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with gk = ∇f(xk) and the following matrix Q∗
k+1 ∈ Rn×n,

Q∗
k+1 = θk+1I − θk+1

yks
T
k + sky

T
k

sTk yk
+

(
1 + θk+1

yTk yk
sTk yk

)
sks

T
k

sTk yk
, (1.4)

in which yk = gk+1−gk, and the scalar parameter θk+1 is determined based on the self-scaling
technique of Oren and Spedicato [13], that is,

θk+1 =
sTk sk
sTk yk

. (1.5)

Also, αk in (1.2) is a steplength to be computed by the Wolfe line search conditions [15],
i.e.,

f(xk + αkdk)− f(xk) ≤ δαk∇f(xk)
T dk, (1.6)

∇f(xk + αkdk)
T dk ≥ σ∇f(xk)

T dk, (1.7)

with 0 < δ < σ < 1.
In [2, 3, 4, 5], it has been shown that for the search direction dk+1 defined by (1.3) we

have

gTk+1dk+1 ≤ −
(gTk+1sk)

2

sTk yk
. (1.8)

Since from (1.7) we can write

sTk yk = sTk gk+1 − sTk gk ≥ −(1− σ)sTk gk > 0, (1.9)

inequality (1.8) ensures that the search directions (1.3) are descent directions. Also, Andrei’s
scaled nonlinear CG algorithms are numerically efficient. Specially, Andrei’s accelerated
scaled memoryless BFGS preconditioned CG algorithm [5] can be considered as one of the
most efficient CG methods.

In a recent effort to make correction in the convergence analysis of the scaled CG al-
gorithms proposed in [2, 3, 4, 5], Babaie-Kafaki [6] showed that the search directions (1.3)
satisfy the effective sufficient descent condition, i.e.,

gTk dk ≤ −c||gk||2, ∀k ≥ 0, (1.10)

where c is a positive constant. Here, in order to present another proof by obtaining a lower
bound for the eigenvalues of Q∗

k+1, we show that the search directions of Andrei’s scaled
nonlinear CG algorithms satisfy the sufficient descent condition (1.10).

2 On the Sufficient Descent Condition of the Scaled Conjugate Gra-
dient Algorithms

Although the descent condition is often adequate [8], sufficient descent condition may be
crucial in the convergence analysis of the CG methods [9, 11]. Also, satisfying in the sufficient
descent condition is considered as a strength of a CG method in the literature [10, 12]. Here,
to present our eigenvalue study on the sufficient descent condition of the search directions
of Andrei’s scaled CG algorithms, the following preliminaries are needed.

Definition 2.1 ([15]). A differentiable function f is said to be uniformly (or strongly)
convex on a nonempty open convex set S if there exists a positive constant µ such that

(∇f(x)−∇f(y))T (x− y) ≥ µ||x− y||2, ∀x, y ∈ S. (2.1)
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Assumption 2.2. The objective function f in (1.1) is continuously differentiable and its
gradient is Lipschitz continuous on a neighborhood N of the level set L defined by

L = {x ∈ Rn : f(x) ≤ f(x0)}, (2.2)

with x0 to be the starting point of the iterative method (1.2)-(1.3); that is, there exists a
positive constant L such that

||∇f(x)−∇f(y)|| ≤ L||x− y||, ∀x, y ∈ N . (2.3)

Suppose that the objective function f is uniformly convex on the neighborhood N of the
level set L defined by (2.2). Since the search directions (1.3) are descent directions, from
(1.6) the sequence {xk}k≥0 generated by the iterative method (1.2)-(1.3) is a subset of the
level set L and consequently, from (2.1) we have

sTk yk ≥ µ||sk||2. (2.4)

It is remarkable that the matrix Q∗
k+1 is determined based on the BFGS update [15]

in which the inverse Hessian is restarted as θk+1I in each iteration and so, no significant
storage is needed to develop a better approximation for the inverse Hessian. Since from (1.9)
the Wolfe conditions ensure that sTk yk > 0, Q∗

k+1 is positive definite [15] and consequently,
it is nonsingular. Based on the relationship between the BFGS and DFP updates [15], it
can be shown that the matrix W ∗

k+1 ∈ Rn×n defined by

W ∗
k+1 =

1

θk+1
I − 1

θk+1

sks
T
k

sTk sk
+

yky
T
k

sTk yk
, (2.5)

is the inverse of Q∗
k+1. Hence, W

∗
k+1 is also a positive definite matrix.

