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hyperplanes, therefore, beside the “freedom” in choosing this hyperplanes, the computation
of these projections can be easily made.

Our paper is organized as follows. In Section 2 we present some earlier results for solving
the VIP(T,C). Afterwards in Section 3 preliminaries are presented. In Section 4 the δ-
algorithmic scheme is introduced and it is analyzed in Section 5. Finally, conclusions are
presented in Section 6.

2 Relation with Previous Work

The literature on the VIP is vast, see, e.g., the treatise of Facchinei and Pang [12]. Some
algorithms for solving the VIP with a single-valued operator f : Rn → Rn fit into the
framework of the following general iterative scheme. Let C ⊆ Rn be a nonempty, closed and
convex subset.

Algorithm 1

Initialization: Let {τk}∞k=0 be a user-chosen positive real sequence, select an arbitrary
starting point x0 ∈ C and set the iteration index k = 0.
Iterative step: Given the current iterate xk, calculate the next iterate

xk+1 = PC(x
k − τkf(x

k)), (2.1)

where PC is the orthogonal projection operator onto C.

See, Auslender [2] and consult [12, Volume 2, Subsection 12.1] for more details. Pro-
jections methods are particularly useful when the set C is simple enough to project on.
However, in general, one has to solve at each iterative step the minimization problem

min{∥x− (xk − τkf(x
k))∥ | for all x ∈ C}. (2.2)

The efficiency of such a projection method may be seriously affected by the need to solve
such optimization problem at each iterative step.

An orthogonal projection of a point z onto a set C can be viewed as an orthogonal
projection of z onto the hyperplane H which separates z from C, and supports C at the
closest point to z in C. But, of course, at the time of performing such an orthogonal
projection, neither the closest point to z in C, nor the separating and supporting hyperplane
H are available. In view of the simplicity of an orthogonal projection onto a hyperplane, it
is natural to ask whether one could use other separating supporting hyperplanes instead of
that particular hyperplane H through the closest point to z. Aside from theoretical interest,
this may lead to algorithms useful in practice, provided that the computational effort of
finding such other hyperplanes favorably competes with the work involved in performing
orthogonal projections directly onto the given sets.

To circumvent the difficulties associated with the orthogonal projections onto the feasible
set of (1.1) Fukushima [14] developed a method that utilizes outer approximations of C. His
method replaces the orthogonal projection onto the set C by a projection onto a half-
space containing C, which is easier to calculate. Letting C := {x ∈ Rn | g(x) ≤ 0} where
g : Rn → R is convex, it is known that every convex set has this representation. Fukushima’s
iterative step is as follows.

Recently Iusem and Cruz presented a point-to-set version of Algorithms 1 and 2 with
point-to-set paramonotone, maximal monotone operators. Observe that in Algorithm 2 the
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Algorithm 2

Initialization: Let {βk}∞k=0 be a user-chosen positive real sequence, select an arbitrary
starting point x0 ∈ Rn and set the iteration index k = 0.
Iterative step: Given the current iterate xk,
(1) choose a subgradient ξk ∈ ∂g(xk) of g at xk and let

Ck := {x ∈ Rn | g(xk) + ⟨ξk, x− xk⟩ ≤ 0}. (2.3)

(2) Calculate the “shifted point”

zk :=

{
xk − βkf(x

k)/∥f(xk)∥, if f(xk) ̸= 0,
xk, if f(xk) = 0.

(2.4)

and then the next iterate xk+1 is the projection of zk onto the half-space Ck, namely,

xk+1 = PCk
(zk). (2.5)

(3) If xk+1 = xk then stop, otherwise, set k = k + 1 and return to (1).

