
2013



138 Y. SHEN AND C. WANG

1.2 Application Background

In Compressive Sensing, also called Compressed Sensing or Compressive Sampling, a piece
of sparse digital signal is encoded as inner products between the signal and a set of random
(or random-like) vectors where the number of such inner products, or linear measurements,
can be significantly less than the length of the signal. In other words, we acquire the data in
a compressed way such that the measuring/observing cost can be greatly reduced. However,
the decoding process is not a easy task since it requires finding a sparse solution, either exact
or approximate, to an underdetermined linear system. What makes such a scheme work is
the sparsity; i.e., the original signal must have a sparse or compressible representation under
some known basis. In this paper we work over the field of real numbers in order to simplify
the notations, although the algorithms considered can adapt to complex data with minor
modification. Let x̄ ∈ Rn be an original sparse signal that we wish to capture. Without
loss of generality, we assume that x̄ is sparse under the canonical basis, i.e., the number of
nonzero components in x̄, denoted by ∥x̄∥0, is far less than its length. Instead of sampling
x̄ directly, in CS one first obtains a set of linear measurements via

b = Ax̄ ∈ Rm, (1.2)

where A ∈ Rm×n with m < n. The original signal x̄ is then reconstructed from the under-
determined linear system Ax = b via certain reconstruction technique.

The critical step in CS is to recover the original signal x̄ from the observation b where b
is obtained by (1.2). The basic CS theory presented in [7, 8, 12] states that it is extremely
probable to reconstruct x̄ accurately or even exactly from b provided that x̄ is sufficiently
sparse (or compressible) relative to the number of measurements, and the encoding matrix
A possesses certain desirable attributes. To make CS successful, two ingredients must be
addressed carefully. First, a sensing matrix A must be designed so that the compressed
measurement b = Ax̄ contains enough information for a successful recovery of x̄. Second,
an efficient, stable and robust reconstruction algorithm must be available for recovering x̄
from A and b. In the present paper, we will only concentrate on the second aspect. In order
to recover the sparse signal x̄ from the underdetermined system (1.2), one could naturally
consider seeking among all solutions of (1.2) the sparsest one, i.e., solving

min
x

{∥x∥0 | Ax = b}, (1.3)

where ∥x∥0 is the number of nonzeros in x. Indeed, with overwhelming probability decoder
(1.3) can recover sparse signals exactly from a very limited number of random measurements
(see e.g., [3]). Unfortunately, this ℓ0 problem is combinatorial and generally computationally
intractable. A fundamental decoding model in the CS is the so-called basis pursuit (BP)
problem [9]:

min
x

{∥x∥1 | Ax = b}. (1.4)

Minimizing the ℓ1-norm in (1.4) plays a central role in promoting solution sparsity. In fact,
problem (1.4) shares the common solutions with (1.3) under some favorable conditions (see,
for example, [13]). When b contains i.i.d. Gaussian noise, or when x̄ is not exactly sparse
but only compressible, as are the cases in most practical applications, certain relaxation to
the equality constraint in (1.4) is desirable. In such situations, common relaxations to (1.4)
include the constrained “basis pursuit denoising” (BPDN) problem [9]:

min
x

{∥x∥1 | ∥Ax− b∥2 < δ}. (1.5)
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However, the more frequently used model usually is such an unconstrained convex optimiza-
tion problem which has two terms in the objective function:

min
x

{τ∥x∥1 +
1

2
∥Ax− b∥2}, (1.6)

where δ, τ > 0 are fixed parameters. From the optimization theory, it is well known that
problems (1.5) and (1.6) are equivalent in the sense that solving one will determine a pa-
rameter value in the other so that the two share the same solution. As δ and τ approach
zero, both (1.5) and (1.6) converge to (1.4).

Note the BPDN model (1.6) is in the form of optimization problem (1.1), where θ(x) =
τ∥x∥1, q(x) = 1

2∥Ax − b∥2, and Ω = Rn, hence, it is simply an application of (1.1). Not
limit to that, the problem (1.1) can also be applied in, such as image restoration [28].

Finally, we mention that for the CS problem, aside from ℓ1-related decoders, there exist
alternative decoding techniques such as greedy algorithms (e.g., see [23]) which, however,
do not belong to optimization method, thus they are not a subject of concern in the present
paper although they could perform well in experiments.

1.3 Optimality Condition and Subproblems

Although the application background introduced is mainly from the CS, however, we consider
the general model (1.1).

In the last few years, the algorithms for finding solutions of (1.1) have been extensively
studied, largely because solving such problems constitutes a critical step in an emerging
methodology in digital signal processing such as CS. Before introducing the algorithm for
solving it, we need to derive its optimality condition.

