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the current iterate from the solution set of the problem. In the other algorithms, the
next iterate relates to the current iterate. In [11], the next iterate is a projection onto a
halfspace whose bounding hyperplane supports the feasible set C at a certain point. In our
algorithm, the next iterate is a projection onto the feasible set C. Recently, [22] proposes a
projection algorithm for generalized variational inequality with pseudomonotone mapping.
In [22], choosing ξi ∈ F (xi) needs solving a single-valued variational inequality; see the
expression (2.1) in [22]. To overcome this difficulty, [8]proposes a double projection algorithm
for generalized variational inequality with pseudomonotone mapping. In [8], ξi ∈ F (xi)
can be taken arbitrarily. In Algorithm 1 of [8], however, choosing the hyperplane needs
computing the supremum and hence is computationally expensive; see the expression (2.2)
in [8]. In this paper, we introduce an extragradient method for generalized variational
inequality and prove the global convergence of the generalized iteration sequence, assuming
that F is pseudomonotone on C with respect to the solution set; see the expression (1.2)
below. In our method, ξi can be taken arbitrarily, and computing the supremum is avoided.
Moreover, the Armjio-type linesearch procedure in our algorithm is also different from those
in [8, 22]. At the same time, we present a algorithmic framework of extragradient-type
methods for multi-valued variational inequalities and show the global convergence of the
framework under standard conditions.

Let S be the solution set of (1.1), that is, those points x∗ ∈ C satisfying (1.1). Through-
out this paper, we assume that the solution set S of the problem (1.1) is nonempty and F
is continuous on C with nonempty compact convex values satisfying the following property:

⟨ζ, y − x⟩ ≥ 0, ∀ y ∈ C, ζ ∈ F (y), ∀x ∈ S. (1.2)

The property (1.2) holds if F is pseudomonotone on C in the sense of Karamardian [19]. In
particular, if F is monotone, then (1.2) holds.

The organization of this paper is as follows. In the next section, we recall the definition
of continuous multi-valued mapping and present the details of the algorithm and prove
several preliminary results for convergence analysis in Section 3. We give an algorithmic
framework of extragradient-type methods for multi-valued variational inequalities in Section
4. Numerical results are reported in the last section.

2 Algorithms

Let us recall the definition of continuous multi-valued mapping. F is said to be upper
semicontinuous at x ∈ C if for every open set V containing F (x), there is an open set U
containing x such that F (y) ⊂ V for all y ∈ C ∩ U . F is said to be lower semicontinuous
at x ∈ C if give any sequence xk converging to x and any y ∈ F (x), there exists a sequence
yk ∈ F (xk) that converges to y. F is said to be continuous at x ∈ C if it is both upper
semicontinuous and lower semicontinuous at x. If F is single-valued, then both upper
semicontinuity and lower semicontinuity reduce to the continuity of F .

Let ΠC denote the projector onto C and let µ > 0 be a parameter.

Proposition 2.1. x ∈ C and ξ ∈ F (x) solves the problem (1.1) if and only if

rµ(x, ξ) := x−ΠC(x− µξ) = 0. (2.1)

Algorithm 2.2. Choose x0 ∈ C and three parameters σ > 0, 0 < µ < min{1, 1/σ} and
γ ∈ (0, 1). Set i = 0.

Step 1. If rµ(xi, ξ) = 0 for some ξ ∈ F (xi), stop; else take arbitrarily ξi ∈ F (xi).
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Step 2. Let ki be the smallest nonnegative integer k satisfying

⟨ξi − yk, rµ(xi, ξi)⟩ ≤ σ∥rµ(xi, ξi)∥2. (2.2)

where yk = ΠF (xi−γkrµ(xi,ξi))(ξi). Set ηi = γki .
Step 3. Compute xi+1 := ΠC(xi − αidi), where

di = ηirµ(xi, ξi)− µηiξi + yki , (2.3)

αi =
ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki⟩

∥di∥2
. (2.4)

Let i := i+ 1 and go to step 1.

