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where Ω is defined as (1.2). If θ1(x, y) or θ2(x, y) is weakly coupled, i.e., if the function can
be expressed as f(x) + s(y) + ∥Px+Gy∥22, then (1.3) has the same structure as (1.1).

By attaching a Lagrange multiplier vector λ ∈ Rr to the linear constraints Ax+By = b,
problem (1.1) can be rewritten in the following form:

Find ω∗ ∈W ∗, such that (ω − ω∗)TF (ω∗) ≥ 0, ∀ ω ∈W, (1.4)

where ω = (x, y, λ); W = X × Y ×Rr; andW ∗ denotes the solution set of (1.4), and

F (ω) = F (x, y, λ) =

 h(x) +Gy −ATλ
g(x, y)−BTλ
Ax+By − b

 .

When G = 0 and g(x, y) = g(y), problem (1.1) reduces to the variational inequality with
separable structure. A powerful tool for solving such a problem is the alternating direction
method (ADM for short); see e.g., [2], [13], [15], [16], [17], [19], [22]. For given current iterate
(xk, yk, λk), ADM generates x̃k ∈ X and ỹk ∈ Y by solving the following subproblems

(x− x̃k)
T {(h(x̃k) +Gyk −AT (λk −H(Ax̃k +Byk − b))} ≥ 0, ∀x ∈ X (1.5)

and

(y − ỹk)
T {g(x̃k, ỹk)−BT (λk −H(Ax̃k +Bỹk − b))} ≥ 0, ∀y ∈ Y, (1.6)

respectively; and sets
λ̃k = λk −H(Ax̃k +Bỹk − b),

where H ∈ Rr×r is a selected symmetric positive definite matrix. The point (x̃k, ỹk, λ̃k) can
be used as the next iterate directly, or be used to produce the next iterate through a simple
correction step.

Per iteration, the main task of the ADM is to solve the subproblems. In order to make the
subproblems easily solvable, some proximal alternating directions methods (PADM) were
proposed; see e.g., [4], [17], [18], [20], [23]. The PADM generates the next iterate via solving

(x− x̃k)
T {(h(x̃k) +Gyk −AT (λk −H(Ax̃k +Byk − b)) +R(x̃k − xk)} ≥ 0, ∀x ∈ X,

(y − ỹk)
T {g(x̃k, ỹk)−BT (λk −H(Ax̃k +Bỹk − b)) + S(ỹk − yk)} ≥ 0, ∀y ∈ Y,

and updating the multiplier via

λ̃k = λk −H(Ax̃k +Bỹk − b),

where R and S are symmetric positive definite matrices. Note that the mappings involved in
the subproblems are strongly monotone, provided that the original mappings are monotone.
As a consequence, these subproblems are easier than those in (1.4), and some efficient
numerical methods are ready to solve them.

ADM and PADM have been studied extensively for separable optimization problems and
variational inequalities, and attract more and more attention in application fields. However,
there are few results for the more general problem considered in this paper, i.e., a weakly
coupled VI. In this paper, we utilize the PADM to solve the weakly coupled VIs with
the structure as (1.1). In Section 2, we present the PADM and in Section 3, we give
some contractive properties, which are basis for our convergence analysis. In Section 4, we
prove the convergence of this method. We report some numerical results in Section 5 and
conclude the paper with some conclusions in Section 6. Throughout the paper we denote
∥x∥ =

√
xTx as the Euclidean-norm and ∥x∥M =

√
xTMx as M -norm for given symmetric

positive definite matrix M .
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2 The Method

For convenience, we denote

M :=

 I
BTHB +Q

H−1

 , (2.1)

which is symmetric positive definite due to the fact that the matrices Q and H are both
symmetric positive definite.

Let

F (u) :=

(
f(x, y)
g(x, y)

)
:=

(
h(x) +Gy
g(x, y)

)
. (2.2)

In the sequel, we make the following assumption:

Assumption:

(1) F is a monotone operator on Ω;

(2) The solution set W ∗ is nonempty.

We are now ready to describe our proximal alternating directions method.

Proximal Alternating Directions Method(PADM):

Step 1. Given ε > 0, ω0 = (x0, y0, λ0), set k = 0.

Step 2. Find x̃k such that

(x− x̃k)
T {fk(x̃k) + (x̃k − xk)} ≥ 0, ∀x ∈ X, (2.3)

with fixed yk and λk, where

fk(x) := h(x) +Gyk −AT (λk −H(Ax+Byk − b)).