We assume that the solution set of (1.1), denoted by Ω∗, is nonempty. For any x∗ ∈ Ω∗,
we have

θ(x′)− θ(x∗) + (x′ − x∗)T (Hx∗ + c) ≥ 0, ∀ x′ ∈ Ω, (1.7)

or equivalently:
(x′ − x∗)T {s(x∗) + (Hx∗ + c)} ≥ 0, ∀ x′ ∈ Ω. (1.8)

where s(x) ∈ ∂(θ(x)) is the subgradient of θ(x) defined by

ξ ∈ ∂(θ(x)) ⇔ θ(y)− θ(x) ≥ ξT (y − x), ∀ y ∈ Rn.

For any symmetric matrix M ∈ Rn×n, we use M ≻ 0 to denote that M is positive
definite. It is clear that, for any given xk and symmetric matrix M where M +H ≻ 0, the
minimization problem

min {ϕk(x) = θ(x) + q(x) +
1

2
(x− xk)TM(x− xk) | x ∈ Ω} (1.9)

has a unique solution. Note the (1.9) can also be treated as: Finding x ∈ Ω such that

(x′ − x)T {s(x) + (Hx+ c) +M(x− xk)} ≥ 0, ∀x′ ∈ Ω. (1.10)

Let the solution of (1.9) be the new iterate, the algorithm based on subproblem (1.9) is a
“Proximal Point Algorithm” (PPA) when M ≻ 0.

The subproblem (1.9) can be difficult to solve for a general M . However, when θ(x) is a
separable function, we can exploit the separable structure of θ(x) to solve (1.9) cheaply. By
choosing

M = rI −H with r > 0, (1.11)
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the (1.9) is reduced to such a separable problem:

min {ϕk(x) = θ(x) + (x− xk)T (Hxk + c) +
r

2
∥x− xk∥2 | x ∈ Ω}, (1.12)

which is equivalent to: Finding x ∈ Ω satisfying

(x′ − x)T {s(x) + (Hxk + c) + r(x− xk)} ≥ 0, ∀x′ ∈ Ω. (1.13)

The problem (1.12) can have a closed form solution which is easy to obtain. For instance,
the Basis Pursuit DeNoising (BPDN) model is in the form of (1.1) with θ(x) = ∥x∥1 and
H = ATA, and the solution of (1.12) can be given by a soft shrinkage (see (4.6)), hence, the
algorithm based on (1.12) can be called “Iterative Shrinkage/Thresholding” (IST) method
[11]. Throughout this paper, we assume that the subproblem (1.12) is easy to solve, hence,
it is meaningful to develop new efficient algorithms based on (1.12).

Beyond the IST viewpoint, and the PPA perspective mentioned above, the algorithm
based on subproblem (1.12) can also be interpreted as a forward-backward splitting method
[10]. In fact, when Ω = Rn the problem (1.1) can be equivalent to: Finding x ∈ Ω such that

A(x) +B(x) ∋ 0,

where A(x) = ∂θ(x) and B(x) = ∇q(x). The forward-backward splitting method is to
iterate by:

xk+1 = (I +
1

r
A)−1[(I − 1

r
B)(xk)], with r > 0

where (I− 1
rB)(xk) is a forward step (here it is a gradient step), and the operation associated

with (I + 1
rA)

−1[·] is a backward step (it can be a shrinkage step). It is easy to verify that
the above iterating scheme for obtaining xk+1 is equivalent to solving (1.12).

In order to derive a stopping criterion for the algorithm based on (1.12), we need to
bridge (1.12) with the optimality condition of (1.1): For any given r > 0, let x̃k be the
solution of (1.12) from given xk ∈ Rn, it is easy to verify that:

xk is the solution of (1.1) ⇐⇒ xk = x̃k.

Accordingly, we can define such an error function:

e(xk, 1/r) := xk − x̃k, (1.14)

which measures how much xk fails to be in the solution set of (1.1). Smaller ∥e(xk, 1/r)∥
can indicate that xk is closer to the solution set.

In addition, let G ∈ Rn×n be any symmetric positive definite matrix. For any x∗ ∈ Ω∗,
if the sequence {xk} generated by a method satisfies

∥xk+1 − x∗∥2G < ∥xk − x∗∥2G, (1.15)

the method is called a contraction method, and the sequence {xk} is said to be Fejér mono-
tonically contractive to the solution set.

1.4 Projection and Contraction (PC) Methods

In this subsection, we introduce two Projection and Contraction (PC) methods from [18]
which were originally proposed for the variational inequalities, and they are now applied to
solve the structured constrained optimization problem (1.1). They were originally referred
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as the Relaxed Method I and Relaxed Method 4 in [18]. However, they will be called PC
method I and PC method II, respectively for simplicity.

For any fixed r > 0, the PC method I iterates as follows:

PC Method I [18]

1. Compute the predicting point by:

x̃k = argmin {ϕk(x) = θ(x) + (x− xk)T (Hxk + c) +
r

2
∥x− xk∥2 | x ∈ Ω}.