Remark 2.3. Since F has compact convex values, F has closed convex values. Therefore,
yi in Step 2 is uniquely determined by ki.

Remark 2.4. If F is a single-valued mapping, the Armijo-type linesearch procedure (2.2)
becomes that of Algorithm 2.1 in [15].

We show that Algorithm 2.2 is well-defined and implementable.

Proposition 2.5. If xi is not a solution of the problem (1.1), then there exists a nonnegative
integer ki satisfying (2.2).

Proof. Suppose that for all k, we have

⟨ξi − yk, rµ(xi, ξi)⟩ > σ∥rµ(xi, ξi)∥2, (2.5)

where yk = ΠF (xi−γkrµ(xi,ξi))(ξi). Since F is lower semicontinuous, ξi ∈ F (xi), and xi −
γkrµ(xi, ξi) → xi as k → ∞, for each k, there is uk ∈ F (xi − γkrµ(xi, ξi)) such that
limk→∞uk = ξi. Since yk = ΠF (xi−γkrµ(xi,ξi))(ξi),

∥yk − ξi∥ ≤ ∥uk − ξi∥ → 0, as k → ∞.

So limk→∞yk = ξi. Let k → ∞ in (2.5), we have 0 = ∥ξi − ξi∥ ≥ σ∥rµ(xi, ξi)∥ > 0. This
contradiction completes the proof.

Lemma 2.6. For every x ∈ C and ξ ∈ F (x),

⟨ξ, rµ(x, ξ)⟩ ≥ µ−1∥rµ(x, ξ)∥2.

Proof. See [Lemma 2.3, 22].

Lemma 2.7. Let C be a closed convex subset of Rn. For any x, y ∈ Rn and z ∈ C, the
following statements hold:

(i) ⟨ΠC(x)− x, z −ΠC(x)⟩ ≥ 0.
(ii) ∥ΠC(x)−ΠC(y)∥2 ≤ ∥x− y∥2 − ∥ΠC(x)− x+ y −ΠC(y)∥2.

Proof. See[32]
For x∗ ∈ S, define

h(x) =
1

2
∥x− x∗∥2, x ∈ Rn.

The following lemma shows that −di in Step 3 is a descent direction of h(x) at xi.
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Lemma 2.8. If the condition (1.2) holds and xi ̸∈ S, then for any x∗ ∈ S,

⟨di, xi − x∗⟩ ≥ (µ−1 − σ)ηi∥rµ(xi, ξi)∥2 > 0. (2.6)

Proof. Let x∗ ∈ S. By (1.2) and µ > 0, we have

⟨yki , xi − ηirµ(xi, ξi)− x∗⟩ ≥ 0. (2.7)

Since x∗ ∈ C, from (2.1) and Lemma 2.7(i) we have

⟨(xi − rµ(xi, ξi))− (xi − µξi), x
∗ − (xi − rµ(xi, ξi))⟩ ≥ 0,

which implies that

⟨rµ(xi, ξi)− µξi, xi − x∗⟩ ≥ ⟨rµ(xi, ξi), rµ(xi, ξi)− µξi⟩. (2.8)

It follows from (2.7) and (2.8) that

⟨di, xi − x∗⟩ = ⟨ηirµ(xi, ξi)− µηiξi + yki , xi − x∗⟩
= ηi⟨rµ(xi, ξi)− µξi, xi − x∗⟩+ ηi⟨rµ(xi, ξi), yki⟩

+⟨xi − ηirµ(xi, ξi)− x∗, yki⟩
≥ ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki⟩. (2.9)

Thus, we have

⟨di, xi − x∗⟩ ≥ ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki
⟩

= ηi∥rµ(xi, ξi)∥2 − µηi⟨rµ(xi, ξi), ξi⟩+ ηi⟨rµ(xi, ξi), yki⟩
≥ (1− σ)ηi∥rµ(xi, ξi)∥2 + (1− µ)ηi⟨rµ(xi, ξi), ξi⟩
≥ (µ−1 − σ)ηi∥rµ(xi, ξi)∥2, (2.10)

where the second inequality follows from (2.2) and the last one follows from Lemma 2.6 and
µ < 1. This completes the proof.

