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condition to ensure exact recovery was derived therein. Note that the concept of rank-
sparsity incoherence relates algebraically the sparsity pattern of a matrix and its row or
column spaces via an uncertainty principle. Throughout this paper, we assume by default
that the matrix under consideration is recoverable for sparse and low-rank components.

The heuristics of using the ℓ1-norm as the proxy of sparsity and the nuclear norm as the
surrogate of low-rank are widely used in many areas such as statistics and image processing
(see e.g. [5, 9, 15, 38]). This inspired the authors of [6] to accomplish the sparse and low-rank
recovery by solving the following convex programming problem:

min
A,B
{γ∥A∥ℓ1 + ∥B∥∗ : A+B = C} , (1.1)

where C ∈ Rm×n is the given matrix to be decomposed; A,B ∈ Rm×n represent, respec-
tively, the sparse and the low-rank components of C; ∥ · ∥ℓ1 is the ℓ1 norm defined by the
component-wise sum of absolute values of all entries; ∥·∥∗ is the nuclear norm defined by the
sum of all singular values; and γ > 0 is a trade-off constant for the sparse and the low-rank
components. Let A∗ and B∗ be the true sparse and low-rank components of C which are
to be recovered. Then, some sufficient conditions on A∗ and B∗ were proposed in [6] to
ensure that the unique solution of (1.1) is exactly (A∗, B∗) for a range of γ. We refer to [6,
Theorem 2] for the delineation of these conditions.

Therefore, efficient solvers for (1.1) become crucial for the task of recovering the sparse
and the low-rank components of C. In particular, it was suggested in [6] that generic interior-
point solvers such as SDPT3 [43] can be applied to solve the semi-definite programming
(SDP) reformulation of (1.1). For many cases, however, the matrices to be decomposed are
large-scale in dimensions, and thus the problem is beyond the applicable range of generic
interior-point codes. In fact, it is well known that on a personal computer, the interior-
point methods as implemented in SDPT3 or SeDuMi would have great difficulty in solving a
large scale SDP problem whose matrix variable has order larger than 5000 or the number of
equality constraints is more than 10000. In particular, for solving (1.1) via the interior-point
approach in [6], the dimension of the SDP reformulation is increased to (m+ n)× (m+ n)
as compared to m× n in (1.1), see (A.1) in [6].

Hence, just as mentioned in [6], it is of particular interest to develop efficient numerical
algorithms for solving (1.1), especially for large-scale cases. We point out that the linearly
constrained problem (1.1) is well-structured in the sense that its objective function is the
sum of two individual functions without coupled variables. In practice, it is advantageous
to exploit this structure in algorithmic design. In fact, the separable structure of (1.1) can
be readily exploited by the well known alternating direction method (ADM, [24]). In this
paper, we propose to use the ADM approach for solving (1.1) by taking full advantage of
its separable structure. As we will analyze in detail, the ADM approach is attractive for
(1.1) because the computational of each iteration is dominated by only one singular value
decomposition (SVD).

2 The ADM Approach

Roughly speaking, ADM is a practical variant of the classical augmented Lagrangian method
(ALM, see e.g., [30, 37]) for solving linearly constrained convex programming problem whose
objective function is the sum of two individual functions without coupled variables. The
ADM has found applications in many areas including convex programming, variational in-
equalities and image processing, see, e.g. [1, 8, 13, 14, 19, 20, 21, 22, 23, 26, 31, 42]. In
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particular, novel applications of ADM for solving some interesting optimization problems
have been discovered very recently, see e.g. [7, 14, 27, 35, 40, 46, 47, 48, 49].

The augmented Lagrangian function of (1.1) is

LA(A,B,Z, β) := γ∥A∥ℓ1 + ∥B∥∗ − ⟨Z,A+B − C⟩+ β

2
∥A+B − C∥2F ,

where Z ∈ Rm×n is the Lagrange multiplier of the linear constraint; β > 0 is a penalty
parameter for the violation of the linear constraint, ⟨·, ·⟩ denotes the standard trace inner
product, and ∥ · ∥F is the induced Frobenius norm. Clearly, the classical ALM is applicable,
and its iterative scheme starting from Zk is given as follows:{

(Ak+1, Bk+1)← argminA,B LA(A,B,Zk, β),
Zk+1 = Zk − β(Ak+1 +Bk+1 − C).