2. Generate the new iterate xk+1 by

xk+1 = xk − α(xk − x̃k), (1.16a)

where

α = γα∗
k, α∗

k =
∥xk − x̃k∥22

∥xk − x̃k∥2 + 1
r∥xk − x̃k∥2H

, and γ ∈ (0, 2).

(1.16b)

Similar to the above method, paper [18] also provided another meaningful method which
iterates as follows:

PC Method II [18]

1. Compute the predicting point by:

x̃k = argmin {ϕk(x) = θ(x) + (x− xk)T (Hxk + c) +
r

2
∥x− xk∥2 | x ∈ Ω}.

2. Generate the new iterate xk+1 by

xk+1 = xk − γ(I +
1

r
H)−1(xk − x̃k), γ ∈ (0, 2). (1.17)

The above two methods are still based on (1.12), however, compared with the classic
PPA, one distinguished feature of these two methods is that they can use any r > 0, hence,
the M may not be positive definite. In addition, instead of taking the solution of (1.12) as
the new iterate as in the classic PPA, they treat it as a predicting point, and generate the
new iterate by (1.16a) or (1.17), respectively.

The convergence results of the above methods can be obtained from the following theo-
rems whose proofs are similar to that in [17, 18], thus omitted. In fact, these theorems are
also the base of our new algorithm.

Theorem 1.1. For any given r > 0, let x̃k be the solution of (1.12) from given xk. Then
for any x∗ ∈ Ω∗, we have

(xk − x∗)T (I + 1
rH)(xk − x̃k) ≥ ∥xk − x̃k∥22 +

1

r
∥xk − x∗∥2H . (1.18)
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Theorem 1.2. For any fixed r > 0, let x̃k be the solution of (1.12) from given xk, and the
new iterate xk+1 is given by PC method I, then for any x∗ ∈ Ω∗, we have

∥xk+1 − x∗∥2
(I+

1
rH)

≤ ∥xk − x∗∥2
(I+

1
rH)

− γ(2− γ)α∗
k∥xk − x̃k∥2, (1.19)

where α∗
k was defined in (1.16b).

Theorem 1.3. For any given r > 0, if x̃k is the solution of (1.12) from given xk, and the
new iterate xk+1 is given by PC Method II (1.17), then for any x∗ ∈ Ω∗, we have

∥xk+1 − x∗∥2N ≤ ∥xk − x∗∥2N − γ(2− γ)∥xk − x̃k∥2 with N = (I + 1
rH)2. (1.20)

For an algorithm based on (1.12), our limited numerical experience shows that the choice
of r can be critical to the convergence rate. In general, smaller r can yield faster convergence
rate. However, in the classic PPA, M is required to be positive definite, or equivalently
r > λmax(H) according to (1.11), where this restriction on r can be too conservative. In the
PC methods above, the condition on r is relaxed such that we can use any r > 0, however,
they still have limitations. For instance, they still adopt a fixed r, while the “optimal”
choice of r in each iteration can vary. In addition, it is still unclear how to choose r in the
PC methods, e.g., in the PC method I, although we can use arbitrary small r > 0, however,
smaller r does not necessarily produce better performance since α∗

k in (1.16b) can be small
when r is small, and this could, to large extent, offset the advantage of using small r.

In order to exploit the potential ability of the algorithm based on (1.12), we propose a new
method called “Self-Adaptive Projection and Contraction” (SA-PC) method which allows
r to vary, and this is the main contribution of this paper. Like the above PC methods, the
new algorithm is not a classic PPA since the matrix M may not be positive definite. Since
its convergence proof is related to that of the PC methods above, therefore, this method is
still refereed as a PC method.

The rest of this paper is organized as follows. First, we give some preliminaries about
projection mapping in Section 2. In Section 3, we present our new algorithm as well as its
convergence result. In Section 4, we elaborate the implementation of our new algorithm in
the application of CS problems. In Section 5, we report the numerical results of our method
in CS problems. In the last section, we draw some concluding remarks. Finally, two Matlab
codes of our algorithms for the CS problem were shown in the appendix section.

2 Preliminaries

In this section, we summarize some basic properties and related definitions that will be used
in the following discussions. For given v ∈ Rn, the solution of problem

min{∥u− v∥2 | u ∈ Ω}

is called the projection of v on Ω under Euclidean-norm, denoted by PΩ(v). In other words,

PΩ(v) = argmin{∥u− v∥2 | u ∈ Ω}.

Since Ω is convex and closed, the projection on to Ω is unique. From the above definition,
it follows that

(v − PΩ(v))
T (u− PΩ(v)) ≤ 0, ∀v ∈ Rn, ∀u ∈ Ω.

Consequently, we have

∥PΩ(v)− PΩ(w)∥2 ≤ ∥v − w∥2, ∀v, w ∈ Rn
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and

∥u− PΩ(v)∥22 ≤ ∥v − u∥22 − ∥v − PΩ(v)∥22, ∀v ∈ Rn,∀u ∈ Ω.

These properties of the projection mapping can be found in textbooks, e.g., [2].

