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of continuously moving from one solution to any other solution. Recently, Lee et al.[33]
and Cheng [13] studied the connectedness of the weak efficient solution set for single-valued
vector variational inequalities in finite dimensional Euclidean space. Gong [23] obtained the
connectedness of the various solution sets for single-valued vector equilibrium problems in
infinite dimension space. Chen et al.[7] discussed the connectedness and the compactness of
the weak efficient solution set for set-valued vector equilibrium problems and the set-valued
vector Hartman-Stampacchia variational inequalities in normed linear spaces. By virtue of
a density result, Gong and Yao [24] studied the connectedness of the efficient solution set
for single-valued vector equilibrium problems in locally convex spaces. Concerned with the
connectedness and the path-connectedness of the solution set for symmetric vector equi-
librium problems, we refer to the work of Zhong et al.[39]. Very recently, Chen et al. [9]
studied the connectedness of approximate solution set for the vector equilibrium problems
in real Hausdorff topological vector spaces. To the best of our knowledge, no paper has
been devoted to the study of the connectedness of the solution set for symmetric vector
quasiequilibrium problems.

Motivated and inspired by the research works mentioned above, in this paper, we con-
sider a class of symmetric vector quasiequilibrium problems in Hausdorff topological vector
spaces. By using a scalarization method, we give a characterrization of the weak efficient
solutions for symmetric vector quasiequilibrium problems in Hausdorff topological vector
spaces. Through the scalarization result, we obtain the existence of the weak efficient solu-
tions and the connectedness of the weak efficient solution set for symmetric vector quasiequi-
librium problems. The results presented in this paper generalize and improve some known
results in [7, 13, 23, 39].

2 Preliminary Results

Throughout this paper, unless specified otherwise, we always suppose that X, Y , E
and Z are real Hausdorff topological vector spaces. Let K ⊂ X and D ⊂ Y be nonempty
convex subsets. Let S : K × D → 2K , T : K × D → 2D, F : K × D × K → 2E and
G : D ×K ×D → 2Z be set-valued mappings. Let C ⊂ E and P ⊂ Z be nonempty closed
convex pointed cones with intC ̸= ∅ and intP ̸= ∅. Let E∗ and Z∗ be the topological dual
spaces of E and Z. Let C∗ and P ∗ be the dual cones of C and P , respectively, that is,

C∗ = {f ∈ E∗ : f(y) ≥ 0, ∀y ∈ C},

and

P ∗ = {g ∈ Z∗ : g(y) ≥ 0, ∀y ∈ P}.

Let

A = {(x, y) ∈ K ×D : x ∈ S(x, y), y ∈ T (x, y)}.

In this paper, we consider the following symmetric vector quasiequilibrium problem(in
short, SVQEP): finding (x̄, ȳ) ∈ A such that{

F (x̄, ȳ, u) ∩ (−intC) = ∅, ∀u ∈ S(x̄, ȳ),
G (ȳ, x̄, v) ∩ (−intP ) = ∅,∀v ∈ T (x̄, ȳ).

We call this (x̄, ȳ) a weak efficient solution to (SVQEP). Denote by Vw(F,G) the set of all
weak efficient solutions to (SVQEP).
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Remark 2.1. (i) If for any (x, y) ∈ K×D, S(x, y) ≡ K and T (x, y) ≡ D, then (SVQEP)
reduces to the problem considered in Zhong et al.[39].

(ii) If F and G are single-valued mappings, C is a closed convex cone with intC ̸= ∅,
E ≡ Z and C ≡ P , then (SVQEP) reduces to the problem studied in Farajzadeh [18];
If in addition, F (x, y, u) = f(u, y) − f(x, y) and G(y, x, v) = g(x, v) − g(x, y), where
f : K ×D → Z and g : K ×D → Z are two single-valued mappings, then (SVQEP)
collapses to the problem investigated in Fu [20]; If furthermore, Z = R and C = R+,
then (SVQEP) coincide with the scalar problem studied in Noor and Oettli [35].

(iii) If G ≡ 0, Y ≡ {y} and T (x, y) ≡ {y}, then (SVQEP) reduces to the multivalued
vector quasiequilibrium problem considered by many authors.

Let (f, g) ∈ C∗\{0} × P ∗\{0}. We also consider the following scalar symmetric vector
quasiequilibrium problem(in short, SSVQEP): finding (x̄, ȳ) ∈ A such that

inf
z∈F (x̄,ȳ,u)

f(z) ≥ 0, ∀u ∈ S(x̄, ȳ),

inf
z∈G(ȳ,x̄,v)

g(z) ≥ 0, ∀v ∈ T (x̄, ȳ).

We call this (x̄, ȳ) a (f, g)-efficient solution to (SSVQEP). Denote by Vw(f, g) the set of all
(f, g)-efficient solutions to (SSVQEP).

For our main results, we need some definitions and lemmas as follows.

Definition 2.2. Let X and Y be two topological vector spaces and T : X → 2Y be a
set-valued mapping.

(i) T is said to be upper semicontinuous at x ∈ X if, for any neighborhood U of T (x),
there is a neighborhood V of x such that T (t) ⊂ U, for all t ∈ V. T is said to be upper
semicontinuous on X if it is upper semicontinuous at each x ∈ X.