(2.1)

The direct application of ALM, however, treats (1.1) as a generic minimization problem and
performs the minimization with respect to A and B simultaneously.

In contrast, ADM splits the minimization task in (2.1) into two smaller and easier sub-
problems, where A and B are minimized separately. Specifically, the original ADM (see
[21]) solves the following problems to generate the new iterate:

Ak+1 = argmin
A

LA(A,Bk, Zk, β), (2.2a)

Bk+1 = argmin
B

LA(A
k+1, B, Zk, β), (2.2b)

Zk+1 = Zk − β(Ak+1 +Bk+1 − C). (2.2c)

By doing so, the subproblems (2.2a) and (2.2b) both have closed-form solutions. Thus,
iterative processes for solving the inner subproblems are avoided. This fact contributes
significantly to the computational efficiency of ADM for solving (1.1). We now elaborate on
strategies of solving the subproblems (2.2a) and (2.2b). First, problem (2.2a) turns out to
be a shrinkage problem (see e.g [41]) and its closed-form solution is given by:

Ak+1 = Zk/β −Bk + C − P
Ω

γ/β
∞

(Zk/β −Bk + C),

where P
Ω

γ/β
∞

(·) denotes the Euclidean projection onto the set:

Ωγ/β
∞ := {X ∈ Rm×n | − γ/β ≤ Xij ≤ γ/β}.

On the other hand, it is easy to verify that the problem (2.2b) is equivalent to the following
minimization problem:

Bk+1 = argmin
B

{
∥B∥∗ +

β

2
∥B − (C −Ak+1 + Zk/β)∥2F

}
. (2.3)

Then, according to [2, 34], Bk+1 admits the following explicit form:

Bk+1 = Uk+1diag(max{σk+1
i − 1/β, 0})(V k+1)T , (2.4)

where Uk+1 ∈ Rm×r, V k+1 ∈ Rn×r are obtained via the following SVD:

C −Ak+1 + Zk/β = Uk+1Σk+1(V k+1)T with Σk+1 = diag({σk+1
i }ri=1).

Based on above analysis, we now describe the procedure of applying the ADM to solve
(1.1). For given (Bk, Zk), the ADM takes the following steps to generate the new iterate
(Ak+1, Bk+1, Zk+1):
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Algorithm: the ADM for SLRMD problem:

Step 1. Generate Ak+1:

Ak+1 = Zk/β −Bk + C − P
Ω

γ/β
∞

(Zk/β −Bk + C).

Step 2 Generate Bk+1:

Bk+1 = Uk+1diag(max{σk+1
i − 1/β, 0})(V k+1)T ,

where Uk+1, V k+1 and {σk+1
i } are generated by the following SVD:

C −Ak+1 + Zk/β = Uk+1Σk+1(V k+1)T , with Σk+1 = diag({σk+1
i }ri=1).

Step 3. Update the multiplier:

Zk+1 = Zk − β(Ak+1 +Bk+1 − C).

Remark 1. It is easy to see that when the ADM approach is applied to solve (1.1), the
computation of each iteration is dominated by one SVD with the complexity O(n3), see
e.g. [25]. In particular, existing subroutines for efficient computation of SVD (e.g. [32, 34])
guarantees the efficiency of the proposed ADM approach for sparse and low-rank recovery
of large-scale matrices.

Remark 2. Some more general ADM methods are easy to be extended to solve the
SLRMD problem. For example, the ADM-based descent method developed in [45]. Since
the convergence of ADM type methods have been well studied in the literatures (see e.g.
[20, 21, 22, 23, 28, 45]), we omit the convergence analysis of the proposed ADM for (1.1).

3 Numerical Results

In this section, we report some preliminary numerical results to show the efficiency of the
proposed ADM for solving (1.1). All codes were written in MATLAB v7.8 (R2009a) and all
experiments were performed on a Lenovo laptop with Windows Vista Premium and Intel
Core 2 Duo CPU at 1.8 GHz and 2 GB of memory.