Lemma 2.1. Let Ω be a nonempty closed convex set of Rn and F be a mapping from Rn

into itself. Then x is a solution of the variational inequality

x ∈ Ω, (x′ − x)TF (x) ≥ 0, ∀x′ ∈ Ω

if and only if

x = PΩ[x− βF (x)], ∀ β > 0.

Proof. The result is a special case of Theorem 1 in [19].

According to Lemma 2.1, let x̃k be the solution of (1.12) from given xk, we have

x̃k = PΩ[x
k − 1

r
(s(x̃k) + (Hxk + c))]. (2.1)

It should be mentioned:

• If θ(x) is a smooth function and we take xk+1 = x̃k as the new iterate, from (2.1) we
have

xk+1 = PΩ[x
k − 1

r
(∇θ(xk+1) +∇q(xk))].

For the problem (1.1), it is different either from the PPA

xk+1 = PΩ[x
k − 1

r
(∇θ(xk+1) +∇q(xk+1))],

or from the projected gradient method [21]

xk+1 = PΩ[x
k − 1

r
(∇θ(xk) +∇q(xk))].

• If q(x) = 0, (2.1) is reduced to x̃k = PΩ[x
k − 1

r s(x̃
k)]. The method adopts x̃k as a

new iterate, which is the PPA for the problem min{θ(x) |x ∈ Ω}. In this case, for any
r > 0, the PPA is convergent.

• If θ(x) = 0, (2.1) is reduced to x̃k = PΩ[x
k − 1

r (Hxk + c)]. The method adopts x̃k as a
new iteration, which is the projected gradient method for the problem min{q(x) |x ∈
Ω}. In this case, r > ∥H∥/2 will guarantee the convergence, and e(x, 1/r) = x− x̃ (see
(1.14)) coincides with the definition in the PC methods for linear variational inequalities
[17, 18].

Lemma 2.2. For given xk and symmetric matrix M , let x̃k be the solution of (1.9). Then
we have

ϕ(x̃k) ≤ ϕ(xk)− ∥xk − x̃k∥2(M+ 1
2H). (2.2)
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Proof. . Since ϕ(x) = θ(x) + 1
2x

THx+ cTx, we obtain

ϕ(xk)− ϕ(x̃k) = (θ(xk)− θ(x̃k) + (xk − x̃k)T (Hx̃k + c)) +
1

2
(xk − x̃k)TH(xk − x̃k)

≥ (xk − x̃k)T {s(x̃k) + (Hx̃k + c)}+ 1

2
∥xk − x̃k∥2H . (2.3)

Observe the first part of the right hand side of (2.3) and set x = xk in (1.10), we have

(xk − x̃k)T {s(x̃k) + (Hx̃k + c)} ≥ ∥xk − x̃k∥2M . (2.4)

The assertion (2.2) follows from (2.3) and (2.4) immediately.

3 Self-Adaptive Projection and Contraction (SA-PC) Method

For any r0 > 0 and fixed δ ∈ (0, 1), ν, µ > 0, the proposed method iterates as follows:

Self-adaptive PC (SA-PC) Method

1. Compute x̃k by:

x̃k = argmin {ϕk(x) = θ(x)+(x−xk)T (Hxk+c)+
rk

2
∥x−xk∥2 | x ∈ Ω}.

2. While the following condition does not hold:

tk =
∥xk − x̃k∥2H
rk∥xk − x̃k∥22

≤ 2(1− δ). (3.1)

Do backtracking by rk = rk ∗ tk ∗ µ;

recompute x̃k by

x̃k = argmin {ϕk(x) = θ(x)+(x−xk)T (Hxk+c)+
rk

2
∥x−xk∥2 | x ∈ Ω}.

End

3. Generate the new iterate by xk+1 = x̃k, and prepare rk+1 for the next
iteration by

rk+1=min(λmax(H)/2, tk/ν) (or rk+1= tk/ν, when λmax(H) is unknown).

Compared with the classic PPA and the PC methods I and II, the most identical feature
of the proposed SA-PC method is that it allows r to vary dynamically in each step while
other algorithms could use a fixed r. However, how to choose rk properly remains critical
to the performance of our method. We suggest that x̃k should satisfy such a condition

∥xk − x̃k∥2H ≈ rk∥xk − x̃k∥22 and ∥xk − x̃k∥2H < 2rk∥xk − x̃k∥22,
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where the latter one is a relaxed condition of rk > λmax(H)/2 and we need to select rk

dynamically to meet this condition. For doing that, in the SA-PC method, we generate
rk+1 by the Barzilai-Borwein (BB) [15] step size which was recommended in [27]. In the
backtracking step, we adjust the rk by rk = rk ∗ tk ∗ µ where the backtracking factor tk ∗ µ
is self-adaptively determined by how fails the above condition to be satisfied. Numerical
evidence shows that these two techniques can be critical to the performance of our method,
although how to choose rk better remains an open question, and merits further research on
it.