Step 3. Find ỹk such that

(y − ỹk)
T {gk(ỹk) +Q(ỹk − yk)} ≥ 0, ∀y ∈ Y, (2.4)

with fixed x̃k and λk, where

gk(y) := g(x̃k, y)−BT (λk −H(Ax̃k +By − b)).

Step 4. Compute λ̃k via
λ̃k = λk −H(Ax̃k +Bỹk − b). (2.5)

Step 5. Generate the next iterate via

ωk+1 := ωk − αk(ωk − ω̃k),

with

αk :=
ϕ(ωk, ω̃k)

∥ωk − ω̃k∥2M
, (2.6)
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and

ϕ(ωk, ω̃k) :=
1

4
∥xk − x̃k∥2 +

1

2
∥λk − λ̃k∥2H−1

+
1

2
∥yk − ỹk∥2(2Q+BTHB−GTG) +

1

2
∥Ax̃k +Byk − b∥2H .

(2.7)

Step 6. If ∥ωk − ω̃k∥ < ε, stop; otherwise set k := k + 1, and go to Step 2.

Remark 1: In this algorithm, for convenience of presentation, we only consider the case
that the proximal stepsize, i.e., the coefficient of the proximal term, is a constant 1. In fact,
we can set the stepsize to be δk, where τ ≥ δk ≥ γ, where τ > 0 and γ > 0 are two positive
constants. That is, if we change the subproblems in Step 2 and Step 3 to the following
problems

(x− x̃k)
T {fk(x̃k) + δk(x̃k − xk)} ≥ 0, ∀x ∈ X,

and

(y − ỹk)
T {gk(ỹk) + δkQ(ỹk − yk)} ≥ 0, ∀y ∈ Y,

respectively, we can obtain the same convergence results easily by similar analysis. In real
applications, using variable stepsize suitably can enhance the performance of the algorithm,
and how to update δk at each iteration deserves our further research.

Remark 2: In the definition of ϕ(ωk, ω̃k), 2Q+BTHB−GTG should be symmetric positive
definite. In fact, it is not difficult to choose the matrices Q and H to make it symmetric
positive definite.

Remark 3: Here we prefer to use the decent direction ωk − ω̃k to get the next iterate. We
call it a correction step. For more detail on corrected step, we prefer [16] and [23].

Remark 4: It is easy to prove that αk ≥ 1
4 if we choose Q such that Q−GTG is semidefinite

positive.

3 Contractive Properties

In this section, we list some contractive properties of the sequence generated by the proposed
method.

Lemma 3.1. Let ω̃k = (x̃k, ỹk, λ̃k) be generated by (2.3)-(2.5). Then for any ω∗ ∈W ∗, we
have

(λk − λ̃k)
TH−1(λ̃k − λ∗) + (x̃k − x∗)T (xk − x̃k) + (ỹk − y∗)TQ(yk − ỹk)

≥ (x̃k − x∗)T (G(yk − ỹk) +ATH(Byk −Bỹk)).
(3.1)

Proof. Since x∗ ∈ X, y∗ ∈ Y, it follows from (2.3) and (2.4) that

(x∗ − x̃k)
T (f(x̃k, yk)−AT (λk −H(Ax̃k +Byk − b)) + x̃k − xk) ≥ 0 (3.2)

and

(y∗ − ỹk)
T (g(x̃k, ỹk)−BT (λk −H(Ax̃k +Bỹk − b)) +Q(ỹk − yk)) ≥ 0, (3.3)
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where f(x, y) is defined as (2.2). On the other hand, since (x∗, y∗, λ∗) ∈W ∗, x̃k ∈ X, ỹk ∈
Y, we also have

(x̃k − x∗)T (f(x∗, y∗)−ATλ∗) ≥ 0 (3.4)

and

(ỹk − y∗)T (g(x∗, y∗)−ATλ∗) ≥ 0. (3.5)

Adding (3.2) and (3.4), (3.3) and (3.5), we get

(x̃k − x∗)T (f(x∗, y∗)− f(x̃k, yk))

− (x̃k − x∗)T (ATλ∗ −AT (λk −H(Ax̃k +Byk − b))− (xk − x̃k)) ≥ 0

and

(ỹk − y∗)T (g(x∗, y∗)− g(x̃k, ỹk))

− (ỹk − y∗)T (BTλ∗ −BT (λk −H(Ax̃k +Bỹk − b))−Q(yk − ỹk)) ≥ 0

respectively. Recall that (f(x, y), g(x, y))T is monotone on Ω, i.e.,

(x̃k − x∗)T (f(x̃k, ỹk)− f(x∗, y∗)) ≥ 0,

and

(ỹk − y∗)T (g(x̃k, ỹk)− g(x∗, y∗)) ≥ 0,

and f(x̃k, yk)− f(x̃k, ỹk) = G(yk − ỹk), it follows that

(x̃k − x∗)TAT (λ̃k − λ∗) + (x̃k − x∗)T (xk − x̃k)

≥ (x̃k − x∗)T (G(yk − ỹk) +ATH(Byk −Bỹk))
(3.6)

and

(ỹk − y∗)TBT (λ̃k − λ∗) + (ỹk − y∗)TQ(yk − ỹk) ≥ 0. (3.7)

Adding (3.6) and (3.7) and using Ax∗ +By∗ = b and (2.5), we get (3.1).