Let C = A∗ +B∗ be the available data, where A∗ and B∗ are, respectively, the original
sparse and low-rank matrices that we wish to recover. For convenience, we let γ = t/(1− t)
so that problem (1.1) can be equivalently transformed to

min
A,B
{t∥A∥ℓ1 + (1− t)∥B∥∗ : A+B = C} . (3.1)

The advantage of using the reformulation (3.1) is that the varying range of the parameter
t in (3.1) can be restricted into the finite interval (0, 1), while the parameter γ should be
within (0,+∞) in (1.1). Let (Ât, B̂t) be an approximate solution of (A∗, B∗) obtained by
the proposed ADM, and the quality of recovery be measured by

RelErr :=
∥(Ât, B̂t)− (A∗, B∗)∥F

∥(A∗, B∗)∥F
. (3.2)
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3.1 Experimental Settings

Given a small constant τ > 0, we define

difft := ∥Ât − Ât−τ∥F + ∥B̂t − B̂t−τ∥F . (3.3)

It is clear that B̂t approaches the zero matrix (and thus Ât approaches C) as t ↓ 0. On the
other hand, Ât approaches the zero matrix (and thus B̂t approaches C) as t ↑ 1. Therefore,
difft is approximately 0 if τ > 0 is sufficiently small and t is close to the boundary of
(0, 1). As suggested in [6], a suitable value of t should result in a recovery such that difft

is stabilized while t stays away from both 0 and 1. To determine a suitable value of t,
we set τ = 0.01 in (3.3), which, based on our experimental results, is sufficiently small for
measuring the sensitivity of (Ât, B̂t) with respect to t, and ran a set of experiments with
different combinations of sparsity ratios of A∗ and ranks of B∗. In the following, r and
spr represent, respectively, matrix rank and sparsity ratio. We tested two types of sparse
matrices: impulsive and Gaussian sparse matrices. The MATLAB scripts for generating
matrix C are as follows:

• B = randn(m,r)*randn(r,n); mgB = max(abs(B(:)));

• A = zeros(m,n); p = randperm(m*n); L = round(spr*m*n);

Impulsive sparse matrix: A(p(1:L)) = mgB.*sign(randn(L,1));

Gaussian sparse matrix: A(p(1:L)) = randn(L,1);

• C = A+B.

More specifically, we set m = n = 100 and tested the following cases:

(r, spr) = (1, 1%), (2, 2%), . . . , (20, 20%),

for which the decomposition problem is gradually more and more difficult.
Based on our experimental results, suitable values of t shrinks from [0.05, 0.2] to [0.09, 0.1]

as (r, spr) increases from (1, 1%) to (20, 20%). Therefore, we set t = 0.1 in our experiments
for m = n = 100. For m,n > 100, we selected t via trial and error. In the following,
we present experimental results for the mentioned two types of sparse matrices. In all
experiments, we simply set β = 0.25mn/∥C∥1 and terminated the iteration whenever the
relative change is less then the give tolerance tol > 0, i.e.,

RelChg :=
∥(Ak+1, Bk+1)− (Ak, Bk)∥F

∥(Ak, Bk)∥F + 1
≤ tol. (3.4)

3.2 Exact Recoverability

In this section, we present numerical results to demonstrate the exact recoverability of the
model (3.1). We set m = n = 100 and tol = 10−6. For each pair (r, spr) we ran 50 trials
and claimed successful recovery when RelErr ≤ ϵ for some ϵ > 0. The probability of exact
recovery is defined as the successful recovery rate. The following results show the recovery
of (3.1) when r varies from 1 to 40 and spr varies from 1% to 35%.
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Figure 1: Recoverability results from impulsive sparse matrices. Number of trials is 50.
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Figure 2: Recoverability results from Gaussian sparse matrices. Number of trials is 50.

It can be seen from Figures 1 and 2 that the model (3.1) shows exact recoverability
when either the sparsity ratio of A∗ or the rank of B∗ is suitably small. More specifically,
for impulsive sparse matrices, the resulting relative errors are as small as 10−5 for a large
number of test problems. When r is small, say r ≤ 5, ADM applied to (3.1) results in
faithful recoveries with spr as high as 35%. On the other hand, high accuracy recovery
is attainable for r as high as 30 when spr ≤ 5%. Comparing Figures 1 and 2, it is clear
that, under the same conditions of sparsity ratio and matrix rank, the probability of high
accuracy recovery is smaller when A∗ is a Gaussian sparse matrix. This is reasonable since
in general impulsive errors are easier to be eliminated than Gaussian errors.