Then we are at the stage to derive the convergence result of the SA-PC method. First,
it is easy to verify that, when ∥H∥ ≤ rk(1 − δ) holds, the condition (3.1) can be satisfied.
This means the SA-PC method can be realized. Then note that in both proofs of Theorem
1.2 and 1.3, we use the inequality (1.18) by ignoring the last term of its right hand side,
i.e., 1

r (x
k − x∗)TH(xk − x∗). However, if we retain this term in the proof, the contractive

property of the generated sequence {∥xk − x∗∥22} can still be derived under the relaxed
condition (3.1).

Theorem 3.1. For given symmetric matrix Mk = rkI−H with rk > 0, if x̃k be the solution
of (1.9) and the condition (3.1) is fulfilled. Let the sequence {xk} be generated by the SA-PC
method. Then for any x∗ ∈ Ω∗, we have

∥xk+1 − x∗∥22 ≤ ∥xk − x∗∥22 − δ∥xk − x̃k∥2. (3.2)

Proof. Since Mk = rkI −H, similar to (1.18), we have

(xk − x∗)T (I + 1
rk
H)(xk − x̃k) ≥ ∥xk − x̃k∥22 + 1

rk
∥xk − x∗∥2H . (3.3)

When the term 1
rk
∥xk − x∗∥2H in (3.3) was not ignored, we get

∥xk+1 − x∗∥2
(I+

1
rk

H)

= ∥(xk − x∗)− (xk − x̃k)∥2
(I+

1
rk

H)

= ∥xk − x∗∥2
(I+

1
rk

H)
− 2(xk − x∗)T (I + 1

rk
H)(xk − x̃k) + ∥xk − x̃k∥2(I+ 1

rk
H)

≤ ∥xk − x∗∥2
(I+

1
rk

H)
− 2∥xk − x̃k∥22 − 2

rk
∥xk − x∗∥2H + ∥xk − x̃k∥2

(I+
1
rk

H)

= ∥xk − x∗∥22 − ∥xk − x̃k∥22 − 1
rk
∥xk − x∗∥2H +

1

rk
∥xk − x̃k∥2H . (3.4)

Since xk+1 = x̃k, subtracting 1
rk
∥x̃k − x∗∥2H from the both sides of the above inequality, we

obtain

∥xk+1 − x∗∥22 ≤ ∥xk − x∗∥22 − ∥xk − x̃k∥22 + 1
rk
∥xk − x̃k∥2H

− 1
rk
(∥xk − x∗∥2H + ∥x̃k − x∗∥2H). (3.5)

By using the identity ∥u∥22 + ∥v∥22 = 1
2 (∥u− v∥22 + ∥u+ v∥22), we have

∥xk − x∗∥2H + ∥x̃k − x∗∥2H =
1

2
(∥xk − x̃k∥2H + ∥xk + x̃k − 2x∗)∥2H). (3.6)

Substituting (3.6) to (3.5), we obtain

∥xk+1 − x∗∥22 ≤ ∥xk − x∗∥22 − ∥xk − x̃k∥22 +
1

2rk
∥xk − x̃k∥2H .

The assertion of this theorem follows from the above inequality and (3.1) immediately.
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Besides the contractive property of the sequence {∥xk − x∗∥22}, the following theorem
indicates that the sequence {ϕ(xk)} generated by the SA-PC method is monotonically de-
creasing.

Theorem 3.2. For given xk and symmetric matrix Mk = rkI −H, let x̃k be the solution
of (1.9), then we have

ϕ(xk+1) ≤ ϕ(xk)− δrk∥xk − x̃k∥2. (3.7)

Proof. First, since xk+1 = x̃k, it follows from Lemma 2.2 that

ϕ(xk+1) ≤ ϕ(xk)− ∥xk − x̃k∥2
(Mk+

1
2H)

. (3.8)

By Mk = rkI −H and (3.1), we have

∥xk − x̃k∥2
(Mk+

1
2H)

= rk∥xk − x̃k∥2 − 1

2
∥xk − x̃k∥2H ≥ δrk∥xk − x̃k∥2. (3.9)

Substituting (3.9) to (3.8) we get the assertion (3.7) immediately.