Lemma 3.2. Let ω̃k = (x̃k, ỹk, λ̃k) be generated by (2.3)-(2.5), then for any ω∗ ∈ W ∗, we
have

(ω̃k − ω∗)TM(ωk − ω̃k) ≥ (λk − λ̃k)
T (Byk −Bỹk) + (x̃k − x∗)TG(yk − ỹk), (3.8)

which implies
(ωk − ω∗)TM(ωk − ω̃k) ≥ ϕ(ωk, ω̃k),

where M and ϕ(ωk, ω̃k) are defined in (2.1) and (2.7) respectively.

Proof. Adding (ỹk − y∗)TBTH(Byk −Bỹk) to both sides of (3.1), we get

(ω̃k − ω∗)TM(ωk − ω̃k)

≥ (x̃k − x∗)TG(yk − ỹk) + (x̃k − x∗)TATH(Byk −Bỹk))

+ (ỹk − y∗)TBTH(Byk −Bỹk)

= (λk − λ̃k)
T (Byk −Bỹk) + (x̃k − x∗)TG(yk − ỹk).
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Consequently,

(ωk − ω∗)TM(ωk − ω̃k)

= (ωk − ω̃k + ω̃k − ω∗)TM(ωk − ω̃k)

= ∥ωk − ω̃k∥2M + (ω̃k − ω∗)TM(ωk − ω̃k)

≥ ∥ωk − ω̃k∥2M + (λk − λ̃k)
T (Byk −Bỹk) + (x̃k − x∗)TG(yk − ỹk)

=
1

2
∥xk − x̃k∥2 +

1

2
∥yk − ỹk∥2(Q+BTHB) +

1

2
∥λk − λ̃k∥2H−1

+
1

2
(∥xk − x∗∥2 + ∥x∗ − x̃k∥2) + (xk − x∗)T (x∗ − x̃k)

+
1

2
(yk − ỹk)

TBTHB(yk − ỹk) +
1

2
∥λk − λ̃k∥2H−1 + (λk − λ̃k)

T (Byk −Bỹk)

+
1

2
(yk − ỹk)

TQ(yk − ỹk) + (x̃k − x∗)TG(yk − ỹk)

≥ 1

2
∥xk − x̃k∥2 +

1

2
∥yk − ỹk∥2(Q+BTHB) +

1

2
∥λk − λ̃k∥2H−1

+
1

2
(∥xk − x∗∥2 + ∥x∗ − x̃k∥2) + (xk − x∗)T (x∗ − x̃k) +

1

2
∥Ax̃k +Byk − b∥2H

+
1

2
(yk − ỹk)

TQ(yk − ỹk)−
1

2
(∥x̃k − x∗∥2 + ∥G(yk − ỹk)∥2)

≥ 1

2
∥xk − x̃k∥2 +

1

2
∥xk − x∗∥2 − 1

4
∥xk − x̃k∥2 +

1

2
∥λk − λ̃k∥2H−1

+
1

2
(yk − ỹk)

T (2Q+BTHB −GTG)(yk − ỹk) +
1

2
∥Ax̃k +Byk − b∥2H

≥ 1

4
∥xk − x̃k∥2 +

1

2
∥λk − λ̃k∥2H−1 +

1

2
∥yk − ỹk∥2(2Q+BTHB−GTG)

+
1

2
∥Ax̃k +Byk − b∥2H

= ϕ(ωk, ω̃k)

which completes the proof.

It is obvious that −(ωk− ω̃k) is a descent direction of the unknown function 1
2∥ω−ω

∗∥2M
at ωk. Along this direction, we can choose an approximate step size to make 1

2∥ω − ω∗∥2M
decrease.

Theorem 3.3. Let ω̃k = (x̃k, ỹk, λ̃k) be generated by (2.3)-(2.5), and

ωk+1 = ωk − αk(ωk − ω̃k),

where αk is defined as (2.6). Then for any ω∗ ∈W ∗,

∥ωk+1 − ω∗∥2M ≤ ∥ωk − ω∗∥2M − αkϕ(ωk, ω̃k).