(ii) T is said to be lower semicontinuous at x ∈ X if, for any y ∈ T (x) and for any net
{xα} converging to x, there exists a net {yα} such that yα ∈ T (xα) and yα converges
to y. T is said to be lower semicontinuous on X if it is lower semicontinuous at each
x ∈ X.

(iii) T is said to be continuous on X if it is both upper semicontinuous and lower semi-
continuous on X.

(iv) T is said to be closed if, Graph(T ) = {(x, y) : x ∈ X, y ∈ T (x)} is a closed subset in
X × Y.

Definition 2.3. Let W be a topological vector space and D ⊂ W be a nonempty set. A
set-valued mapping G : D → 2E is said to be C-lower semicontinuous on x0 if, for each
z ∈ G (x0), and any neighborhood U of 0 in E, there exists a neighborhood U(x0) of x0 such
that

G (x) ∩ (z + U − C) ̸= ∅, ∀x ∈ U (x0) ∩D.

Remark 2.4. Clearly, if G is lower semicontinuous on D, then G is C-lower semicontinuous
on D.

Definition 2.5. Let X, Y , Z and E be topological vector spaces and C be a closed convex
cone in E. Let H : K×D×M → 2E be a set-valued mapping, where K ⊂ X and D ⊂ Y are
nonempty sets, M ⊂ Z is a nonempty convex set. For any fixed (x, y) ∈ K ×D, H(x, y, ·)
is said to be
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(i) C-convex if, for every z1, z2 ∈ M and t ∈ [0, 1], one has

tH (x, y, z1) + (1− t)H (x, y, z2) ⊂ H (x, y, tz1 + (1− t) z2) + C;

(ii) C-quasiconvex if, for every z1, z2 ∈ M and t ∈ [0, 1], one has either

H (x, y, z1) ⊂ H (x, y, tz1 + (1− t) z2) + C;

or
H (x, y, z2) ⊂ H (x, y, tz1 + (1− t) z2) + C.

Definition 2.6 ([5])). A subset D ⊂ X is said to be arcwise connected iff, for every pair of
points x, z ∈ D, there exists a continuous mapping φx,z, called an arc, defined on the unit
interval [0, 1] ⊆ R and with values in D such that

φx,z (0) = x, φx,z (1) = z.

In the sequel, φx,z will denote a continuous arc connecting x and z. It is easy to see that
every convex set is arcwise connected.

Definition 2.7 ([32]). Let D ⊂ X be a nonempty arcwise connected set, a set-valued
mapping F : D → 2Y is said to be C-arcwise connected iff

tF (z) + (1− t)F (x) ⊂ F (φx,z(t)) + C, ∀t ∈ [0, 1], ∀x, z ∈ D.

Remark 2.8. If F : D → 2Y is a C-arcwise connected set-valued mapping, then F (D) +C
is a convex set.

Remark 2.9 ([32]). The C-convex set-valued mapping is C-arcwise connected. However,
there exist C-arcwise connected set-valued mappings which are not C-convex set-valued
mappings.

Definition 2.10. Let X, Y , Z and E be topological vector spaces and C be a closed
convex cone in E. K ⊂ X, D ⊂ Y and M ⊂ Z are nonempty convex sets. A set-valued
mapping H : K × D × M → 2E is said to be C-concave on K × D × M if, for every
(x1, y1, z1), (x2, y2, z2) ∈ K ×D ×M and t ∈ [0, 1], one has

H (tx1 + (1− t)x2, ty1 + (1− t)y2, tz1 + (1− t)z2) ⊂ tH (x1, y1, z1)+(1− t)H (x2, y2, z2)+C.

Lemma 2.11. ([4])Let X and Y be two Hausdorff topological vector spaces and T : X → 2Y

be a set-valued mapping.

(i) If T is upper semicontinuous with closed values, then T is closed;

(ii) If T is closed and Y is compact, then T is upper semicontinuous.

Lemma 2.12 ([14]). Let {Ki}i∈I be a family of nonempty convex subsets where each Ki

is contained in a Hausdorff topological vector space Xi. For each i ∈ I, let Qi : K =∏
i∈I Ki → 2Ki be a set-valued mapping such that

(i) for each i ∈ I, Qi(x) is convex;

(ii) for each x ∈ K, xi /∈ Qi(x);
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(iii) for each yi ∈ Ki, Q
−1
i (yi) is open in K;

(iv) if K is not compact, then there exists a nonempty compact subset K of K and a
nonempty compact convex subset Bi of Ki such that for each x ∈ K\K, there exists a
i ∈ I such that Qi(x) ∩Bi ̸= ∅.

Then there exists x ∈ K such that Qi(x) = ∅ for all i ∈ I.

Lemma 2.13 ([37]). Let X and Y be two topological vector spaces, S be a connected subset
of X, F : S → 2Y be a set-valued mapping. If F is upper semicontinuous on S and F (x) is
connected subset of Y for each x ∈ S, then F (S) = ∪x∈SF (x) is a connected subset of Y .

Lemma 2.14. Let S : K × D → 2K and T : K × D → 2D be set-valued mappings with
nonempty convex values. Suppose that F (x, y, ·) is a C-convex mapping on K and F (y, x, ·)
is a P -convex mapping on D. Then, F (x, y, S(x, y))+C and G(y, x, T (x, y))+P are convex.