bounding hyperplanes of the subgradiental half-spaces Ck, separate the current point z from
the set C, the question again arises whether or not any other separating hyperplanes can be
used in the algorithm while retaining the overall convergence to the solution. The answer
to this question for the single-valued case is affirmative as it can be seen in our earlier work
[11], and it holds under some not too restrictive conditions. Under these conditions, we
showed that, as a matter of fact, the hyperplanes need to separate not just the point z
from the feasible set of (1.1), but rather separate a “small” ball around z from C. This
algorithm is called the δ-algorithmic scheme, our goal is to extend this algorithmic scheme
for a point-to-set operators, i.e., solve (1.1). It appears that this structural algorithmic
discovery for the point-to-set operator generalizes both Algorithms 1 and 2 with a point-to-
set operators as it was presented in [6]. Our work is admittedly a theoretical development
and no numerical advantages are claimed at this point. The large “degree of freedom” of
choosing the super-sets, onto which the projections of the algorithm are performed, from a
wide family of half-spaces may include specific algorithms that have not yet been explored.
The construction of a δ-algorithmic scheme was originally introduced by Aharoni, Berman
and Censor [1] (δ − η algorithm) for the Convex Feasibility Problem (CFP), see also [9,
Chapte 5]. It was also applied to the Best Approximation Problem (BAP) by Bregman et
al. in [7].

3 Preliminaries

Let S ⊆ Rn be a nonempty, closed and convex subset. For every point x ∈ Rn there exists
a unique nearest point in S, denoted by PS(x), such that

∥x− PS (x)∥ ≤ ∥x− y∥ for all y ∈ S. (3.1)

The operator PS : Rn → S is called the metric projection of Rn onto S or the orthogonal
projection. It is well known that PS is a nonexpansive operator of Rn onto S (see e.g. [16,
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Lemma 4.1]), i.e.,
∥PS (x)− PS (y)∥ ≤ ∥x− y∥ for all x, y ∈ Rn. (3.2)

The metric projection PS is characterized by the following two properties:

PS(x) ∈ S (3.3)

and

⟨x− PS (x) , PS (x)− y⟩ ≥ 0 for all x ∈ Rn, y ∈ S, (3.4)

and if S is a hyperplane, then (3.4) becomes an equality.
We denote by dist(x, S) the Euclidian distance of a point x ∈ Rn to the set S, i.e.,

dist(x, S) := min{∥x− z∥ | z ∈ S}. (3.5)

Definition 3.1. Let A : Rn → P (Rn) be a point-to-set operator.
(i) A is called monotone if

⟨u− v, x− y⟩ ≥ 0 for all u ∈ A(x), v ∈ A(y). (3.6)

(ii) A is called psuedo-monotone if

⟨v, x− y⟩ ≥ 0 ⇒ ⟨u, x− y⟩ ≥ 0 for all u ∈ A(x), u ∈ A(y). (3.7)

(iii) A is called paramonotone, if it is monotone and whenever ⟨u− v, x− y⟩ = 0, u ∈
A(x), v ∈ A(y) it holds that u ∈ A(y), v ∈ A(x).

(iv) A is called maximal monotone if it is monotone, and the graph G(A) of A

G(A) := {(x, u) ∈ Rn × Rn | u ∈ A(x)} , (3.8)

is not properly contained in the graph of any other monotone operator.

Definition 3.2. The domain of a point-to-set operator A : Rn → P (Rn) is the set

Dom(A) := {x ∈ Rn | A(x) ̸= ∅} . (3.9)

The range of an operator A is the set

Ran(A) = {u ∈ A(x) | x ∈ Dom(A)} . (3.10)

In next lemmas we present some properties of maximal monotone and paramonotone
operators, these will have a central role in our convergence theorem.

Lemma 3.3. Let A : Rn → P (Rn) be a maximal monotone operator. Then

(i) A is locally bounded at any point in the interior of its domain.

(ii) G(A) is closed.

(iii) A is bounded on bounded subsets of the interior of its domain.

(iv) SOL(A,S) if nonempty, it is closed and convex.

Proof. (i) See [8, Theorem 4.6.1(ii)].

(ii) See [8, Theorem 4.2.1(ii)].

(iii) Follows easily from (i).
(iv) See [5, Lemma 2.4(ii)].
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The following lemmas are quoted from [6, Lemma 3, 6].