4 Application in Compressive Sensing (CS) Problems

While the application range of problem (1.1) is potentially broad, we only focus on the
BPDN model (1.6) which is often encountered in the CS problem. For convenience, we
write the BPDN model (1.6) again

min
x

{ϕ(x) = τ∥x∥1 +
1

2
∥Ax− b∥22}, (4.1)

where τ > 0, A ∈ Rm×n and b ∈ Rm. It is clear that the problem (4.1) has a unique solution
x∗ which satisfies

0 ∈ τ∂(∥x∗∥1) +AT (Ax∗ − b) (4.2)

and there is a s(x∗) ∈ ∂(∥x∗∥1) such that

τs(x∗) +AT (Ax∗ − b) = 0. (4.3)

In the last few years, there have been abundant works searching for efficient algorithms
for solving (4.1), e.g., projection gradient method [14], interior point method [20], augmented
Lagrangian method [1], and the iterative shrinkage/thresholding [4, ?, 16, 25, 26, 27]. To
exploit the separable structure of ∥x∥1, some of the above algorithms suggest to solve

argmin
x

{(x− xk)T (AT (Axk − b)) +
r

2
∥x− xk∥22 + τ∥x∥1}. (4.4)

In fact, the solution of (4.4) is given by

x̃k = dk −max(min(dk, a),−a), (4.5a)

where

dk = xk − 1

r
AT (Axk − b) and a =

τ

r
e, and e is all-one vector. (4.5b)

Note (4.5) can be rewritten into a shrinkage form

x̃k = sign(dk). ∗ S(dk, r
τ
) (4.6a)
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where

dk =
r

τ
xk − 1

τ
AT (Axk − b). (4.6b)

For given xk and r > 0, it is easy to obtain the solution of (4.4) via (4.6), hence, the
algorithm based on (4.4) belongs to the Iterative Shrinkage/Thresholding method, and the
main computation cost is two times of matrix-vector multiplications.

The Matlab code of the SA-PC method for the problem (4.1) can be found in the ap-
pendix section. In which the parameters such as mu, nu, and \delta have been assigned
with proper values. The initial r was set to be 1, however, when λmax(AAT ) is known, we
suggest to initialize r with λmax(AAT )/2.

In addition, our SA-PC method can converge slowly for small τ , e.g., when τ = ∥AT b∥∞×
0.01. As a remedy, we use a simple continuation technique to overcome this issue, see [16]
for details. The corresponding code can also be found in the appendix section.

5 Numerical Experiments

This section includes the numerical results of our SA-PC method when applied in the CS
problem (4.1), which is in the form of (1.1). All the tests were done on a computer with
Core 2 P8700, 4G memory, Windows Vista basic and Matlab 2009a.

Constructing the test examples

To construct the test examples of the CS problem (4.1), we only need to give the matrix
A, the vector b and the parameter τ .

• The matrix A. First, we let A be an m × n matrix whose entries are randomly
generated in the interval (−1,+1). Then each row of matrix A is normalized. The
following Matlab code is used to produce the matrix A.

A=rand(m,n)*2-1; for i=1:m t=norm(A(i,:)); A(i,:)=A(i,:)/t; end;

• The vector b. We let the test problem have a known spar solution xop and set b by
A ∗ xop. The following Matlab code is used to produce the vector b.

xop=sprand(n,1,spar); [ii,jj,kk]=find(xop);

for i=1:size(ii) xop(ii(i))=sign(xop(ii(i))*2-1); end;

b0=A*xop; b=b0.*(ones(m,1)+0.01*randn(m,1));

• As in the literature, we take τ = ∥AT b∥∞ × 0.1 and τ = ∥AT b∥∞ × 0.01, respectively.

To have a quick experience of the efficiency of our SA-PC method, we first did a simple
test by comparing:

1. The classic PPA where r = 1.02 · λmax(AA
T ). This method was used in [6] for the CS

problem in parallel many-core architectures.

2. The PC method I from [18] with fixed r = m
n λmax(AAT ).

3. The SA-PC method with ν=0.85, µ=1.



148 Y. SHEN AND C. WANG

Note the PC Method II was not included in this test example since its subproblem may
not be cheap to compute when AAT ̸= I.

In order to compare the efficiency of the different methods fairly, all algorithms began
with x0 = 0, and stopped the iteration once

∥xk − x̃k∥∞ ≤ ε,

where x̃k is the solution of (4.4) from xk. The infinity norm was used to make the tolerance
ε roughly irrelevant to the dimension of problem (m and n).

Test results

First, we ran the code with τ = ∥AT b∥∞ × 0.1. For ε = 10−3 and ε = 10−4, Tables
5.1 and Table 5.2 report the number of iterations, number of matrix-vector multiplications
(denoted by No.l in the tables) and the CPU time (in Seconds), respectively.

Table 5.1. Test results for τ = ∥AT b∥∞ × 0.1 and ε = 10−3

m × n Matrix No. nonzero Classic PPA PC Method I SA-PC
m n Elements No.It No.l CPU No.It No.l CPU No.It No.l CPU

1024 4096 160 209 418 12.06 36 72 2.20 22 50 1.50
1600 8192 320 247 494 49.31 40 80 8.17 26 60 5.89
2000 12000 400 265 530 101.94 45 90 17.55 27 62 11.66

Table 5.2. Test results for τ = ∥AT b∥∞ × 0.1 and ε = 10−4

m × n Matrix No. nonzero Classic PPA PC Method I SA-PC
m n Elements No.It No.l CPU No.It No.l CPU No.It No.l CPU

1024 4096 160 316 632 18.23 50 100 2.98 29 67 1.99
1600 8192 320 536 1072 107.50 80 160 16.13 37 84 8.25
2000 12000 400 659 1318 253.36 99 198 38.34 42 97 18.20

From the preliminary numerical results, we see the average number of the matrix-vector
multiplications in each iteration of the SA-PC method is about 2.3. In other words, its
per-iteration cost is only around 15% more than that of the other two methods, while it
needs much less iterations to reach a given accuracy, so its speed performance is satisfactory.