Now, based on the above argument, we prove the following theorem, ensuring satisfaction
of the sufficient descent condition (1.10) for the search directions (1.3).

Theorem 2.3. Suppose that Assumption 2.2 holds for the objective function f in (1.1).
For the iterative method (1.2)-(1.3), if f is uniformly convex on N and the steplength αk

is determined to fulfill the Wolfe line search conditions (1.6) and (1.7), then the search
directions (1.3) satisfy the sufficient descent condition (1.10).

Proof. Since Q∗
k+1 and W ∗

k+1 are n × n symmetric positive definite matrices, they have n
positive eigenvalues. To establish the theorem, at first we show that for all k ≥ 0, the
eigenvalues of Q∗

k+1 are bounded below by a positive constant.

From (1.9) we have sTk yk > 0 and consequently, sk ̸= 0 and yk ̸= 0. So, there exists a
set of mutually orthogonal unit vectors {ui

k}
n−2
i=1 such that

sTk u
i
k = yTk u

i
k = 0, i = 1, ..., n− 2,

which leads to
Q∗

k+1u
i
k = θk+1u

i
k, i = 1, ..., n− 2.

Thus, the vectors ui
k, i = 1, ..., n − 2, are the eigenvectors of Q∗

k+1 correspondent to the
eigenvalue θk+1. Let λk,n−1 and λk,n be the two remaining eigenvalues of Q∗

k+1. Since the
trace of a square matrix is equal to the summation of its eigenvalues, from (1.4) and (2.5)
we can write

tr(Q∗
k+1) = (n− 2)θk+1 +

sTk sk
sTk yk

(
1 + θk+1

yTk yk
sTk yk

)
= θk+1 + ...+ θk+1︸ ︷︷ ︸

(n−2) times

+λk,n−1 + λk,n, (2.6)
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and,

tr(W ∗
k+1) =

n− 1

θk+1
+

yTk yk
sTk yk

=
1

θk+1
+ ...+

1

θk+1︸ ︷︷ ︸
(n−2) times

+
1

λk,n−1
+

1

λk,n
. (2.7)

So, from (2.6) and (2.7) we get

λk,n−1 + λk,n = θk+1

(
1 + θk+1

yTk yk
sTk yk

)
, (2.8)

1

λk,n−1
+

1

λk,n
=

1

θk+1

(
1 + θk+1

yTk yk
sTk yk

)
,

and as a results,
λk,n−1λk,n = θ2k+1. (2.9)

Assume that λk,n ≤ λk,n−1. From (1.5), (2.3) and (2.4) we have

1

L
≤ θk+1 ≤ 1

µ
, (2.10)

which together with (2.3), (2.4), (2.8), (2.9) and (2.10) yields

λk,n = θ2k+1

1

λk,n−1
≥ θ2k+1

1

λk,n−1 + λk,n

=
sTk sk

sTk yk + θk+1yTk yk
≥ µ

L2 + Lµ
. (2.11)

Now, from (1.3) and (2.11), for all k ≥ 0 we have

dTk+1gk+1 = −gk+1Q
∗
k+1gk+1 ≤ −λk,n||gk+1||2 ≤ − µ

L2 + Lµ
||gk+1||2. (2.12)

So, to complete the proof it is enough to let c =
µ

L2 + Lµ
in (1.10).

Theorem 2.3 is necessary to complete the convergence analysis of the scaled CG algo-
rithms proposed in [2, 3, 4, 5]. A different proof for this theorem has been proposed in [6].
More precisely, in the proof of Theorem 1 of [6], the following sufficient descent condition
for the Andrei’s scaled CG algorithms has been established,

dTk+1gk+1 ≤ −c̄||gk+1||2, c̄ =
µ

L2 + (n− 1)Lµ
, ∀k ≥ 0. (2.13)

Since if n > 2, then c̄ <
µ

L2 + Lµ
, the newly established sufficient descent condition (2.12)

is stronger than the old one stated by (2.13).
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