Lemma 3.4. Let S ⊆ Rn be a closed subset and z /∈ S. Let {zk}∞k=0 ⊆ Rn be such that
limk→∞ ∥zk+1−zk∥ = 0 and both z and some point in S are cluster points of {zk}∞k=0. Then
there exist ς > 0 and a subsequence {zkj}∞j=0 of {zk}∞k=0 such that

dist
(
zkj+1 , S

)
> dist

(
zkj , S

)
, (3.11)

and
dist

(
zkj , S

)
> ς. (3.12)

Lemma 3.5. Let A : Rn → P (Rn) be paramonotone and maximal monotone operator. Let
{
(
yk, uk

)
}∞k=0 ⊂ G(A) be a bounded sequence such that all cluster points of {yk}∞k=0 belong

to S. Define the operator γk : SOL(A,S) → R, such as

γk(x) := ⟨uk, yk − x⟩. (3.13)

If for some x ∈ SOL(A,S) there exists a subsequence {γkj (x)}∞j=0 of {γk(x)}∞k=0 such that

limj→∞ γkj (x) ≤ 0, then there exists a cluster point of {ykj}∞j=0 belong to SOL(A,S).

The next lemma is quoted from [14, Lemma 2].

Lemma 3.6. Let {ξk}∞k=0 and {νk}∞k=0 be sequences of nonnegative numbers, and let µ ∈
[0, 1) be a constant. If the inequalities

ξk+1 ≤ µξk + νk for all k ≥ 0 (3.14)

hold and if lim
k→∞

νk = 0, then lim
k→∞

ξk = 0.

4 The δ-Algorithmic Scheme

Let T : Rn → P (Rn) be paramonotone and maximal monotone operator and C ⊆ Rn be a
nonempty, closed and convex subset. For the convergence of our δ-algorithmic scheme we
assume the following conditions.

Condition 4.1. SOL(T,C) ̸= ∅.

Condition 4.2. There exist y ∈ C and a bounded set D ⊂ Rn such that

⟨u, x− y⟩ ≥ 0, for all x /∈ D, and for all u ∈ T (x). (4.1)

In order to present the δ-algorithmic scheme a few definitions are needed.

Definition 4.3. Given δ ∈ [0, 1], and a point x ∈ Rn,

(i) the ball centered at x with radius δ dist(x,C) is

B(x,C, δ) := B(x, δ dist(x,C)) = {z ∈ Rn | ∥x− z∥ ≤ δ dist(x,C)}, (4.2)

(ii) for any x /∈ intC, denote by H(x,C, δ) the set of all hyperplanes which separate
B(x,C, δ) from C,

(iii) for x, y ∈ Rn, define the mapping

AC,δ(x, y) :=

{
{x}, if x ∈ intC,
{PH−(y) | H ∈ H(x,C, δ)}, if x /∈ intC,

(4.3)

where PH− is the projection operator onto the half-space whose bounding hyperplane is H
and such that C ⊆ H−.
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The mapping A defined above maps a quadruple (x, y, C, δ) onto a set. A selection from
AC,δ(x, y) means that if x /∈ intC a specific hyperplane H ∈ H(x,C, δ) is chosen and PH−(y)
is selected. If x ∈ intC then x is selected.

Let {βk}∞k=0 be a sequence of positive numbers satisfying

∞∑
k=0

βk = ∞, and
∞∑
k=0

β2
k < ∞. (4.4)

Our δ-algorithmic scheme for solving (1.1) is as follows.

Algorithm 3

Initialization: Let {βk}∞k=0 be a user-chosen positive real sequence that fulfills (4.4).
Choose a constant δ ∈ (0, 1], select a starting point x0 ∈ C and set k = 0.
Iterative step: Given the current iterate xk, if 0 ∈ T

(
xk

)
, then stop. Otherwise,

(1) take uk ∈ T
(
xk

)
, uk ̸= 0, and choose ηk = max

{
1,
∥∥uk

∥∥}
(2) calculate xk+1 as a selection from

AC,δ

(
xk, xk − βk

ηk
uk

)
. (4.5)

(3) If xk+1 = xk, stop, otherwise, set k = k + 1 and return to (1).

In what follows, we shall denote by Pk the projection operator onto H−
k where Hk is the

selected hyperplane Hk ∈ H(xk, C, δ). Thus, in (4.5) if we denote by zk = xk −βk/ηku
k, we

get

xk+1 =

{
xk, if xk ∈ intC,
Pk(z

k), if xk /∈ intC.
(4.6)

The iterative step of this algorithmic scheme is illustrated in Figure 1.

Figure 1: Illustration of the iterative step of Algorithm 3.