The SA-PC method is the fastest one among the tested algorithms. In details.

The computational cost of the SA-PC

The computational cost of the PC method I
≈ 70%, when ε = 10−3

and

The computational cost of the SA-PC

The computational cost of the PC method I
≈ 50%, when ε = 10−4.

The performance gap between the classic PPA and the SA-PC method can be more
evident.

The computational cost of the SA-PC

The computational cost of the Classic PPA
≈ 12%, when ε = 10−3

and

The computational cost of the SA-PC

The computational cost of the Classic PPA
≈ 8%, when ε = 10−4.
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We also got the test results for τ = ∥AT b∥∞ × 0.01 as follows.

Table 5.3. Test results for τ = ∥AT b∥∞ × 0.01 and ε = 10−3

m × n Matrix No. nonzero Original PPA PC Method I SA-PC
m n Elements No.It No.l CPU No.It No.l CPU No.It No.l CPU

1024 4096 160 861 1722 50.7 204 408 12.0 90 206 6.0
1600 8192 320 877 1754 173.8 268 536 53.5 100 227 22.0
2000 12000 400 609 1218 245.2 174 348 70.7 71 159 32.1

Table 5.4. Test results for τ = ∥AT b∥∞ × 0.01 and ε = 10−4

m × n Matrix No. nonzero CLassic PPA PC Method I SA-PC
m n Elements No.It No.l CPU No.It No.l CPU No.It No.l CPU

1024 4096 160 967 1934 56.8 218 436 12.9 96 219 6.4
1600 8192 320 —- —- —- 622 1244 124.2 178 406 39.3
2000 12000 400 —- —- —- 936 1872 377.9 203 462 90.5

Under this unfavorable small setting of τ , the performance gap between the classic
PPA and the SA-PC method becomes a little larger. In details.

The computational cost of the SA-PC

The computational cost of the PC method I
≈ 45%, when ε = 10−3

and

The computational cost of the SA-PC

The computational cost of the PC method I
≈ 30%, when ε = 10−4.

The performance advantage of SA-PC method to the Classic PPA still remains.

The computational cost of the SA-PC

The computational cost of the Classic PPA
≈ 12%, when ε = 10−3

and

The computational cost of the SA-PC

The computational cost of the Classic PPA
≈ 11%, when ε = 10−4.

From the above experimental results, the SA-PC method has shown satisfactory perfor-
mance when compared with some classic algorithms. However, in order to demonstrate it is
really a competitive method, we need to compare it with some state-of-the-art algorithms.

For doing that, in the following tests, four state-of-the-art algorithms for the CS prob-
lems including GPSR-BB [14], FPC [16], FPC-AS [25, 26],and SpaRSA [27] were included.
We use the latest versions of the above algorithms, i.e., GPSR v6.0, FPC v2.0, FPC-AS
v1.21, SpaRSA v2.0, where they were all implemented with the efficient BB step size and
continuation strategy.

Note since the speed of an algorithm is, to large extent, dependent on the stopping
criterion. In order to compare the speed of the algorithms in a way that is as independent
as possible from the stopping criterion, the experimental protocol that we followed was
the following: we first run SpaRSA with StoppingCriterion=3 and ToleranceA=1e-15 to
obtain an “accurate” solution denoted by x̄, and then run other algorithms until either the
relative error to x̄ defined by ∥x− x̄∥/∥x̄∥ is below a prescribed tol or a maximal iteration
number 500 is reached. To avoid the screen output which can slow down the algorithm
speed, we use silent mode for all algorithms whenever possible, i.e., verbose=0.
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We first investigate the speed performance of the algorithms under two dimensional
settings when tol = 10−4. The average result of 10 random problems with τ = ∥AT b∥∞×0.1
and τ = ∥AT b∥∞×0.01 are shown in Table 5.5 and Table 5.6, respectively, where the Error
denotes the final relative error.

Table 5.5. Test results for τ = ∥AT b∥∞ × 0.1 and tol = 10−4

Table 5.6. Test results for τ = ∥AT b∥∞ × 0.01 and tol = 10−4

We observe that, in most cases, the FPC-AS is the fastest algorithm among these al-
gorithms. However, when τ = ∥AT b∥∞ × 0.1, and (m,n, k)=(3000,12000,360), our SA-
PC method becomes the fastest one. However, we also see that, when τ is small, i.e.,
τ = ∥AT b∥∞ × 0.01, the advantage of our method is not so evident even implemented with
the continuation technique, and this could be a major drawback of our SA-PC method.
But even under this unfavorable setting of τ , i.e., the performance of our method is still
competitive.