Proof. Let z1, z2 ∈ F (x, y, S(x, y)) + C and t ∈ [0, 1]. It follows that there exist u1, u2 ∈
S(x, y) such that z1 ∈ F (x, y, u1) +C and z2 ∈ F (x, y, u2) +C. Since S(x, y) is convex and
F (x, y, ·) is C-convex, we have

tz1 + (1− t)z2 ∈ tF (x, y, u1) + tC + (1− t)F (x, y, u2) + (1− t)C

⊂ F (x, y, tu1 + (1− t)u2) + C ⊂ F (x, y, S(x, y)) + C.

Hence, F (x, y, S(x, y)) + C is convex. Similarly, we can prove that G(y, x, T (x, y)) + P is
convex.

Lemma 2.15. Suppose that for any (x̄, ȳ) ∈ A, F (x̄, ȳ, S(x̄, ȳ))+C and G(ȳ, x̄, T (x̄, ȳ))+P
are convex sets. Then

Vw (F,G) =
∪

(f,g)∈C∗\{0}×P∗\{0}

Vw (f, g).

Proof. Suppose that

(x̄, ȳ) ∈
∪

(f,g)∈C∗\{0}×P∗\{0}

Vw (f, g).

Then there exists (f, g) ∈ C∗\ {0} × P ∗\{0} such that
inf

z∈F (x̄,ȳ,u)
f(z) ≥ 0, ∀u ∈ S(x̄, ȳ),

inf
z∈G(ȳ,x̄,v)

g(z) ≥ 0, ∀v ∈ T (x̄, ȳ).
(2.1)

Now, we claim that
F (x̄, ȳ, u) ∩ (−intC) = ∅,∀u ∈ S(x̄, ȳ).

In fact, if there exists some ū ∈ S(x̄, ȳ) and z̄ ∈ F (x̄, ȳ, ū) such that z̄ ∈ −intC, then for
f ∈ C∗\{0}, we have

inf
z∈F (x̄,ȳ,ū)

f(z) ≤ f(z̄) < 0,

which contradicts (2.1). Similarly, we can prove that

G(ȳ, x̄, v) ∩ (−intP ) = ∅, ∀v ∈ T (x̄, ȳ).

Hence, (x̄, ȳ) ∈ Vw(F,G).
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Conversely, let (x̄, ȳ) ∈ Vw(F,G). Then{
F (x̄, ȳ, u) ∩ (−intC) = ∅, ∀u ∈ S(x̄, ȳ),
G (ȳ, x̄, v) ∩ (−intP ) = ∅,∀v ∈ T (x̄, ȳ).

It follows that {
F (x̄, ȳ, S(x̄, ȳ)) ∩ (−intC) = ∅,
G (ȳ, x̄, T (x̄, ȳ)) ∩ (−intP ) = ∅

and so {
(F (x̄, ȳ, S(x̄, ȳ)) + C) ∩ (−intC) = ∅,
(G (ȳ, x̄, T (x̄, ȳ)) + P ) ∩ (−intP ) = ∅.

Since F (x̄, ȳ, S(x̄, ȳ))+C and G(ȳ, x̄, T (x̄, ȳ))+P are convex sets, by the separation theorem
of convex sets, there exists some (f, g) ∈ E∗\{0} × Z∗\{0} such that

inf{f(z + c) : c ∈ C, ū ∈ S(x̄, ȳ), z ∈ F (x̄, ȳ, ū)} ≥ sup{f(c) : c ∈ −intC} (2.2)

and

inf{g(z + p) : p ∈ P, v̄ ∈ T (x̄, ȳ), z ∈ G(ȳ, x̄, v̄)} ≥ sup{g(p) : p ∈ −intP}. (2.3)

Since C is a cone, f(c) ≥ 0 for all c ∈ C, we know that f ∈ C∗. This together with (2.2)
yields f ∈ C∗\{0} and

inf
z∈F (x̄,ȳ,u)

f(z) ≥ 0, ∀u ∈ S(x̄, ȳ).

Also, by (2.3), we see that g ∈ P ∗\{0} and

inf
z∈G(ȳ,x̄,v)

g(z) ≥ 0, ∀v ∈ T (x̄, ȳ).

This means that (x̄, ȳ) ∈ Vw(f, g). This completes the proof.

Remark 2.16. (i) Lemma 2.15 generalizes Theorem 3.1 of [7] from set-valued vector
equilibrium problem to symmetric vector quasiequilibrium problem.

(ii) Lemma 2.15 generalizes Lemma 2.1 of [39] from symmetric vector equilibrium problem
to symmetric vector quasiequilibrium problem.

3 Existence of the Solutions

In this section, we give an existence theorem of the solutions for scalar symmetric vector
quasiequilibrium problem.

