0, xT s = 0, σ(x) = P, σ(s) = P̂}

= {(λ, ϵ) : ∃(x,y) ∈ QPP∗ ×QDP∗ s.t. APxP = b(λ),

AT
Ẑ
y −QẐPxP = cẐ(ϵ), AT

P̂
y −QP̂PxP < cP̂ (ϵ), xP > 0}.

Therefore, it is sufficient to determine the set of (λ, ϵ) for which the system

APxP = b(λ)

AT
Ẑ
y −QẐPxP = cẐ(ϵ) (3.9)

AT
P̂
y −QP̂PxP < cP̂ (ϵ)

xP > 0,

is solvable. The system (3.9) is solvable if and only if the corresponding problem

max 0Ty + 0TxP

s.t : APxP = b(λ)

AT
Ẑ
y −QẐPxP = cẐ(ϵ) (3.10)

AT
P̂
y −QP̂PxP ≤ cP̂ (ϵ)− ηP̂

− xP ≤ −ζP ,

has an optimal solution for sufficiently small vectors ηP̂ > 0 and ζP > 0. By duality theory
in linear programming, it is equivalent to the optimality of the following dual problem

min
(
b(λ)−AP ζP

)T
u+

(
c(ϵ)T + ζTP [Q

T
P̂P

,QT
ẐP

]
)
v − ηT

P̂
vP̂

s.t : AT
Pu−QT

P̂P
vP̂ −QT

ẐP
vẐ ≥ 0 (3.11)

Av = 0

vP̂ ≥ 0.

Now, let L denote the lineality space of the problem (3.11), that is,

L = {(u,v) : AT
Pu−QT

P̂P
vP̂ −QT

ẐP
vẐ = 0, Av = 0, vP̂ = 0} .

Let (hP
i ,hi), i ∈ I, denote the vectors of basis of L, and (gP

j ,gj), j ∈ J , denote the extreme
directions

S = {(u,v) : AT
Pu−QT

P̂P
vP̂ −QT

ẐP
vẐ ≥ 0, Av = 0, vP̂ ≥ 0} ∩ L⊥.

It follows from Theorems 2.4 and weak duality that
b(λ)ThP

i + c(ϵ)Thi − ζTP
(
AT

Ph
P
i − [QT

P̂P
,QT

ẐP
]hi

)
− ηT

P̂
(hi)P̂ = 0, i ∈ I,

b(λ)TgP
j + c(ϵ)Tgj − ζTP

(
AT

Pg
P
j − [QT

P̂P
,QT

ẐP
]gj

)
− ηT

P̂
(gj)P̂ > 0, j ∈ J.

(3.12)

Since AT
Ph

P
i − [QT

P̂P
,QT

ẐP
]hi = 0, ηT

P̂
(hi)P̂ = 0, 0 ̸= AT

Pg
P
j − [QT

P̂P
,QT

ẐP
]gj ≥ 0 and

ηT
P̂
(gj)P̂ > 0, it follows from (3.12) that

b(λ)ThP
i + c(ϵ)Thi = 0, i ∈ I,

b(λ)TgP
j + c(ϵ)Tgj > 0, j ∈ J.

(3.13)
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Therefore, (3.13) describes the set Υ(x∗, s∗).

Note: Similar remarks such as Remarks 3.2, 3.3 and 3.4 hold in this case.

Example 3.6. Consider the problem

max 2x1 + 2x2 +
1
2 (x1 + x2)

2

s.t : x1 + x2 + x3 = 10
x1 + 4x2 + x4 = 10

x1, x2, x3, x4 ≥ 0.

It is easy to verify that x∗ = (10, 0, 0, 0)T ,y∗ = (0, 12)T , s∗ = (0, 36, 0, 12)T is a primal-dual
optimal solution with σ(s∗) = {2, 4}. Let b(λ) = (10 − 2λ1 + 3λ2, 10 + λ1 − 2λ2)

T and
c(ϵ) = (2− 2ϵ1 + ϵ2, 2 + ϵ1 − ϵ2, 0, 0)

T . The lineality space and convex polyhedron cone are
as follows:

L = {(u,v) : u1 +u2 − v1 − v2 = 0, u1 = 0, v1 + v2 + v3 = 0, v1 +4v2 + v4 = 0, v2 = v4 = 0},

S = {(u,v) : u1 + u2 − v1 − v2 ≥ 0, u1 ≥ 0, v1 + v2 + v3 = 0, v1 +4v2 + v4 = 0, v2, v4 ≥ 0}.

Since L = {0}, there is no basis for the lineality space and the extreme directions of the set
S are

gẐ1 = (0,−1)T , g1 = (−1, 0, 1, 1), gẐ2 = (0,−3)T , g2 = (−4, 1, 3, 0)T .
Therefore,we get

ΥP̂ (s
∗) = {(λ, ϵ) : −λ1 + 2λ2 + 2ϵ1 − ϵ2 < 12,

− 3λ1 + 6λ2 + 9ϵ1 − 5ϵ2 < 36}.

4 Conclusion

We studied multi-parametric sensitivity analysis for quadratic optimization under support
set stability for the dual and the primal-dual problems as a generalization of linear opti-
mization [11]. The resulting critical regions are determined by linear equations and linear
inequalities or strict inequalities which represent polyhedral set. We stated them for linear
optimization with simultaneously perturbations in the right-hand-side of the constraints and
the objective coefficients, and compared them with independently perturbations.
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