3.3 Recovery Results

In this section, we present two classes of recovery results for both impulsive and Gaussian
sparse matrices. The first class of results are illustrative examples with m = n = 100, while
the the second class contains results of larger problems.

Figure 3 shows the average results of 100 trials for several pairs of (r, spr), where x-axes
represent the resulting relative errors (average those relative errors fall into [10−(i+1), 10−i])
and y-axes represent the number of trials ADM obtains relative errors in a corresponding
interval. It can be seen from Figure 3 that, for impulsive sparse matrices (left-hand side
plot), the resulting relative errors are mostly quite small and low-quality recovery appears
for less than 20% of the 100 random trials. In comparison, for Gaussian sparse matrices
(right-hand side plot), the resulting relative errors are mostly between 10−3 and 10−4, and it
is generally rather difficult to obtain higher accuracy unless both r and spr are quite small.

Some test results on larger problems are given in Tables 1 and 2. In these tests, we set
m = n = 100, 500, 1000 with both low-rank ratio (the rank of B∗ divided by min(m,n)) and
sparsity ratio (the number of nonzero elements of A∗ divided by mn) as large as 10%. The
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Figure 3: Recovery results of 100 trials. Left: results recovered from impulsive sparse
matrices; Right: results recovered from Gaussian sparse matrices. In both plots, x-axes
represent relative error of recovery (average those relative errors fall into [10−(i+1), 10−i))
and y-axes represent the number of trials ADM results to a relative error in a corresponding
interval.

algorithm was terminated by relative change defined in (3.4) with tol = 10−4. Let (Ât, B̂t)
be the recovered results from (3.1) with parameter t. We define the relative error to the
original sparse matrix A∗ by

ErrSP = ∥Ât −A∗∥F /∥A∗∥F .

Similarly, the relative error to the original low-rank matrix B∗ is defined by

ErrLR = ∥B̂t −B∗∥F /∥B∗∥F .

The total relative error (RelErr) between (Ât, B̂t) and (A∗, B∗) is as defined in (3.2). The
recovered results from both impulsive and Gaussian sparse matrices are, respectively, given
in Tables 1 and 2, where the number of iteration used by ADM (Iter), the computing time
in seconds (Time) along with the resulting relative errors (ErrSP, ErrLR and RelErr) are
given.

Table 1: Recovered results: A∗ is impulsive sparse.
m = n t r spr ErrSP ErrLR RelErr Iter Time
100 0.1 10 5% 5.8e-5 2.4e-4 1.6e-4 13 0.12

10% 1.4e-4 3.1e-4 2.1e-4 17 0.17
500 0.05 10 5% 3.3e-5 1.9e-5 2.9e-5 10 2.7

10% 5.0e-5 5.1e-5 5.0e-5 11 2.8
50 5% 4.4e-5 2.7e-4 3.8e-5 13 3.9

10% 5.2e-5 5.8e-5 5.4e-5 15 3.8
1000 0.05 50 5% 2.8e-5 1.8e-5 2.4e-5 12 23

10% 5.5e-5 5.4e-5 5.5e-5 13 25
100 5% 4.6e-5 3.6e-5 4.2e-5 14 27

10% 7.7e-5 7.4e-5 7.6e-5 16 31



174 X. YUAN AND J. YANG

Table 2: Recovered results: A∗ is Gaussian sparse.
m = n t r spr ErrSP ErrLR RelErr Iter Time
100 0.1 10 5% 3.5e-2 1.3e-3 2.9e-3 48 0.44