Proof. Let
ωk+1(α) = ωk − α(ωk − ω̃k),

then

∥ωk+1(α)− ω∗∥2M = ∥ωk − α(ωk − ω̃k)− ω∗∥2M
= ∥ωk − ω∗∥2M + α2∥ωk − ω̃k∥2M − 2α(ωk − ω∗)TM(ωk − ω̃k)

≤ ∥ωk − ω∗∥2M + α2∥ωk − ω̃k∥2M − 2αϕ(ωk, ω̃k).
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So

∥ωk − ω∗∥2M − ∥ωk+1(α)− ω∗∥2M ≥ −α2∥ωk − ω̃k∥2M + 2αϕ(ωk, ω̃k). (3.9)

Define
ψ(α) = −α2∥ωk − ω̃k∥2M + 2αϕ(ωk, ω̃k).

When

α =
ϕ(ωk, ω̃k)

∥ωk − ω̃k∥2M
, (3.10)

ψ(α) attains its maximum. Substituting (3.10) into (3.9), we can easily get

∥ωk+1 − ω∗∥2M ≤ ∥ωk − ω∗∥2M − α∗ϕ(ωk, ω̃k).

From Theorem 3.3, we can immediately draw the following conclusions:

Corollary 3.4. Let ω̃k = (x̃k, ỹk, λ̃k) be generated by (2.3)-(2.5) and for any ω∗ ∈W ∗, we
have

(1) The sequence ∥ωk − ω∗∥M is non-increasing.

(2)
lim

k→+∞
ϕ(ωk, ω̃k) = 0,

which implies
lim

k→+∞
∥ωk − ω̃k∥M = 0.

(3) The sequences {ωk } and {ω̃k} are both bounded.

4 Convergence

Now we give the convergence result.

Theorem 4.1. Let {ωk} be the sequence generated by the proposed algorithm, then {ωk}
converges to some ω∗ ∈W ∗.

Proof. According to Corollary 3.4, we know that

lim
k→+∞

∥xk − x̃k∥ = lim
k→+∞

∥yk − ỹk∥ = lim
k→+∞

∥λk − λ̃k∥ = 0.

From (2.3), (2.4) and (2.5), we have

limk→+∞(x− x̃k)
T (f(x̃k, ỹk)−AT λ̃k) ≥ 0, x ∈ X, (4.1)

limk→+∞(y − ỹk)
T (g(x̃k, ỹk)−BT λ̃k) ≥ 0, y ∈ Y. (4.2)

Since {ω̃k} is bounded from Corollary 3.4, it has at least one cluster point. Let ω∗ be the
cluster point of {ω̃k}, and let {ω̃ki} be the subsequence converging to it, i.e.,

lim
ki→+∞

ω̃ki = ω∗.
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It follows from (4.1) and (4.2) that

lim
ki→+∞

(x− x̃ki)
T (f(x̃ki , ỹki)−AT λ̃ki) ≥ 0, x ∈ X,

lim
ki→+∞

(y − ỹki)
T (g(x̃ki , ỹki)−BT λ̃ki) ≥ 0, y ∈ Y,

lim
ki→+∞

(Ax̃ki +Bỹki − b) = 0.

Consequently,

(x− x∗)T (f(x∗, y∗)−ATλ∗) ≥ 0, x ∈ X,

(y − y∗)T (g(x∗, y∗)−BTλ∗) ≥ 0, y ∈ Y,

Ax∗ +By∗ − b = 0.

which implies ω∗ ∈ W ∗. Since limk→+∞ ∥ωk − ω̃k∥M = 0 and limki→+∞ ω̃ki
= ω∗, for any

ε > 0, there exists an integer N such that ∥ωN − ω̃N∥M < ε
2 and ∥ω̃N −ω∗∥M < ε

2 . For any
k > N,

∥ωk − ω∗∥M ≤ ∥ωN − ω∗∥M ≤ ∥ωN − ω̃N∥M + ∥ω̃N − ω∗∥M ≤ ε,

which implies that the sequence {ωk} converges to ω∗ ∈W ∗.

5 Numerical Experiments

In this section, we implement the PADM to solve some weakly coupled VIs. We code our
algorithm in Matlab and all the tests were run on a lenovo notebook.