Next we present a fundamental existence result for variational inequality problem (1.1)
that will be used for proving the conclusion of Theorem 3.2.

Lemma 2.9. Let C ⊂ Rn be a nonempty bounded closed convex set and the mapping
F : C → 2R

n

be lower semicontinuous with nonempty closed convex values. Then, the
solution set S of GVI(F,C) is nonempty.

Proof. Since the multifunction F is lower semicontinuous and has nonempty closed convex
values, by Michael,s selection theorem (see for instance Theorem 24.1 in [6]), it admits a
continuous selection; that is, there exists a continuous mapping G : C → Rn such that
G(x) ∈ F (x) for every x ∈ C. Since C is a nonempty bounded closed convex set, the
variational inequality problem VI(C,G), which consists of finding an x ∈ C such that

⟨G(x), y − x⟩ ≥ 0, ∀ y ∈ C

has a solution(see Lemma 3.1 in [14]), i.e. the solution set S′ of VI(C,G) is nonempty. It
follows from S′ ⊂ S that S is nonempty.
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3 Main Results

By using Lemma 2.8, we conclude the global convergence of Algorithm 2.2.

Theorem 3.1. If F : C → 2R
n

is continuous with nonempty compact convex values on C
and the condition (1.2) holds, then either Algorithm 2.2 terminates in a finite number of
iterations or generates an infinite sequence {xi} converging to a solution of (1.1).

Proof. Let x∗ ∈ S. It follows from Lemma 2.7(ii), (2.3),(2.4) and (2.10) that

∥xi+1 − x∗∥2 ≤ ∥xi − x∗ − αidi∥2

= ∥xi − x∗∥2 − 2αi⟨di, xi − x∗⟩+ α2
i ∥di∥2

≤ ∥xi − x∗∥2 − (ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki⟩)2

∥di∥2

≤ ∥xi − x∗∥2 − (µ−1 − σ)2
η2i ∥rµ(xi, ξi)∥4

∥ηirµ(xi, ξi)− µηiξi + yki∥2
. (3.1)

It follows that the squence {∥xi+1 − x∗∥2} is nonincreasing, and hence is a convergent se-
quence. Therefore, {xi} is bounded. Since F is continuous with compact values, Proposition
3.11 in [2] implies that {F (xi) : i ∈ N} is a bounded set, and so are {ξi}, {rµ(xi, ξi)} and
{yki}. Thus, {ηirµ(xi, ξi) − µηiξi + yki} is bounded. Then, there exists a positive number
M1 such that

∥ηirµ(xi, ξi)− µηiξi + yki
∥ ≤ M1.

It follows from (3.1) that

∥xi+1 − x∗∥2 ≤ ∥xi − x∗∥2 − (µ−1 − σ)2M−2
1 η2i ∥rµ(xi, ξi)∥4. (3.2)

Therefore,
lim
i→∞

ηi∥rµ(xi, ξi)∥ = 0. (3.3)

By the boundedness of {xi}, there exists a convergent subsequence {xij} converging to x.
If x is a solution of the problem (1.1), we show next that the whole sequence {xi}

converges to x. Replacing x∗ by x in the preceding argument, we obtain that the sequence
{∥xi − x∥} is nonincreasing and hence converges. Since x is an accumulation point of {xi},
some subsequence of {∥xi − x∥} converges to zero. This shows that the whole sequence
{∥xi − x∥} converges to zero, hence limi→∞ xi = x.