Remark 4.4. Observe that there is no need to calculate in practice the radius δ dist(xk, C)
of the ball B(xk, C, δ). If there would have been a need to calculate this then it would,
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obviously, amount to preforming a projection of xk onto C, which is the very thing that we
are trying to circumvent. All that is needed, when deriving from the algorithmic scheme a
specific algorithm, is to show that the specific algorithm indeed “chooses” the hyperplanes
in concert with the requirement of separating such B(xk, C, δ) balls from the feasible set of
(1.1). We demonstrate this later on.

5 Convergence

In this section we establish the convergence theorem for Algorithm 3. We divide our proof
into several lemmas, similar as in [6]. The next Lemma is quoted from [11, Lemma 14].

Lemma 5.1. Let C ⊆ Rn be a nonempty, closed and convex subset, and let δ ∈ (0, 1]. Let
W ⊆ Rn be a nonempty, convex and compact subset, let W\C := {x ∈ W | x /∈ C} . Denote
by θ(x) a selection from AC,δ(x, x), then there exists a constant µ ∈ [0, 1) such that

dist(θ(x), C) ≤ µdist(x,C), for all x ∈ W\C. (5.1)

Now we prove that if Algorithm 3 stops then it has reached a solution of the VIP (1.1).

Theorem 5.2. If xk+1 = xk occurs for some k ≥ 0 in Algorithm 3, then xk ∈ SOL(T,C).

Proof. Suppose that xk+1 = xk, then the radius of B(xk, C, δ) is zero which implies that
xk ∈ C since δ > 0. By the characterization of the metric projection with respect to H−

k

((3.4)), we get ⟨(
xk − βk

ηk
uk

)
− xk+1, w − xk+1

⟩
≤ 0 for all w ∈ H−

k . (5.2)

By taking xk+1 = xk in (5.2), we obtain⟨
−βk

ηk
uk, w − xk

⟩
≤ 0 for all w ∈ H−

k . (5.3)

Since βk > 0, ηk > 0 and C ⊆ H−
k we get that

⟨uk, w − xk⟩ ≥ 0 for all w ∈ C, (5.4)

meaning that xk ∈ SOL(T,C).

In the remainder of this section we suppose that Algorithm 3 generates an infinite se-
quence {xk}∞k=0. The next lemmas are central for the convergence theorem of Algorithm 3,
the proof follows similar lines as in [6].

Lemma 5.3. Let y and D be as in Condition 4.2, choose λ > 0 such that
∥∥x0 − y

∥∥ ≤ λ,
and D ⊆ B(y, λ). Then any sequence {xk}∞k=0 generated by Algorithm 3 have the following
properties.

(i) if xk ∈ D then ∥xk+1 − y∥2 ≤ λ2 + β2
k + 2βkλ,

(ii) if xk /∈ D then ∥xk+1 − y∥2 ≤ ∥xk − y∥2 + β2
k.
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Proof. Since y ∈ C, and C ⊆ H−
k it follows that y ∈ H−

k for all k ≥ 0, i.e., y = Pk(y). Due
to the nonexpansivness of the operator Pk with respect to H−

k , we get

∥xk+1 − y∥2 =

∥∥∥∥Pk

(
xk − βk

ηk
uk

)
− Pk(y)

∥∥∥∥2 ≤
∥∥∥∥xk − βk

ηk
uk − y

∥∥∥∥2
=

∥∥xk − y
∥∥2 + (

βk

ηk

)2 ∥∥uk
∥∥2 − 2

βk

ηk
⟨uk, xk − y⟩

≤
∥∥xk − y

∥∥2 + β2
k − 2

βk

ηk
⟨uk, xk − y⟩. (5.5)

Consider the following two cases:
(i) if xk ∈ D, apply the Cauchy-Schwartz inequality, the definition of ηk and the assump-

tion that D ⊆ B(y, λ) to (5.5) and obtain that

∥xk+1 − y∥2 ≤
∥∥xk − y

∥∥2 + β2
k + 2

βk

ηk

∥∥uk
∥∥ ∥∥xk − y

∥∥
≤ λ2 + β2

k + 2βkλ. (5.6)

(ii) if xk /∈ D, by Condition 4.2, we get that ⟨uk, xk − y⟩ ≥ 0. In addition, since βk/ηk > 0
we obtain from (5.5) that ∥∥xk+1 − y

∥∥2 ≤
∥∥xk − y

∥∥2 + β2
k, (5.7)

as asserted.