Theorem 3.1. Assume that

(i) For each (x, y) ∈ K ×D, F (x, y, x) ⊂ C and G(y, x, y) ⊂ P ;

(ii) For each u ∈ K, F (·, ·, u) is C-lower semicontinuous on K ×D and for each v ∈ D,
F (·, ·, v) is P -lower semicontinuous on D ×K;

(iii) For each (x, y) ∈ K×D, F (x, y, ·) is C-quasiconvex on K or C-convex on K and for
each (x, y) ∈ K ×D, G(y, x, ·) is P -quasiconvex on D or P -convex on D;

(iv) S and T are upper semicontinuous with nonempty closed convex values on K × D
and for each (x, y) ∈ K ×D, S−1(x) and T−1(y) are open in K ×D;
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(v) If K ×D is not compact, there exists a nonempty compact subset K0 ×D0 of K ×D
and a nonempty compact convex subset K1 ×D1 of K ×D such that for each (x, y) ∈
(K ×D)\(K0 ×D0), there exists a x̄ ∈ K1 ∩S(x, y) such that F (x, y, x̄)∩ (−intC) ̸= ∅
or a ȳ ∈ D1 ∩ T (x, y) such that G(y, x, ȳ) ∩ (−intP ) ̸= ∅.

Then Vw(f, g) ̸= ∅ for all (f, g) ∈ C∗\{0} × P ∗\{0}.

Proof. Let (f, g) ∈ C∗\{0} × P ∗\{0}. For any (x, y) ∈ K ×D, set

P1 = {(x, y) ∈ K ×D : x ∈ S(x, y)},

P2 = {(x, y) ∈ K ×D : y ∈ T (x, y)},

Q1(x, y) = {x̄ ∈ K : inf
z∈F (x,y,x̄)

f(z) < 0},

Q2(x, y) = {ȳ ∈ D : inf
z∈G(y,x,ȳ)

g(z) < 0},

R1(x, y) =

{
S(x, y) ∩Q1(x, y), if (x, y) ∈ P1;
S(x, y), otherwise

and

R2(x, y) =

{
T (x, y) ∩Q2(x, y), if (x, y) ∈ P2;
T (x, y), otherwise.

Next we will show that R1 and R2 satisfy all the conditions of Lemma 2.12. For any x ∈ K,
we have

R−1
1 (x) = {(x̄, ȳ) ∈ P1 : x ∈ S(x̄, ȳ) ∩Q1(x̄, ȳ)} ∪ {(x̄, ȳ) ∈ K ×D\P1 : x ∈ S(x̄, ȳ)}

= {(x̄, ȳ) ∈ P1 : (x̄, ȳ) ∈ S−1(x) ∩Q−1
1 (x)} ∪ {(x̄, ȳ) ∈ K ×D\P1 : (x̄, ȳ) ∈ S−1(x)}

= {P1 ∩ S−1(x) ∩Q−1
1 (x)} ∪ {[(K ×D)\P1] ∩ S−1(x)}

= {[(K ×D)\P1] ∪Q−1
1 (x)} ∩ S−1(x). (3.1)

It follows from (3.1) that

(K ×D)\R−1
1 (x) = (K ×D)\{[((K ×D)\P1) ∪Q−1

1 (x)] ∩ S−1(x)}
= {(K ×D)\[((K ×D)\P1) ∪Q−1

1 (x)]} ∪ [(K ×D)\S−1(x)]

= {[(K ×D)\Q−1
1 (x)] ∩ P1} ∪ [(K ×D)\S−1(x)]. (3.2)

Since S is upper semicontinuous with closed values, we know that P1 is closed. Next we
show that

(K ×D)\Q−1
1 (x) = {(x̄, ȳ) ∈ K ×D : inf

z∈F (x̄,ȳ,x)
f(z) ≥ 0}

is closed. Let {(xα, yα)} ⊂ (K × D)\Q−1
1 (x) with (xα, yα) → (x̄, ȳ). Since {(xα, yα)} ⊂

(K ×D)\Q−1
1 (x), we have

inf
z∈F (xα,yα,x)

f(z) ≥ 0. (3.3)

We claim that

inf
z∈F (x̄,ȳ,x)

f(z) ≥ 0.
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If not, then there exists z̄ ∈ F (x̄, ȳ, x) such that f(z̄) < 0. Set U = {z ∈ E : |f(z)| <
1
2 |f(z̄)|}. Clearly, U is a neighborhood of 0 in E. By the C-lower semicontinuity of F (·, ·, x),
there exists a neighborhood V of (x̄, ȳ) such that

F (x′, y′, x) ∩ (z̄ + U − C) ̸= ∅, ∀(x′, y′) ∈ V. (3.4)

It follows from (xα, yα) → (x̄, ȳ) and (3.4) that there exists α0 such that

F (xα, yα, x) ∩ (z̄ + U − C) ̸= ∅, ∀α ≥ α0.

Hence, there exists zα ∈ F (xα, yα, x) such that zα ∈ z̄ + U − C. Therefore, there exists
uα ∈ U and cα ∈ C such that zα = z̄ + uα − cα. So

f(zα) = f(z̄) + f(uα)− f(cα) < f(z̄) +
1

2
|f(z̄)| − f(cα) =

1

2
f(z̄)− f(cα) < 0. (3.5)

It follows from (3.3) and zα ∈ F (xα, yα, x) that

f(zα) ≥ inf
z∈F (xα,yα,x)

f(z) ≥ 0,

which contradicts (3.5). Hence, (x̄, ȳ) ∈ (K ×D)\Q−1
1 (x). Therefore, it follows from (3.2)

that (K ×D)\R−1
1 (x) is closed. Thus, R−1

1 (x) is open in K ×D for each x ∈ K. Similarly,
we can prove that R−1

2 (y) is open in K ×D for each y ∈ D.
Next we show that Q1(x, y) and Q2(x, y) are convex for any (x, y) ∈ K ×D. In fact, for

any x1, x2 ∈ Q1(x, y), we have

inf
z∈F (x,y,x1)

f(z) < 0, inf
z∈F (x,y,x2)

f(z) < 0.