Suppose now that x is not a solution of the problem (1). We show first that ki in
Algorithm 2.2 cannot tend to ∞. Since F is continuous with compact values, Proposition
3.11 in [2] implies that {F (xi) : i ∈ N} is a bounded set, and so the sequence {ξi} is
bounded. Therefore, there exists a subsequence {ξij} converging to ξ. Since F is upper
semicontinuous with compact values, Proposition 3.7 in [2] implies that F is closed, and so
ξ ∈ F (x). By the definition of ki, we have

⟨ξi − ui, rµ(xi, ξi)⟩ > σ∥rµ(xi, ξi)∥2,∀ ui = ΠF (xi−γki−1rµ(xi,ξi))(ξi).

If kij → ∞, then xij − γkij
−1rµ(xij , ξij ) → x. The lower continuity of F , in turn, implies

the existence of ξij ∈ F (xij − γkij
−1rµ(xij , ξij )) such that ξij converges to ξ. Since uij =

Π
F (xij

−γ
kij

−1
rµ(xij

,ξij ))
(ξij ), uij ∈ F (xij − γkij

−1rµ(xij , ξij )) and ∥uij − ξij∥ ≤ ∥ξij − ξij∥.

Therefore limj→∞ uij = ξ and

⟨ξij − uij , rµ(xij , ξij )⟩ > σ∥rµ(xij , ξij )∥2.
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Letting j → ∞, we obtain the contradiction

0 ≥ σ∥rµ(x, ξ)∥2 > 0,

being rµ(·, ·) continuous. Therefore, {ki} is bounded and so is {ηi}.
By the boundedness of {ηi}, it follows from (3.3) that limi→∞ ∥rµ(xi, ξi)∥ = 0. Since

rµ(·, ·) is continuous and the sequences {xi} and {ξi} are bounded, there exists an accu-
mulation point (x, ξ) of {(xi, ξi)} such that rµ(x, ξ) = 0. This implies that x solves the
variational inequality (1). Similar to the preceding proof, we obtain that limi→∞ xi = x.

The following theorem shows that, if the solution set S is empty, the sequence {xi}
generated by Algorithm 2.2 is unbounded.

Theorem 3.2. If F : C → 2R
n

is continuous with nonempty compact convex values on C
and suppose S = ∅. Then, the sequence {xi} generated by Algorithm 2.2 must be unbounded.

Proof. By Step 1 of Algorithm 2.2, we know that Algorithm 2.2 generates an infinite sequence
if S = ∅. Suppose, on the contrary, the sequence {xi} is bounded. Then, there exists a
positive number M2 such that

{xi} ⊆ B(0,M2),

where
B(0,M2) := {x ∈ Rn : ∥x∥ ≤ M2}.

Since F (x) is continuous with compact values, Proposition 3.11 in [2] implies that {F (xi)}
is a bounded set, and so {xi − µξi : ξi ∈ F (xi)} is bounded. Without loss of generality, we
assume

{xi − µξi : ξi ∈ F (xi)} ⊆ B(0,M2).

Consider the variational inequality GVI(F,C ′) where

C ′ = C ∩B(0, 2M2).

From Lemma 2.9, we know that the solution set of GVI(F,C ′), denoted by S′, is nonempty.
We apply Algorithm 2.2 to GVI(F,C ′) with the starting point x0, then an infinite sequence,
denoted by {x̃i}, is generated. It follows from Theorem 3.1 that {x̃i} converges to a solution
of GVI(F,C ′). By the definitions of C ′ and the projection operator, along with the procedure
of Algorithm 2.2, we have

x̃i = xi, ∀ i ≥ 0.

Thus, the limit of {x̃i} is also a solution of GVI(F,C) which contradicts the supposition
that S = ∅.

Now we provide a result on the convergence rate of the iterative sequence generated by
Algorithm 2.2. To establish this result, we need a certain error bound to hold locally(see
(3.4) below). The research on error bound is a large topic in mathematical programming.
One can refer to the survey [24] for the roles played by error bounds in the convergence
analysis of iterative algorithms; more recent developments on this topic are included in
Chapter 6 in [7]. A condition similar to (16) has also been used in [29] (see expression (2.3)
therein) to analyze the convergence rate in very general framework.