Lemma 5.4. Assume that Condition 4.2 hold. Let {xk}∞k=0 and {uk}∞k=0 be any two se-
quences generated by Algorithm 3. Then,

(i) the sequences {xk}∞k=0 and {uk}∞k=0 are bounded,

(ii) limk→∞ dist(xk, C) = 0,

(iii) limk→∞ ∥xk+1 − xk∥ = 0,

(iv) all cluster points of {xk}∞k=0 belong to C.

Proof. (i) Let the point y and the set D be as in Condition 4.2, choose λ > 0 and β > 0
such that ∥x0 − y∥ ≤ λ, D ⊆ B(y, λ) and βk ≤ β, for all k ≥ 0. Observe that the existence

of β is guaranteed by (4.4). Denote by σ :=
∑∞

k=0 β
2
k and λ :=

√
λ2 + σ + 2βλ. We will

prove the boundedness of {xk}∞k=0 by showing that

{xk}∞k=0 ⊆ B(y, λ). (5.8)

Consider the two cases:
(i) If xk ∈ B(y, λ) then xk ∈ B(y, λ) since λ > λ.

(ii) If xk /∈ B(y, λ), denote by ℓ(k) = max
{
ℓ < k | xℓ ∈ B(y, λ)

}
, which is well defined

since ∥x0 − y∥ ≤ λ, i.e., x0 ∈ B(y, λ). Using Lemma 5.3(i) to obtain∥∥∥xℓ(k)+1 − y
∥∥∥2 ≤ λ2 + β2

ℓ(k) + 2βℓ(k)λ ≤ λ2 + β2
ℓ(k) + 2βλ. (5.9)

Now, for ℓ(k) + 1 < j ≤ k − 1, xj /∈ D, we get∥∥xj+1 − y
∥∥2 ≤

∥∥xj − y
∥∥2 + β2

j . (5.10)
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Summing up (5.9) with ℓ(k) + 1 < j ≤ k − 1,

∥∥xk − y
∥∥2 ≤

∥∥∥xℓ(k)+1 − y
∥∥∥2 + k−1∑

j=ℓ(k)+1

β2
j . (5.11)

Combining inequalities (5.9) and (5.11) yield

∥∥xk − y
∥∥2 ≤ λ2 +

k−1∑
j=ℓ(k)

β2
j + 2βλ ≤ λ2 +

∞∑
j=0

β2
j + 2βλ

= λ2 + σ + 2βλ = λ
2
. (5.12)

Therefore, xk ∈ B(y, λ) which implies that the sequence {xk}∞k=0 is bounded. Since {xk}∞k=0

is bounded, it follows by Lemma 3.3(iii) that so is {uk}∞k=0.
(ii) Observe that

∥xk+1 − Pk(x
k)∥ =

∥∥∥∥Pk

(
xk − βk

ηk
uk

)
− Pk(x

k)

∥∥∥∥
≤ βk

ηk
∥uk∥ ≤ βk (5.13)

for all k ≥ 0. By Lemma 5.1 with W = B(y, λ) there exists µ̃ ∈ [0, 1) such that

dist(Pk(x), C) ≤ µ̃dist(x,C), for all x ∈ B(y, λ)\C. (5.14)

So, for all k ≥ 0 such that xk /∈ C, (5.8) implies that

dist(Pk(x
k), C) ≤ µ̃ dist(xk, C). (5.15)

If xk ∈ C then µ̃ = 0 since C ⊆ H−
k . Denote by ck = PC

(
Pk

(
xk

))
, namely,

∥Pk(x
k)− ck∥ = dist(Pk(x

k), C). (5.16)

Then, by the triangle inequality, we get

∥xk+1 − ck∥ = ∥xk+1 − Pk(x
k) + Pk(x

k)− ck∥
≤ ∥xk+1 − Pk(x

k)∥+ ∥Pk(x
k)− ck∥. (5.17)

Since ck ∈ C, we have

dist(xk+1, C) ≤ ∥xk+1 − ck∥. (5.18)