Hence, there exist z1 ∈ F (x, y, x1) and z2 ∈ F (x, y, x2) such that f(z1) < 0 and f(z2) < 0.
When F (x, y, ·) is C-convex set-valued mapping on K, we have

(1− t)F (x, y, x1) + tF (x, y, x2) ⊂ F (x, y, (1− t)x1 + tx2) + C,

and so there exist z̄ ∈ F (x, y, (1 − t)x1 + tx2) and c ∈ C such that (1 − t)z1 + tz2 = z̄ + c.
This shows that

inf
z∈F (x,y,(1−t)x1+tx2)

f(z) ≤ f(z̄) = (1− t)f(z1) + tf(z2)− f(c) < 0.

When F (x, y, ·) is C-quasiconvex on K, we have

either F (x, y, x1) ⊂ F (x, y, tx1 +(1− t)x2)+C or F (x, y, x2) ⊂ F (x, y, tx1 +(1− t)x2)+C.

If F (x, y, x1) ⊂ F (x, y, tx1 +(1− t)x2)+C, then there exist z̄ ∈ F (x, y, tx1 +(1− t)x2) and
c ∈ C such that z1 = z̄ + c and so

inf
z∈F (x,y,tx1+(1−t)x2)

f(z) ≤ f(z̄) = f(z1)− f(c) < 0.

If F (x, y, x2) ⊂ F (x, y, tx1 + (1− t)x2) + C, then

inf
z∈F (x,y,tx1+(1−t)x2)

f(z) < 0
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and so tx1 + (1− t)x2) ∈ Q1(x, y). Thus, Q1(x, y) is convex. By the definition of R1(x, y),
we know that R1(x, y) is convex. Similarly, we can prove that Q2(x, y) and R2(x, y) are
convex.

Due to the fact that F (x, y, x) ⊂ C for each (x, y) ∈ K ×D, we have

inf
z∈F (x,y,x)

f(z) ≥ 0

and hence x /∈ Q1(x, y). If (x, y) ∈ P1, then x /∈ R1(x, y). If (x, y) ∈ (K × D)\P1, then
x /∈ S(x, y) and hence x /∈ R1(x, y). Similarly, we have y /∈ R2(x, y) for any (x, y) ∈ K ×D.

By condition (v), for each (x, y) ∈ (K ×D)\(K0 ×D0), if there exists x̄ ∈ K1 ∩ S(x, y)
such that F (x, y, x̄)∩ (−intC) ̸= ∅, then there exists z̄ ∈ F (x, y, x̄) such that z̄ ∈ −intC. It
follows from

inf
z∈F (x,y,x̄)

f(z) ≤ f(z̄) < 0

that x̄ ∈ Q1(x, y) and so K1 ∩ R1(x, y) ̸= ∅. If there exists ȳ ∈ D1 ∩ T (x, y) such that
G(y, x, ȳ) ∩ (−intP ) ̸= ∅, then there exists z̄ ∈ G(y, x, ȳ) such that z̄ ∈ −intP . It follows
from

inf
z∈G(y,x,ȳ)

g(z) ≤ g(z̄) < 0

that ȳ ∈ Q2(x, y) and so D1 ∩R2(x, y) ̸= ∅.
It follows that all the assumptions of Lemma 2.12 are satisfied and so there exists (x̄, ȳ) ∈

K × D such that R1(x̄, ȳ) = R2(x̄, ȳ) = ∅. Since S(x̄, ȳ) and T (x̄, ȳ) are nonempty sets,
(x̄, ȳ) must be in P1 ∩P2. Hence, R1(x̄, ȳ) = S(x̄, ȳ)∩Q1(x̄, ȳ) = ∅ and R2(x̄, ȳ) = T (x̄, ȳ)∩
Q2(x̄, ȳ) = ∅. Thus, for all x ∈ S(x̄, ȳ) and y ∈ T (x̄, ȳ), we have x /∈ Q1(x̄, ȳ) and y /∈
Q2(x̄, ȳ), i.e., 

inf
z∈F (x̄,ȳ,x)

f(z) ≥ 0, ∀x ∈ S(x̄, ȳ),

inf
z∈G(ȳ,x̄,y)

g(z) ≥ 0, ∀y ∈ T (x̄, ȳ).

Hence, Vw(f, g) ̸= ∅ for all (f, g) ∈ C∗\{0} × P ∗\{0}. This completes the proof.

4 Connectedness of the Solution Set

In this section, we discuss the connectedness and the compactness of the weak efficient
solution set for symmetric vector quasiequilibrium problem.