For any δ > 0, define

P (δ) := {(x, ξ) ∈ C × Rn : ξ ∈ F (x), ∥rµ(x, ξ)∥ ≤ δ}.

We say that F is Lipschitz continuous on C if there exists a constant L > 0 such that,
for all x, y ∈ C, H(F (x), F (y)) ≤ L∥x− y∥, where H denotes the Hausdorff metric.
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Theorem 3.3. In addition to the assumptions in the above theorem, if F is Lipschitz con-
tinuous with modulus L > 0 and if there exist positive constants c and δ such that

dist(x, S) ≤ c∥rµ(x, ξ)∥, ∀ (x, ξ) ∈ P (δ), (3.4)

then there is a constant α > 0 such that for sufficiently large i,

dist(xi, S) ≤
1√

αi+ dist−2(x0, S)
.

Proof. Put η := min{1/2, L−1γσ}. We first prove that ηi > η for all i. By the construction
of ηi, we have ηi ∈ (0, 1]. If ηi = 1,then clearly ηi > 1/2 ≥ η. Now we assume that ηi < 1.
Since ηi = γki , it follows that the nonnegative integer ki ≥ 1. Thus the construction of ki
implies that

⟨ξi − ui, rµ(xi, ξi)⟩ > σ∥rµ(xi, ξi)∥2, ∀ ui = PF (xi−γki−1rµ(xi,ξi))(ξi),

and hence, as ki ≥ 1,

∥ui − ξi∥ > σ∥rµ(xi, ξi)∥, ∀ ui = PF (xi−γki−1rµ(xi,ξi))(ξi). (3.5)

Since ui = PF (xi−γki−1rµ(xi,ξi))(ξi),

∥ui − ξi∥ ≤ ∥y − ξi∥, ∀ y ∈ F (xi − γki−1rµ(xi, ξi)). (3.6)

It follows from (3.5) and (3.6) that

∥y − ξi∥ > σ∥rµ(xi, ξi)∥, ∀ y ∈ F (xi − γki−1rµ(xi, ξi)). (3.7)

Since ξi ∈ F (xi) and F is compact-valued, the definition of the Hausdorff metric implies the
existence of ζi ∈ F (xi − γ−1ηirµ(xi, ξi)) such that

σ∥rµ(xi, ξi)∥ < ∥ζi − ξi∥ ≤ H(F (xi − γ−1ηirµ(xi, ξi)), F (xi)) ≤ Lγ−1ηi∥rµ(xi, ξi)∥

Therefore ηi > L−1γσ ≥ η.

Let x∗ ∈ ΠS(xi). By the proof of Theorem 3.1 and (3.4), we obtain that for sufficiently
large i,

dist2(xi+1, S) ≤ ∥xi+1 − x∗∥2 ≤ ∥xi − x∗∥2 −M−2
1 (µ−1 − σ)2ηi

2∥rµ(xi, ξi)∥4

≤ ∥xi − x∗∥2 −M−2
1 (µ−1 − σ)2η2∥rµ(xi, ξi)∥4

≤ dist2(xi, S)−M−2
1 (µ−1 − σ)2η2c−4dist4(xi, S).

Write α for M−2
1 (µ−1 − σ)2η2c−4. Applying Lemma 6 in Chapter 2 of [25], we have

dist(xi, S) ≤ dist(x0, S)/

√
αi dist2(x0, S) + 1 = 1/

√
αi+ dist−2(x0, S).

This completes the proof.
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4 Algorithmic Framework

Thus, we present our algorithmic framework for solving (1.1).

Algorithm 4.1. Choose x0 ∈ C and three parameters σ > 0, µ ∈ (0, 1/σ) and γ ∈ (0, 1).
Set i = 0.