Example 1: The first example is a GNEP taken from [10], which consists of 2 players.
The first player controls the two-dimensional decision variable x = (x1, x2), whereas the
second player has a one-dimensional decision variable y ∈ R. The optimization problems of
the players are given by

min θ1(x, y) = x21 + x1x2 + x22 + (x1 + x2)y − 25x1 − 38x2

s.t. x1 + 2x2 − y ≤ 14

3x1 + 2x2 + y ≤ 30

x1 ≥ 0, x2 ≥ 0

and

min θ2(x, y) = y2 + (x1 + x2)y − 25y

s.t. x1 + 2x2 − y ≤ 14

3x1 + 2x2 + y ≤ 30

y ≥ 0,

respectively. This problem has an infinite number of solutions given by

{(t, 11− t, 8− t) | t ∈ [0, 2]}

and the normalized equilibrium is (0, 11, 8). It is obvious that the inequality constraints are
active at all the solutions of the problem. Therefore the problem with equality constraints
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has the same solution. We consider the following GNEP:

min θ1(x, y) = x21 + x1x2 + x22 + (x1 + x2)y − 25x1 − 38x2

s.t. x1 + 2x2 − y = 14

3x1 + 2x2 + y = 30

x1 ≥ 0, x2 ≥ 0

and

min θ2(x, y) = y2 + (x1 + x2)y − 25y

s.t. x1 + 2x2 − y = 14

3x1 + 2x2 + y = 30

y ≥ 0.

Let ∇xθ1(x, y) = h(x) +Gy, ∇yθ2(x, y) = g(x, y), where

h(x) =

(
2 1
1 2

)
x−

(
25
38

)
, Gy =

(
1
1

)
y

and g(x, y) = 2y + (1, 1)x − 25 in this problem. In the experiments, we set Q = 10,
the maximal number of iterations is 1000 and the stopping criterion is ∥ωk − ω̃k∥ ≤ 10−6.
Because of the nonnegativity of all the variables, solving subproblems (2.3) and (2.4) reduces
to solving a linear complementarity problems (LCP). In our tests the LCP is solved by the
MATLAB code pathlcp.m [11]. x = (1, 1), y = 1 and λ = (1, 1) are used as the starting
point. Via 24 iterations, we get a solution (0, 11, 8), and ∥ωk − ω̃k∥ = 8.9899e − 007. If we
adjust the step size αk to γαk as in [23] by setting γ = 1.5, the iteration number reduces
to 19. In addition, we test the problem with different starting points generated by Matlab
randomly, the solution (0, 11, 8) can be obtained in about 19 iterations.

Example 2: Consider the following GNEP:

min θ1(x, y) = x2 +
8

3
xy − 34y

s.t. x+ y = 15

0 ≤ x ≤ 10

and

min θ2(x, y) = y2 +
5

4
xy − 24.25y

s.t. x+ y = 15

0 ≤ y ≤ 10.

This example with inequality constraints is taken from [14]. Here we utilize PADM to solve
the problem with equality constraints. During this experiments, we still set Q = 10, the
maximal number of iterations as 1000 and the stopping criterion is ∥ωk− ω̃k∥ = 10−6. Using
x = 1, y = 1, λ = 1 as starting point, we get a solution (10, 5) via 24 iterations. If we use
different starting point generated by Matlab randomly, the average number of iterations is
also 24.
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6 Conclusions

In this paper, we have presented a proximal alternating directions method to solve a class of
VIs , where the operator is weakly coupled of all the variables. Under the mild conditions that
the solution set is nonempty and the involving mapping is monotone, the same conditions
for separable variational inequalities, we proved the global convergence of the algorithm.
Our numerical experiments, although were very preliminary, verified our theoretical results.

The weakly coupled variational inequalities include some interesting problems as special
cases, e.g., the generalized Nash equilibrium problems, which attracted a lot of attention of
the researchers. In [9], a Gauss-Seidel-like method was proposed for potential games, and
the authors proved that the generated sequence converges to a solution, provided that the
sequence has a cluster point. The conditions that guarantee the generated sequence has
a cluster point are still lack. In [2], the authors presented an augmented Lagrangian-type
algorithm for solving convex separable minimization problems of the form

{min f(x) + g(y) : Ax−By = 0}.

But the algorithm did not work for every convex and continuous differentiable function
ϕ(x, y) in the following two-person game:

min f(x) + ϕ(x, y)
s.t. Ax−By = 0,

|
|

min g(y) + ϕ(x, y)
s.t. Ax−By = 0,

Our results, although are very preliminary, provided a simple while interesting structure on
the mappings that guaranteed global convergence of the method. What general conditions
should ϕ(x, y) satisfy so that the GNEP can be solved? Can the same kind of results be
obtained in Hilbert setting ? How to generalize the method to three or more variables? All
these problems deserve further research.
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