Theorem 4.1. Assume that

(i) For each (x, y) ∈ K ×D, F (x, y, x) ⊂ C and G(y, x, y) ⊂ P ;

(ii) F is C-lower semicontinuous on K × D × K and G is P -lower semicontinuous on
D ×K ×D;

(iii) For each (x, y) ∈ K ×D, F (x, y, ·) is C-quasiconvex, C-arcwise connected on K and
G(y, x, ·) is P -quasiconvex, P -arcwise connected on D; F is C-concave on K ×D×K
and G is P -concave on D ×K ×D;

(iv) S and T are continuous with nonempty closed convex values on K ×D and for each
(x, y) ∈ K ×D, S−1(x) and T−1(y) are open in K ×D;
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(v) If K×D is not compact, then there exists a nonempty compact subset K0×D0 of K×D
and a nonempty compact convex subset K1 ×D1 of K ×D such that, for each (x, y) ∈
(K ×D)\(K0 ×D0), there exists a x̄ ∈ K1 ∩S(x, y) such that F (x, y, x̄)∩ (−intC) ̸= ∅
or a ȳ ∈ D1 ∩ T (x, y) such that G(y, x, ȳ) ∩ (−intP ) ̸= ∅.

(vi) {F (x, y, u) : x ∈ K, y ∈ D,u ∈ K} is a bounded subset in E and {G(x, y, u) : x ∈
D, y ∈ K,u ∈ D} is a bounded subset in Z;

(vii) For any t ∈ [0, 1], (x1, y1), (x2, y2) ∈ K×D, tS(x1, y1)+(1−t)S(x2, y2) = S(tx1+(1−
t)x2, ty1+(1−t)y2) and tT (x1, y1)+(1−t)T (x2, y2) = T (tx1+(1−t)x2, ty1+(1−t)y2).

Then Vw(F,G) is nonempty connected compact.

Proof. We define the set-valued mapping H : C∗\{0} × P ∗\{0} → 2K×D by

H(f, g) = Vw(f, g), ∀(f, g) ∈ C∗\{0} × P ∗\{0}.

By Theorem 3.1, we have H(f, g) ̸= ∅ for each (f, g) ∈ C∗\{0}×P ∗\{0}. Hence, Vw(F,G) ̸=
∅. It is clear that C∗\{0}×P ∗\{0} is convex and so it is connected. Now we prove that, for
each (f, g) ∈ C∗\{0} × P ∗\{0}, H(f, g) is a connected set. Suppose that (x1, y1), (x2, y2) ∈
H(f, g). Then (x1, y1) ∈ S(x1, y1)× T (x1, y1), (x2, y2) ∈ S(x2, y2)× T (x2, y2),

inf
z∈F (x1,y1,u)

f(z) ≥ 0, ∀u ∈ S(x1, y1),

inf
z∈G(y1,x1,v)

g(z) ≥ 0, ∀v ∈ T (x1, y1).
(4.1)

and 
inf

z∈F (x2,y2,u)
f(z) ≥ 0, ∀u ∈ S(x2, y2),

inf
z∈G(y2,x2,v)

g(z) ≥ 0, ∀v ∈ T (x2, y2).
(4.2)

By condition (vii), we have

tx1 + (1− t)x2 ∈ tS(x1, y1) + (1− t)S(x2, y2) = S(tx1 + (1− t)x2, ty1 + (1− t)y2)

and

ty1 + (1− t)y2 ∈ tT (x1, y1) + (1− t)T (x2, y2) = T (tx1 + (1− t)x2, ty1 + (1− t)y2).

For any z ∈ S(tx1 + (1− t)x2, ty1 + (1− t)y2), there exist z1 ∈ S(x1, y1) and z2 ∈ S(x2, y2)
such that z = tz1 + (1− t)z2 through the condition (vii). It follows from condition (iii) that

F (tx1 + (1− t)x2, ty1 + (1− t)y2, z) = F (tx1 + (1− t)x2, ty1 + (1− t)y2, tz1 + (1− t)z2)

⊂ tF (x1, y1, z1) + (1− t)F (x2, y2, z2) + C. (4.3)

Hence, for any r ∈ F (tx1 + (1 − t)x2, ty1 + (1 − t)y2, z), there exist r1 ∈ F (x1, y1, z1),
r2 ∈ F (x2, y2, z2) and c ∈ C such that r = tr1 + (1− t)r2 + c. It follows from (4.1) and (4.2)
that

f(r) = tf(r1)+ (1− t)f(r2)+ f(c) ≥ t inf
z∈F (x1,y1,z1)

f(z)+ (1− t) inf
z∈F (x2,y2,z2)

f(z)+ f(c) ≥ 0.

This means that

inf
r∈F (tx1+(1−t)x2,ty1+(1−t)y2,z)

f(r) ≥ 0, ∀z ∈ S(tx1 + (1− t)x2, ty1 + (1− t)y2).
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Similarly, we can prove that

inf
r∈G(ty1+(1−t)y2,tx1+(1−t)x2,z)

g(r) ≥ 0, ∀z ∈ T (tx1 + (1− t)x2, ty1 + (1− t)y2).

Hence, t(x1, y1) + (1 − t)(x2, y2) ∈ H(f, g). Thus H(f, g) is convex and therefore it is also
a connected set.