10% 1.5e-2 8.3e-4 1.8e-3 82 0.77
500 0.05 10 5% 6.2e-3 9.3e-5 4.5e-4 55 14

10% 6.4e-3 1.5e-4 6.7e-4 57 15
50 5% 2.2e-2 3.3e-4 7.7e-4 71 18

10% 1.7e-2 3.8e-4 8.4e-4 89 23
1000 0.05 50 5% 1.8e-2 2.0e-4 6.1e-4 69 135

10% 1.6e-2 3.2e-4 7.7e-4 82 165
100 5% 2.8e-2 3.0e-4 7.0e-4 84 165

10% 2.5e-2 5.0e-4 9.3e-4 107 212

It can be seen from the results given in Tables 1 and 2 that the ADM algorithm performs
very stably. More specifically, for the impulsive noise case, the iteration numbers required by
ADM to attain the preset stopping tolerance is at most 17, while the resulting relative errors
to the true sparse and low-rank components are of the orders 10−4 ∼ 10−5. The consumed
CPU time is about 30 seconds for m and n as large as 1000. For the Gaussian noise case,
the corresponding results are generally worse than those of the impulsive noise case. More
specifically, the required iteration numbers are increased to about 100, and the resulting
relative errors are larger than those for the impulsive noise. These results also imply the
fact that the problem (3.1) becomes harder when the sparse component is subjected to
Gaussian distribution, rather than Bernoulli distribution.

3.4 Other Experimental Results

In the ALM scheme (2.1), the penalty parameter β plays an important role. Theoretically,
larger β leads to faster convergence. In particular, superlinear convergence of the ALM can
be achieved if β → +∞, even though this scenario should be avoided in practice due to
that extremely large values of β lead to numerical difficulty empirically. Since the ADM
framework (2.2a)-(2.2c) is a practical variant of the ALM, its practical performance is also
dependent on the value of β. In this subsection, we conduct some experiments to illustrate
the performance of ADM with different values of β. Specifically, we tested two types of data
generated as in subsection 3.1. For illustrative purpose, we only tested the case m = n = 500
with ADM terminated by (3.4). The test results of ADM with different values of β are given
in Table 3.

It can be seen from Table 3 that ADM performs very well with the data dependent choice
β0 = 0.25mn/∥C∥1. Specifically, ADM obtained solutions with relative errors to the true
sparse and low-rank matrices (defined in (3.2)) in the order of 10−5 ∼ 10−7 for both types of
tested data, and it usually requires more iterations when more extreme values of β are used.
These results also indicate that the ADM for the sparse and low-rank matrix decomposition
problem (1.1) is somehow sensitive to the choice of β. We point out that this data-dependent
choice of β is by no means optimal due to our preliminary experiments. For various problems,
the optimal choice of β could be different, see e.g. [49] for intensive discussions on low-rank
matrix completion problems. In fact, the value of β can be determined by some self-adaptive
rules, see e.g. [26, 28, 29, 31].

Next, we report some experimental results of the model (3.1) with various values of t.
i.e., t= 0.03, 0.06, 0.09 and 0.12. We set β = 0.25mn/∥C∥1 and tested the same sets of data
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Table 3: Test results of different β values. RelErr is defined in (3.2).
m = n = 500, t = 0.05, tol = 10−6, β0 = 0.25mn/∥C∥1

β 0.1β0 β0 10β0 50β0

Sparse Matrix Type: Impulsive

r spr Iter RelErr Iter RelErr Iter RelErr Iter RelErr
10 5% 51 4.58e-6 14 3.70e-7 24 6.32e-7 133 2.68e-7

10% 69 6.06e-6 16 2.95e-7 25 5.18e-7 114 6.87e-7
50 5% 130 1.42e-5 20 8.61e-7 32 4.72e-7 147 4.76e-7

10% 190 2.39e-5 26 2.16e-6 36 8.40e-7 140 1.60e-6

Sparse Matrix Type: Gaussian

r spr Iter RelErr Iter RelErr Iter RelErr Iter RelErr
10 5% 204 1.70e-4 80 3.97e-5 164 3.80e-6 864 6.98e-7

10% 275 1.65e-4 82 4.46e-5 165 8.62e-6 931 2.25e-7
50 5% 371 1.57e-4 129 3.92e-5 171 7.09e-6 824 9.81e-7

10% 465 1.87e-4 188 2.97e-5 177 7.72e-6 834 5.59e-7

with m = n = 500. The ADM is terminated by (3.4) with tol = 10−6, and the tested results
are given in Table 4.