To investigate the performance for different dimensional settings more precisely, we did
another test by varying m between 500 and 3500 with interval 100. For each setting of m,
we set n = 4m, k = floor(0.03n), τ = ∥AT b∥∞ × 0.1, tol = 10−4, and run ten random
problems. The average results are shown in Figure 1.

Figure 1: Results of different dimensional settings when n = 4m, k = floor(0.03n), tol =
10−4. Left subfigure: τ = ∥AT b∥∞ × 0.1; right subfigure: τ = ∥AT b∥∞ × 0.01,
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As can be seen from the Figure 1, the competitive performance of the SA-PC method
remains as the dimension increases. Specially, when τ = ∥AT b∥∞ × 0.1 as shown in the
left subfigure, its performance can be roughly the same compared with FPC-AS when the
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dimension is large. This indicates that the SA-PC method is suitable for handling large-scale
problems.

In this section, we presented experimental results to compare the proposed SA-PC
method with some classic methods as well as some state-of-the-art algorithms. Our nu-
merical results show that the proposed algorithm is efficient and competitive. Specially,
the proposed algorithm can handle large-scale problems well, and this can be even evident
when τ is not small. However, even when τ is small, our algorithm is still competitive when
compared with those state-of-the-art algorithms.

6 Conclusions Remarks

In this paper, we present a new method called SA-PC method for minimizing the sum of a
convex and a quadratic function in the form of (1.1). Its application background is from the
CS problem, but its application range is not limited to that. Its theory is based on some
existing PC methods for symmetric linear variational inequalities, see [17, 18], although it
can also be interpreted from, e.g., the forward-backward splitting perspective. The most
identical feature of the proposed algorithm is that it allows r to vary in a self-adaptive way
to produce a larger step size to increase the algorithm speed.

When applied in the CS problem, our experimental results show that the proposed
algorithm has competitive performance to some state-of-the-art algorithms dedicated for the
CS problem like FPC-AS and SpaRSA. Despite how good its performance is, our algorithm
can still be instantiated by different ways of choosing rk, however, this is left to the future
works.
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Appendix

The Matlab Code of the SA-PC Method for (4.1).

r = 1; stopc = 1; eps=1e-4; x = zeros(n,1);k = 0; Ax = A*x; l = 1; %%%%%%%%%

while(stopc>eps && k<maxit) k=k+1; %%%%%%%%%

x0= x; Ax0=Ax; d0=A’*(b-Ax0); l=l+1; %% (1) %%

d = d0 +x0*r; x= (d - max(min(d,tau),-tau))/r; %% (2) %%

Ax=A*x; l=l+1; %% (3) %%

ex= x0-x; Aex=Ax0-Ax; %% (4) %%

T1=ex’*ex; T2=Aex’*Aex; TT=T2/(T1*r); %% (5) %%

while(TT > 1.9) r=r*TT*1; %% (6) %%

d = d0 +x0*r; x= (d - max(min(d,tau),-tau))/r; %% (7) %%

Ax=A*x; l=l+1; %% (8) %%

ex= x0-x; Aex=Ax0-Ax; %% (9) %%

T1=ex’*ex; T2=Aex’*Aex; TT=T2/(T1*r); %%(10) %%

end; %%(11) %%

stopc = norm(x-x0,inf); r= T2*0.85/T1; %%(12) %%

end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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The Matlab Code of the SA-PC Method for (4.1) with continuation.

r = 1; stopc = 1; eps=1e-4; x = zeros(n,1);k = 0; Ax = A*x; l = 1; %%%%%%%%%

tauf = tau; tau = 0.1*norm(A’*b,inf); rr = exp(log(tau/tauf)/40); %%%%%%%%%

while((stopc>eps && k<maxit)|| tau>tauf) k=k+1; %%%%%%%%%

x0= x; Ax0=Ax; d0=A’*(b-Ax0); l=l+1; %% (1) %%

d = d0 +x0*r; x= (d - max(min(d,tau),-tau))/r; %% (2) %%

Ax=A*x; l=l+1; %% (3) %%

ex= x0-x; Aex=Ax0-Ax; %% (4) %%

T1=ex’*ex; T2=Aex’*Aex; TT=T2/(T1*r); %% (5) %%

while(TT > 1.9) r=r*TT*1; %% (6) %%

d = d0 +x0*r; x= (d - max(min(d,tau),-tau))/r; %% (7) %%

Ax=A*x; l=l+1; %% (8) %%

ex= x0-x; Aex=Ax0-Ax; %% (9) %%

T1=ex’*ex; T2=Aex’*Aex; TT=T2/(T1*r); %%(10) %%

end; %%(11) %%

stopc = norm(x-x0,inf); r = T2*0.85/T1; tau = max(tau/rr,tauf); %%(12) %%

end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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