Now we show that H is upper semicontinuous on C∗\{0} × P ∗\{0}. Since Vw(f, g) ⊂
Vw(F,G) ⊂ K0 ×D0 and K0 ×D0 is compact, we only need to show that H is closed. Let
{(fα, gα), (xα, yα) : α ∈ I} ⊂ Graph(H) with (fα, gα) → (f0, g0) and (xα, yα) → (x0, y0),
where fα → f0 means that {fα} converges to f0 with respect to the strong topological
β(E∗, E) in E∗, gα → g0 means that {gα} converges to g0 with respect to the strong
topological β(Z∗, Z) in Z∗. Since (xα, yα) ∈ H(fα, gα), we have inf

z∈F (xα,yα,u)
fα(z) ≥ 0, ∀u ∈ S(xα, yα),

inf
z∈G(yα,xα,v)

gα(z) ≥ 0, ∀v ∈ T (xα, yα).
(4.4)

Note that W = {F (x, y, u) : x ∈ K, y ∈ D,u ∈ K} is a bounded subset of E. For each
y∗ ∈ E∗, we define

PW (y∗) := sup{|y∗(s)| : s ∈ W}.

It is easy to see that PW is a seminorm of E∗. For any ϵ > 0,

U = {y∗ ∈ E∗ : PW (y∗) < ϵ}

is a neighborhood of zero with respect to β(E∗, E) in E∗. Since fα → f0, there exists α0 ∈ I
such that fα − f0 ∈ U for all α ≥ α0. It follows that

PW (fα − f0) = sup{|(fα − f)(s)| : s ∈ W} < ε,∀α ≥ α0. (4.5)

We claim that
inf

z∈F (x0,y0,u)
f0(z) ≥ 0, ∀u ∈ S(x0, y0).

If not, there exist u0 ∈ S(x0, y0) and z0 ∈ F (x0, y0, u0) such that f0(z0) < 0. By the lower
semicontinuity of S, there exists uα ∈ S(xα, yα) such that uα → u0. It follows from (4.4)
that

inf
z∈F (xα,yα,uα)

fα(z) ≥ 0. (4.6)

Set U ′ = {z ∈ E : |f0(z)| < 1
2 |f0(z0)|}. Clearly, U ′ is a neighborhood of 0 in E. By the

C-lower semicontinuity of F , there exists a neighborhood V of (x0, y0, u0) such that

F (x′, y′, u′) ∩ (z0 + U ′ − C) ̸= ∅, ∀(x′, y′, u′) ∈ V. (4.7)

It follows from (xα, yα, uα) → (x0, y0, u0) and (4.7) that there exists α1 ≥ α0 such that

F (xα, yα, uα) ∩ (z0 + U ′ − C) ̸= ∅, ∀α ≥ α1.

Hence, there exists zα ∈ F (xα, yα, uα) such that zα ∈ z0+U ′−C and so there exist vα ∈ U ′

and cα ∈ C such that zα = z0 + vα − cα. Thus,

f0(zα) = f0(z0)+f0(vα)−f0(cα) < f0(z0)+
1

2
|f0(z0)|−f0(cα) =

1

2
f0(z0)−f0(cα) ≤

1

2
f0(z0)

(4.8)
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It follows from (4.6) and zα ∈ F (xα, yα, uα) that

fα(zα) ≥ inf
z∈F (xα,yα,uα)

fα(z) ≥ 0. (4.9)

By (4.5), we have
|(fα − f0)(zα)| < ϵ,∀α ≥ α1,

which implies that
lim [fα(zα)− f0(zα)] = 0. (4.10)

Now, (4.8) and (4.10) show that

limsup fα(zα) = limsup (fα(zα)− f0(zα) + f0(zα))

= lim (fα(zα)− f0(zα)) + limsup f0(zα)

≤ 1

2
f0(z0) < 0, (4.11)

which contradicts (4.9). In a similar way, we can prove that

inf
z∈G(y0,x0,v)

g0(z) ≥ 0, ∀v ∈ T (x0, y0).

Thus, {(f0, g0), (x0, y0)} ⊂ Graph(H) and so H is a closed mapping. By Lemma 2.14, for
each (x, y) ∈ A, F (x, y, S(x, y)) + C and G(y, x, T (x, y)) + P are convex. It follows from
Lemma 2.15 that

Vw (F,G) =
∪

(f,g)∈C∗\{0}×P∗\{0}

Vw (f, g).

By Lemma 2.13, Vw(F,G) is a connected set.
Next, we show that Vw(F,G) is compact. Let (xα, yα) ∈ Vw(F,G) with (xα, yα) →

(x0, y0). Then (xα, yα) ∈ S(xα, yα)× T (xα, yα) and{
F (xα, yα, u) ∩ (−intC) = ∅, ∀u ∈ S(xα, yα),
G (yα, xα, v) ∩ (−intP ) = ∅, ∀v ∈ T (xα, yα).