Step 1. If rµ(xi, ξ) = 0 for some ξ ∈ F (xi), stop; else take arbitrarily ξi ∈ F (xi).
Step 2. Let ki be the smallest nonnegative integer satisfying

⟨ξi − yk, rµ(xi, ξi)⟩ ≤ σ∥rµ(xi, ξi)∥2. (4.1)

where yk = ΠF (xi−γkrµ(xi,ξi))(ξi). Set ηi = γki .
Step 3. Compute xi+1 := ΠC(xi−α(xi, ηi, µ)d(xi, ηi, µ)), where d(xi, ηi, µ) is a direction

vector and α(xi, ηi, µ) is a step-size defined by

α(xi, ηi, µ) :=
g(xi, ηi, µ)

∥d(xi, ηi, µ)∥2
, g(xi, ηi, µ) > 0. (4.2)

Let i := i+ 1 and go to step 1.

Remark 4.2. Since the inequality

⟨yk, rµ(xi, ξi)⟩ ≥ (µ−1 − σ)∥rµ(xi, ξi)∥2

implies (4.1), the stepsize rule of ηi in Algorithm 4.1 can be replaced also by the aforemen-
tioned inequality.

Remark 4.3. The positive parameters σ and µ can vary with the different choice of
α(xi, ηi, µ) and d(xi, ηi, µ)(see µ in Algorithm 4.5, for example).

Next we conclude the global convergence of Algorithm 4.1.

Theorem 4.4. If F : C → 2R
n

is continuous with nonempty compact convex values on C,
if the sequence {xi} generated by Algorithm 4.1 satisfies

θ(σ, µ)ηi∥rµ(xi, ξi)∥2 ≤ g(xi, ηi, µ) ≤ ⟨d(xi, ηi, µ), xi − x∗⟩, ∀ x∗ ∈ S (4.3)

and if there exists a parameter M > 0 such that

∥d(xi, ηi, µ)∥ ≤ M, (4.4)

where θ(σ, µ) is a positive parameter depending on σ and µ, then either Algorithm 4.1
terminates in a finite number of iterations or generates an infinite sequence {xi} converging
to a solution x of (1.1).

Proof. Let x∗ ∈ S. It follows from Lemma 2.7(ii), (4.2), (4.3) and (4.4) that

∥xi+1 − x∗∥2 ≤ ∥xi − x∗ − α(xi, ηi, µ)d(xi, ηi, µ)∥2

= ∥xi − x∗∥2 − 2α(xi, ηi, µ)⟨d(xi, ηi, µ), xi − x∗⟩
+ α2(xi, ηi, µ)∥d(xi, ηi, µ)∥2

≤ ∥xi − x∗∥2 − g2(xi, ηi, µ)

∥d(xi, ηi, µ)∥2

≤ ∥xi − x∗∥2 − θ2(σ, µ)
η2i ∥rµ(xi, ξi)∥4

∥d(xi, ηi, µ)∥2

≤ ∥xi − x∗∥2 − θ2(σ, µ)M−2η2i ∥rµ(xi, ξi)∥4. (24)

The remainder is similar to the proof of Theorem 3.1 and we omit it.
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Setting d(xi, ηi, µ) = yki + ηirµ(xi, ξi), g(xi, ηi, µ) = ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki⟩,
we obtain the following algorithm for solving (1.1).

Algorithm 4.5. Choose x0 ∈ C and three parameters σ > 0, 0 < µ < min{1, 1/σ} and
γ ∈ (0, 1). Set i = 0.

Step 1. If rµ(xi, ξ) = 0 for some ξ ∈ F (xi), stop; else take arbitrarily ξi ∈ F (xi).
Step 2. Let ki be the smallest nonnegative integer k satisfying

⟨ξi − yk, rµ(xi, ξi)⟩ ≤ σ∥rµ(xi, ξi)∥2. (4.5)

where yk = ΠF (xi−γkrµ(xi,ξi))(ξi). Set ηi = γki .
Step 3. Compute xi+1 := ΠC(xi − α(xi, ηi, µ)d(xi, ηi, µ)), where

d(xi, ηi, µ) = yki + ηirµ(xi, ξi), (4.6)

α(xi, ηi, µ) =
ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki

⟩
∥d(xi, ηi, µ)∥2

. (4.7)

Let i := i+ 1 and go to step 1.