Table 4: Test results of different t values. RelErr is defined in (3.2).
m = n = 500, tol = 10−6, β = 0.25mn/∥C∥1

t 0.03 0.06 0.09 0.12

Sparse Matrix Type: Impulsive

r spr Iter RelErr Iter RelErr Iter RelRelErr Iter RelErr
10 5% 36 2.33e-7 22 4.13e-7 20 9.02e-7 31 1.27e-6

10% 37 3.68e-7 24 3.27e-7 28 1.53e-6 108 1.19e-2
50 5% 52 5.79e-7 30 6.44e-7 34 7.47e-7 134 6.62e-7

10% 56 8.96e-7 35 1.13e-6 77 1.63e-3 197 1.20e-2

Sparse Matrix Type: Gaussian

r spr Iter RelErr Iter RelErr Iter RelErr Iter RelErr
10 5% 85 1.67e-5 75 4.15e-5 94 4.72e-5 188 4.80e-5

10% 76 3.08e-5 111 3.64e-5 223 2.90e-5 231 6.63e-2
50 5% 137 2.25e-5 149 3.51e-5 195 4.89e-5 452 5.04e-4

10% 151 2.74e-5 228 3.01e-5 371 4.34e-3 503 1.21e-2

It can be seen from these results that the model (3.1) ensures faithful recovery for a wide
range values of t. Specifically, for the tested cases where the matrices to be decomposed
have highly sparse and low rank components, high-quality reconstruction can be ensured for
t around 0.03 ∼ 0.06. We also observed that ADM works quite well for the tested values of t,
and ADM usually takes more iterations to achieve the prescribed accuracy when t becomes
larger or the sparse component becomes less sparse. Via numerical experiments, we also
find that the model (3.1) becomes not suitable for high-quality recovery when t is beyond
the interval [0.03, 0.12].

Clearly, the main cost at each iteration of the ADM framework (2.2a)-(2.2c) for solving
(1.1) lies in the computation of B in (2.4). In our implementation, we simply computed the
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full SVD of the matrix C − Ak+1 + Zk/β at each iteration. However, by taking a closer
examination on the formula (2.4), we found that only those singular values of the matrix
C − Ak+1 + Zk/β bigger than 1/β and the corresponding singular vectors are utilized in
the computation of Bk+1. Therefore, it is helpful if this property can be utilized in the
algorithmic design. Next we examine the variation of the rank of B with respect to the
iterative procedure of ADM. We set m = n = 1000 and tested impulsive sparse matrices
data. The same as before, we set β = 0.25mn/∥C∥1 and terminated ADM by (3.4) with
tol = 10−6. The test results are plotted in Figure 4.
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Figure 4: Changing behavior of the rank of B.

It can be seen form Figure 4 that, for impulsive sparse matrix data, the ADM is able
to recover the true rank of B∗ within a few iterations (about 16 iterations for the tested
cases). However, the results for Gaussian sparse matrices data (which are not plotted here
due to reasons given below) are generally different. For Gaussian sparse matrices data,
the solutions of model (3.1) do not have identical ranks to the true low-rank matrices, even
though they have small relative errors to the true low-rank matrices (RelErr is in the order of
10−5 ∼ 10−6). This is imaginable: small Gaussian errors are more difficult to be eliminated
than large impulsive noise, and furthermore, the rank of a matrix is very sensitive to small
perturbations of its entries. In practical applications, some post processing techniques to
numerical solutions of (3.1) are highly recommended if the sparse component have many
entries corrupted by Gaussian noise. It is also preferable to develop such an algorithm that
is capable of estimating the true ranks of the low-rank matrices approximately based on the
information accumulated during iterations.

4 Conclusions

This paper mainly emphasizes the applicability of the alternating direction method (ADM)
for solving the sparse and low-rank matrix decomposition (SLRMD) problem, and thus
numerically reinforces the work [3, 6]. It has been shown that the existing ADM type
methods can be extended to solve the SLRMD problem, and the implementation is pretty
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easy since all the resulting subproblems have closed-form solutions. Preliminary numerical
results exhibit affirmatively the efficiency of ADM for the SLRMD problem.
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