(4.12)

Due to the fact that S and T are upper semicontinuous with closed values, we have (x0, y0) ∈
S(x0, y0) × T (x0, y0). We claim that (x0, y0) ∈ Vw(F,G). If not, then there exists some
u0 ∈ S(x0, y0) such that

F (x0, y0, u0) ∩ (−intC) ̸= ∅, (4.13)

or there exists some v0 ∈ T (x0, y0) such that

G(y0, x0, v0) ∩ (−intP ) ̸= ∅. (4.14)

If (4.13) holds, then there exists some d0 ∈ F (x0, y0.u0) such that d0 ∈ −intC. This implies
that there exists some neighborhood U of zero such that d0 + U ⊂ −intC and so

d0 + U − C ⊂ −intC − C ⊂ −intC. (4.15)

Since S is lower semicontinuous on K ×D, there exists uα ∈ S(xα, yα) such that uα → u0.
By the C-lower semicontinuity of F , there exists some neighborhood V of (x0, y0, u0) such
that

F (x′, y′, u′) ∩ (d0 + U − C) ̸= ∅, ∀(x′, y′, u′) ∈ V. (4.16)
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It follows from (xα, yα, uα) → (x0, y0, u0) and (4.16) that there exists α0 such that

F (xα, yα, uα) ∩ (d0 + U − C) ̸= ∅, ∀α ≥ α0. (4.17)

By (4.15) and (4.17), we have

F (xα, yα, uα) ∩ (−intC) ̸= ∅, ∀α ≥ α0,

which contradicts (4.12). Thus, (x0, y0) ∈ Vw(F,G). If (4.14) holds, in a similar way, we can
show that (x0, y0) ∈ Vw(F,G). Therefore, Vw(F,G) is closed. Noting that the compactness
of K0 ×D0 and Vw(F,G) ⊂ K0 ×D0, we know that Vw(F,G) is compact. This completes
the proof.

Remark 4.2. (i) Theorem 4.1 generalizes Theorem 5.1 of [7] from the set-valued vector
equilibrium problem to the symmetric vector quasiequilibrium problem;

(ii) Theorem 4.1 generalizes Theorem 3.1 of [39] from the symmetric vector equilibrium
problem to the symmetric vector quasiequilibrium problem;

(iii) Theorem 4.1 also generalizes the corresponding connected results presented in [13]
and [23].

Now we give an example to illustrate Theorem 4.1.

Example 4.3. Let X = Y = E = Z = R, C = P = [0,+∞), and K = D = [0, 1]. For each
x ∈ K, y ∈ D, S(x, y) = [0, 1] and T (x, y) = [0, 1]. Define the set-valued mappings F and
G by

F (x, y, z) = [3x+ 2y − z, 11),∀(x, y, z) ∈ K ×D ×K

and
G(y, x, z) = [x+ 4y − 2z, 15],∀(y, x, z) ∈ D ×K ×D,

respectively. It is easy to see that all assumptions of Theorem 4.1 are satisfied. Let H be
the solution set of (SVQEP). Then it is easy to check that

H = {x̄, ȳ) ∈ K ×D : 3x̄+ 2ȳ ≥ 1, x̄+ 4ȳ ≥ 2}

and H is a nonempty connected compact subset of K ×D.

If for any (x, y) ∈ K × D, S(x, y) ≡ K and T (x, y) ≡ D, then from Theorem 4.1, we
have the following corollary.

Corollary 4.4. Assume that

(i) For each (x, y) ∈ K ×D,F (x, y, x) ⊂ C and G(y, x, y) ⊂ P ;

(ii) For each u ∈ K, F (·, ·, u) is C-lower semicontinuous on K ×D and for each v ∈ D,
G(·, ·, v) is P -lower semicontinuous on D ×K;

(iii) For each (x, y, u) ∈ K ×D ×K, F (x, y, ·) is C-quasiconvex, C-arcwise connected on
K and F (·, ·, u) is C-concave on K ×D and for each (x, y, v) ∈ D ×K ×D, G(x, y, ·)
is P -quasiconvex, P -arcwise connected on D and G(·, ·, v) is P -concave on D ×K;

(iv) {F (x, y, u) : x ∈ K, y ∈ D,u ∈ K} is a bounded subset in E and {G(x, y, u) : x ∈
D, y ∈ K,u ∈ D} is a bounded subset in Z;
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(v) If K × D is not compact, then there exists a nonempty compact subset K0 × D0 of
K ×D and a nonempty compact convex subset K1 ×D1 of K ×D such that for each
(x, y) ∈ (K ×D)\(K0 ×D0), there exists a x̄ ∈ K1 such that F (x, y, x̄) ∩ (−intC) ̸= ∅
or a ȳ ∈ D1 such that G(y, x, ȳ) ∩ (−intP ) ̸= ∅.

Then Vw(F,G) is nonempty connected compact.

Remark 4.5. Corollary 4.4 improves Theorem 3.1 of [39] in the following three aspects:

(i) The lower semicontinuity is relaxed to the C-lower semicontinuity;

(ii) The C-convex is relaxed to the C-arcwise connected;

(iii) The condition (v) of Corallary 4.4 is weaker than the condition (v) of Theorem 3.1
in [39].

Remark 4.6. In the corollary 4.4, the condition (iii) can be replaced by the following
condition:

(iii’) For each (x, y, u) ∈ K×D×K, F (x, y, ·) is C-convex on K and F (·, ·, u) is C-concave
on K ×D and for each (x, y, v) ∈ D×K ×D, G(x, y, ·) is P -convex on D and G(·, ·, v)
is P -concave on D ×K.
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