Theorem 4.6. If F : C → 2R
n

is continuous with nonempty compact convex values on C
and the condition (1.2) holds, then either Algorithm 4.5 terminates in a finite number of
iterations or generates an infinite sequence {xi} converging to a solution of (1.1).

Proof. In view of Theorem 4.4, we only need to show that the sequence {xi} generated by
Algorithm 4.5 satisfies (4.3) and (4.4). For any x∗ ∈ S, by (1.2)and µ > 0, we have

⟨µξi, xi − x∗⟩ ≥ 0, (4.8)

and
⟨yki , xi − ηirµ(xi, ξi)− x∗⟩ ≥ 0. (4.9)

Therefore,

⟨yki , xi − x∗⟩ = ⟨yki , xi − ηirµ(xi, ξi)− x∗ + ηirµ(xi, ξi)⟩
= ⟨yki , xi − ηirµ(xi, ξi)− x∗⟩+ ηi⟨yki , rµ(xi, ξi)⟩
≥ ηi⟨yki , rµ(xi, ξi)⟩, (4.10)

where the last inequality follows from (4.9).
Since x∗ ∈ C, from (2.1) and Lemma 2.7(i) we have

⟨(xi − rµ(xi, ξi))− (xi − µξi), x
∗ − (xi − rµ(xi, ξi))⟩ ≥ 0,

which implies that

⟨rµ(xi, ξi), xi − x∗⟩ ≥ ⟨rµ(xi, ξi), rµ(xi, ξi)− µξi⟩+ µ⟨ξi, xi − x∗⟩. (4.11)

Combining (4.8) and (4.11) yields that

⟨rµ(xi, ξi), xi − x∗⟩ ≥ ⟨rµ(xi, ξi), rµ(xi, ξi)− µξi⟩. (4.12)

It follows from (4.10), (4.12) and (2.10) that

⟨d(xi, ηi, µ), xi − x∗⟩ = ⟨yki + ηirµ(xi, ξi), xi − x∗⟩
≥ ηi⟨rµ(xi, ξi), rµ(xi, ξi)− µξi + yki⟩
≥ (µ−1 − σ)ηi∥rµ(xi, ξi)∥2. (4.13)

Similar to the proof of Theorem 3.1, we know that there exists a positive number M such
that

∥d(xi, ηi, µ)∥ ≤ M.
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5 Numerical Experiments

In this section, we present some numerical experiments for the proposed algorithm.
The MATLAB codes are run on a PC(with CPU Intel P-T2390)under MATLAB Version
7.0.1.24704(R14)Service Pack 1. We compare the performance of our Algorithm 2.2, [22,
Algorithm 1]and [8, Algorithm 1]. In the following tables, ‘It.’ denotes number of iteration,
and ‘CPU’ denotes the CPU time in seconds. The tolerance ε means when ∥rµ(x, ξ)∥ ≤ ε,
the procedure stops.

Example 1. Let n = 3,

C := {x ∈ Rn
+ :

n∑
i=1

xi = 1}

and F : C → 2R
n

be defined by

F (x) := {(t, t− x1, t− x2) : t ∈ [0, 1]}

Then the set C and the mapping F satisfy the assumptions of Theorem 3.1 and (0,0,1) is
a solution of the generalized variational inequality. Example 1 is tested in [22]. We choose
σ = 0.4, γ = 0.9 and µ = 1 for our algorithm; σ = 0.5, γ = 0.8 and µ = 1 for Algorithm 1 in
[22].