It follows from (5.13), (5.15)–(5.18) that

dist(xk+1, C) ≤ ∥xk+1 − Pk(x
k)∥+ dist(Pk(x

k), C)

≤ βk + µ̃dist(xk, C). (5.19)

Therefore, by applying Lemma 3.6 with ξk = dist(xk, C), νk = βk and µ = µ̃, we get that

lim
k→∞

dist(xk, C) = 0. (5.20)
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(iii) By (5.13) and the triangle inequality, we have

∥xk+1 − xk∥ ≤
∥∥xk+1 − Pk(x

k)
∥∥+

∥∥Pk(x
k)− xk

∥∥
≤ βk + dist(xk, C). (5.21)

Since limk→∞ βk = 0 by (ii) and (5.21) we get that limk→∞ ∥xk+1 − xk∥ = 0.
(iv) Follows immediately from (ii).

Theorem 5.5. Let T : Rn → P (Rn) be a paramonotone operator. Assume that Condition
4.1 holds and let {xk}∞k=0 be any sequence generated by Algorithm 3. Then any cluster point
of {xk}∞k=0 belongs to SOL(T,C).

Proof. Let {xk}∞k=0 and {uk}∞k=0 be any two sequences generated by Algorithm 3 and let
the operator γk be as (3.13). Using the facts that C ⊆ H−

k , Pk is nonexpansivness and the
definition of γk we have that for all x∗ ∈ SOL(T,C)

∥xk+1 − x∗∥2 =

∥∥∥∥Pk

(
xk − βk

ηk
uk

)
− Pk(x

∗)

∥∥∥∥2 ≤
∥∥∥∥(xk − βk

ηk
uk

)
− x∗

∥∥∥∥2
= ∥xk − x∗∥2 +

(
βk

ηk

)2 ∥∥uk
∥∥2 − 2

βk

ηk
⟨uk, xk − x∗⟩

≤ ∥xk − x∗∥2 − βk

(
2
γk(x

∗)

ηk
− βk

)
. (5.22)

Since {xk}∞k=0 and {uk}∞k=0 are bounded, so is {
(
xk, uk

)
}∞k=0. Therefore by Lemma 3.5 it is

suffices to prove that {γk(x∗)}∞k=0 has a non-positive cluster point for some x∗ ∈ SOL(T,C).
Assume, by negation, that this is not true, and take any x ∈ SOL(T,C). Then there exists
k ≥ 0 and ρ > 0 such that

γk(x) ≥ ρ for all k ≥ k. (5.23)

Since {uk}∞k=0 is bounded, there exists M > 1 such that ∥uk∥ ≤ M for all k ≥ 0. Therefore

ηk = max
{
1,
∥∥uk

∥∥} ≤ max {1,M} = M for all k ≥ 0. (5.24)

Thus, there exists ρ > 0 such that

γk(x)

ηk
≥ γk(x)

M
≥ ρ, (5.25)

applying this with x ∈ SOL(T,C) to (5.22)

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − βk (2ρ− βk) for all k ≥ k. (5.26)

By (4.4) limk→∞ βk = 0, then there exists k
′ ≥ k such that

βk ≤ ρ for all k
′
≥ k. (5.27)

So, we get for all k ≥ k
′

ρβk ≤ ∥xk − x∥2 − ∥xk+1 − x∥2. (5.28)

Summing up (5.28) with m ≥ k ≥ k
′
and deduce that

ρ

m∑
k=k′

βk ≤
m∑

k=k′

(
∥xk − x∥2 − ∥xk+1 − x∥2

)
≤ ∥xk

′

− x∥2 − ∥xm+1 − x∥2 ≤ ∥xk
′

− x∥2. (5.29)
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By taking the limit as m → ∞ in (5.29) we contradict (4.4). Therefore, there exists a cluster
point of {xk}∞k=0 belonging to SOL(T,C).