Table 1
Example 1

Algorithm 2.2 [22, Algorithm 1]
Initial point ε It. CPU It. CPU

(1,0,0) 10−5 19 0.3125 23 0.40625
(0,1,0) 10−5 17 0.296875 18 0.34375

(0.5,0.5,0) 10−5 18 0.3125 20 0.390625
(1,0,0) 10−7 25 0.34375 31 0.46875
(0,1,0) 10−7 23 0.328125 26 0.40625

(0.5,0.5,0) 10−7 24 0.359375 29 0.453125

Example 2. Let n = 4,

C := {x ∈ Rn
+ :

n∑
i=1

xi = 1}

and F : C → 2R
n

be defined by

F (x) = {(t, t+ 2x2, t+ 3x3, t+ 4x4) : t ∈ [0, 1]}

Then the set C and the mapping F satisfy the assumptions of Theorem 3.1 and (1,0,0,0) is
a solution of the generalized variational inequality. Example 1 is tested in [8]. We choose
σ = 0.5, γ = 0.8 and µ = 1 for our algorithm; σ = 2, γ = 0.9 and µ = 0.1 for Algorithm 1 in
[8].
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Table 2
Example 2

Algorithm 2.2 [8, Algorithm 1]
Initial point ε It. CPU It. CPU
(0,0,0,1) 10−5 41 0.6875 129 0.6875
(0,0,1,0) 10−5 29 0.453125 128 0.6875

(0.5,0,0.5,0) 10−5 24 0.421875 118 0.625
(0,0,0,1) 10−7 49 0.734375 195 0.984375
(0,0,1,0) 10−7 37 0.53125 194 0.984375

(0.5,0,0.5,0) 10−7 32 0.484375 184 0.921875

References

[1] E. Allevi, A. Gnudi and I. V. Konnov, The proximal point method for nonmonotone
variational inequalities, Math. Methods Oper. Res. 63 (2006 ) 553–565.

[2] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley & Sons Inc., New
York, America, 1984.

[3] A. Auslender and M. Teboulle, Lagrangian duality and related multiplier methods for
variational inequality problems, SIAM J. Optim. 10 (2000) 1097–1115.

[4] T.Q. Bao and P.Q. Khanh, A projection-type algorithm for pseudomonotone non-
lipschitzian multivalued variational inequalities, in Generalized Convexity,Generalized
Monotonicity and Applications, Proceedings of the 7th International Symposium on
Generalized Convexity and Generalized Monotonicity, A. Eberhard, N. Hadjisavvas, D.
T. Lus (eds.), Spring-Verlag, New York, America, 2005, pp. 113–129.

[5] Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving
variational inequalities in Hilbert space, J. Optim. Theory Appl. 148 (2011) 318–335.

[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

[7] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Comple-
mentary Problems, Springer-Verlag, New York, America, 2003.

[8] C. Fang and Y. He, A double projection algorithm for multi-valued variational in-
equalities and a unified framework of the method, Appl. Math. Comput. 217 (2011)
9543–9511.

[9] C. Fang and S. Chen, The extragradient algorithms for single-valued variational in-
equalities, submitted.

[10] C. Fang and Y. He, A projection-type method for multi-valued variational inequalities,
submitted.

[11] C. Fang and Y. He, The subgradient extragradient method for multi-valued variational
inequalities, submitted.

[12] S.C. Fang and E L. Peterson, Generalized variational inequalities, J. Optim. Theory
Appl. 38 (1982) 363–383.



58 C. FANG AND Y. HE

[13] M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of mono-
tone mappings with application to the traffic equilibrium problem, Math. Program. 72
(1, Ser. A) (1996) 1–15.

[14] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional
equations, Acta Math. 115 (1966) 271–310.

[15] Y. He, A new double projection algorithm for variational inequalities, J. Comput. Appl.
Math. 185 (2006) 166–173.

[16] Y. He, Stable pseudomonotone variational inequality in reflexive Banach spaces, J.
Math. Anal. Appl. 330 (2007) 352–363.

[17] A.N. Iusem and B.F. Svaiter, A variant of Korpelevich, method for variational inequal-
ities with a new search strategy,Optimization 42 (1997) 309–321.
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