Now in order to show that all cluster points of {xk}∞k=0 belong to SOL(T,C), suppose
that this is not true, i.e., there exists a cluster point z of {xk}∞k=0 such that z /∈ SOL(T,C).
By Lemmas 3.3(iv) and 5.4(iii) we get that SOL(T,C) is closed and limk→∞ ∥xk+1−xk∥ = 0,
so by using Lemma 3.4, we can obtain a subsequence {xkj}∞j=0 of {xk}∞k=0 and a real number
ς > 0 such that

dist
(
xkj+1 , SOL(T,C)

)
> dist

(
xkj , SOL(T,C)

)
, (5.30)

and
dist

(
xkj , SOL(T,C)

)
> ς. (5.31)

Let the operator γk(x) be as in (3.13) and define the operator γ : SOL(T,C) → R as

γ(x∗) := lim inf
j→∞

γkj (x
∗). (5.32)

By Lemma 5.4(ii), {γk(x∗)}∞k=0 is bounded. Next, we prove that γ is continuous and actually

γ : SOL(T,C) → (0,∞). Take x∗, x
′ ∈ SOL(T,C). Note that

γkj (x
∗) = ⟨ukj , xkj − x∗⟩ = ⟨ukj , xkj − x

′
⟩+ ⟨ukj , x

′
− x⟩

≤ γkj (x
′
) +M∥x∗ − x

′
∥. (5.33)

Thus, γ(x∗) ≤ γ(x
′
) + M∥x∗ − x

′∥, where M is a upper bound of {∥uk∥}∞k=0. Now by

reversing the role of x∗, x
′
, we obtain

| γ(x∗)− γ(x
′
) |≤ M∥x∗ − x

′
∥, (5.34)

meaning that γ is continuous. Now, in order to show that γ(x∗) > 0 for all x∗ ∈ SOL(T,C),
assume that this is not true, then by Lemma 3.5 {xkj}∞j=0 has a cluster point in SOL(T,C),

in contradiction with (5.31). Now, denote by U the set of cluster points of {xk}∞k=0. We
prove that U ⊆ SOL(T,C). By the above arguments, U∩ SOL(T,C) ̸= ∅ and since {xk}∞k=0

is bounded, the sets U and U∩ SOL(T,C) are compact. By the continuity of γ, it follows
that there exists x∗ ∈ U∩ SOL(T,C) such that

γ(x
′
) ≥ γ(x

∗
) > 0 for all x

′
∈ U ∩ SOL(T,C). (5.35)

By (5.32) and (4.4) there exists ĵ such that for all indexes j ≥ ĵ, we have

γkj (x
′
) ≥ γ(x

∗
)

2
, (5.36)

and

βkj <
γ(x

∗
)

M
. (5.37)

In view of (5.22), using (5.36) and (5.37), we get, for all x ∈ U∩SOL(T,C) and all j ≥ ĵ,

∥xkj+1 − x∗∥2 ≤ ∥xkj − x∗∥2 − βkj

(
2
γkj

(x∗)

ηkj

− βkj

)
≤ ∥xkj − x∗∥2 − βkj

(
γ(x∗)

M
− βkj

)
< ∥xkj − x∗∥2. (5.38)
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So, it follows that

dist
(
xkj+1 , U ∩ SOL(T,C)

)
≤ dist

(
xkj , U ∩ SOL(T,C)

)
for all j ≥ ĵ, in contradiction with (5.30). Therefore all clusters points of {xk}∞k=0 solve the
VIP(T,C).

In the next theorem we summarize the convergence sequence properties of Algorithm 3.

Theorem 5.6. Let T : Rn → P (Rn) be paramonotone and maximal monotone operator.
Assume that Condition 4.1 holds and let {xk}∞k=0 be any sequence generated by Algorithm 3.
Then {xk}∞k=0 is bounded, limk→∞ ∥xk+1 −xk∥ = 0 and all cluster points of {xk}∞k=0 belong
to SOL(T,C). If the VIP(T,C) has a unique solution then the whole sequence {xk}∞k=0

converge to it.

Remark 5.7. In [14] for the single-valued case, convergence is proved under continuity,
strongly monotonicity and the following condition on T : Rn → Rn.

There exist y ∈ C, β > 0 and a bounded set D ⊂ Rn such that

⟨T (x), x− y⟩ ≥ β∥T (x)∥ for all x /∈ D. (5.39)

So, it can be easily verified that our Condition 4.2 is weaker than (5.39) (see [6] for more
details). In addition continuity and strong monotonicity imply uniqueness of the solution to
VIP(T,C), and also strict monotonicity of T , therefore in this case, according to Theorem
5.6 any sequence {xk}∞k=0 generated by Algorithm 3 converge to it.

5.1 Special cases of the δ-algorithmic scheme

We now recall the example given in [11] as an illustration that additional algorithms can
be derived from Algorithm 3. This particular realization requires that (the interior) intC
is nonempty. The idea of using an interior point as an anchor to generate a separating
hyperplane appeared previously in [1] for the Convex Feasibility Problem and in [13] for an
outer approximation method. Let T : Rn → P (Rn) be a point-to-set operator and C ⊆ Rn

be a nonempty, closed and convex subset.

Algorithm 4

Initialization: Let y ∈ intC be fixed and given. Select an arbitrary starting point x0 ∈ Rn

and set k = 0.
Iterative step: Given the current iterate xk, if 0 ∈ T

(
xk

)
, then stop. If xk ∈ C set

xk+1 = xk and again stop. Otherwise,
(1) take uk ∈ T

(
xk

)
, uk ̸= 0, and choose ηk = max

{
1,
∥∥uk

∥∥}
(2) calculate the “shifted point”

zk = xk − βk

ηk
uk (5.40)

and construct the line Lk through the points xk and y.
(3) Denote by wk the point closet to xk in the set Lk ∩ C.
(4) Construct a hyperplane Hk separating xk from C and supporting C at wk.
(5) Compute xk+1 = PH−

k
(zk), where H−

k is the half-space whose bounding hyperplane is

Hk and C ⊆ H−
k , set k = k + 1 and return to (1).
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Figure 2: Illustration of the iterative step of Algorithm 4: Interior anchor point.

The iterative step of this algorithm is illustrated in Figure 2. We show that Algorithm
4 generates sequences that converge to a solution of problem (1.1) by showing that it is a
special case of Algorithm 3.

Theorem 5.8. Let T : Rn → P (Rn) be paramonotone and maximal monotone operator,
and assume that Conditions 4.1 and 4.2 hold and intC ̸= ∅. Then any sequence {xk}∞k=0,
generated by Algorithm 4, converges to x∗ ∈ SOL(T,C).

Proof. Algorithm 4 is obviously a special case of Algorithm 3 where we choose at each step
a separating hyperplane which also supports C at the point wk. The stopping criterion is
valid by Theorem 5.2. In order to invoke Theorem 5.6 we have to show that for such an
algorithm δ ∈ (0, 1] always holds. By Lemma 5.4, {xk}∞k=0 is bounded and, since xk /∈ C,
we have

∥PH−
k
(xk)− xk∥ =

∥xk − wk∥∥y − PHk
(y)∥

∥y − wk∥
, (5.41)

and we also have
∥xk − wk∥ ≥ dist(xk, C). (5.42)

Defining d := dist(y, bdC), where bdC is the boundary of C. Since y ∈ intC,

∥y − PHk
(y)∥ ≥ d > 0. (5.43)

From the boundedness of {xk}∞k=0 we know that there exists a positive N such that ∥y −
wk∥ ≤ N, for all k ≥ 0. Combining these inequalities with (5.41) implies that

∥PH−
k
(xk)− xk∥ ≥ d

N
dist(xk, C),

which shows that the algorithm is of the same type of Algorithm 3 with δ := d/N > 0. We
can choose N big enough so that N > d and then δ ∈ (0, 1] as required.

6 Conclusions

In this paper we proposed an algorithmic scheme for solving the variational inequality prob-
lem in the Euclidean space Rn with a point-to-set operator T . This scheme, which we call
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the δ-algorithmic scheme entails a large “degree of freedom” of choosing the half-spaces, onto
which the projections of the algorithm are performed, from a wide family of half-spaces; this
“degree of freedom”, besides including some existing results may include specific algorithms
that have not yet been explored. The convergence of our algorithmic scheme is guarantee
under paramonotonicity and maximal monotonicity of T . It is known that there exist projec-
tion algorithms for set-valued variational inequality that require only pseudo-monotonicity
of of T in order of the whole sequence to converges to a solution, (see e.g., Bao and Khanh
[4]) but these algorithms require projections on the C which in general is hard to obtain.
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