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radiation campaigns through a conditional autoregressive model to improve SWE estimates.
An artificial neural network has been proposed to evaluate SWE in taiga environments [24].
The neural network trained for rendering kriged measurements from snow courses is sup-
plied with satellite passive microwave data (SSM/I sensors). A multiple linear regression
model is used to generate gridded estimates of SWE for mountainous areas in south-central
Idaho [28]. The inputs consist of data from snow courses and snow pillows (SNOTEL net-
work in western United States), binary data on snowed areas recorded by satellites (MODIS
images) and physiographic variables.

Recently, a monitoring apparatus, named GMON (for Gamma MONitor), has been
developed to infer SWE in distant wilderness locations [16, 37]. A GMON consists of
a gamma ray monitoring device fastened to a post approximately three meters above the
snow level and covering an area of ∼ 100 m2. Since the gamma rays from the ground
are attenuated by the quantity of water between the ground and the monitor, the snow
pack covered by the monitor can be inferred by the gamma ray measures. In addition to
being almost maintenance-free, the main advantage of a GMON is to provide daily SWE
measurements by satellite communications. One could consider installing a GMON at each
snow course to bring an immediate benefit to the actual data collection. However, since
hydrologists are mostly interested by gridded estimates of SWE over a catchment area, it
is then preferable to install GMONs at locations that minimize the overall estimate error
from the underlying kriging interpolation.

Monitoring network design based on kriging is a regular practice in hydrology. Appli-
cations include groundwater management where networks are designed to detect contami-
nants [13, 22, 39], to measure water level [46], and to predict groundwater flow [30]. Other
applications consist in the location of rain gauges to estimate the precipitation over a given
area [15, 35, 40, 43]. Similar network designs concern acid deposition [47] and surface tem-
peratures in lakes and reservoirs [34].

The present paper studies the question of positioning GMONs in an optimal way. The
codes and simulations defining the optimization problem are developed by HQ. These tools
are proprietary and cannot be executed outside of HQ. Therefore, a simpler surrogate op-
timization problem is proposed in the present work to replace this blackbox problem. This
surrogate is easier to manipulate, requires less computational resources and shares some sim-
ilarities with the true problem. The development and testing of new algorithmic strategies
are conducted on the surrogate before being applied to the true HQ problem.

The optimization is conducted by the Mesh Adaptive Direct Search algorithm (Mads [7])
for blackbox optimization. There are several reasons why we chose this algorithm. Mads has
been successfully used to solve real problems in [4, 11, 44, 42] and was previously applied
to positioning problems: In [5] to find the optimal locations of tsunami detection buoys
maximizing warning time to coastal cities, and in [10, 25] as part of a study to compare
derivative-free solvers for groundwater supply and hydraulic capture community problems.
The Nomad implementation [36] is designed for real blackbox functions, and due to its
C++ library mode it can easily be integrated within the computational framework of the
HQ research center. Another reason why we chose the Mads algorithm is that its structure
easily allows development of new features exploiting the fact that the variables may be
grouped in pairs of planar coordinates. We propose and study various strategies for grouping
and regrouping variables to enhance the practical efficiency while maintaining a satisfactory
convergence analysis. A major difficulty of both the true and the surrogate functions to
optimize is that, on a given catchment area, the possible locations for the GMONs form a
very fragmented domain. This paper introduces a way to address this issue, exploiting the
Mads flexibility.
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The paper is divided as follows. Section 2 formulates the question of finding the GMON
locations that minimize the overall kriging interpolation error as a blackbox optimization
problem. Section 3 summarizes the main features of the Mads algorithm for blackbox
optimization and proposes a general framework for grouping and regrouping variables. Some
strategies are specific to positioning problems and others are applicable to any optimization
problem. Section 4 contains extensive numerical results on the surrogate function and on
the more expensive true objective function on the Gatineau, Saint-Maurice and La Grande
water-resource systems located in the province of Québec.

2 Blackbox Description

This section describes the optimization problem of positioning the GMONs in a way that
minimizes the kriging interpolation error. The optimization problem that needs to be solved
by HQ is referred to as the true optimization problem. However, this problem is only inter-
nally accessible at the HQ research center and is not available for performing preliminary
tests on grouping strategies. Therefore, we constructed a surrogate optimization problem [12]
designed to mimic some features of the true objective function, with the advantage of being
cheaper to evaluate and to be accessible for testing outside of HQ. This section describes
both the true and surrogate functions. The next subsection describes the domain where the
GMONs can be placed.

2.1 Fragmented Domain

The three water-resource systems studied in this work are depicted in Figure 1. These are
the Gatineau (GAT), Saint-Maurice (STM), and La Grande (LG) systems and the potential
locations are at the one-kilometer scale. The surface of these areas are 24,755, 43,017 and
90,008 km2, respectively. Dark pixels correspond to the feasible locations for positioning
GMONs.

Figure 1: The GAT, STM and LG basins: dark pixels correspond to feasible locations.

The GAT domain is highly fragmented with only 3.7% feasible locations. The density
of feasible locations is the largest with 33.5% on LG. The density on the STM system is
11.7%. The reason why the feasible domain is fragmented is that there are many criteria to
satisfy for getting reliable SWE data from a GMON. To name a few, a GMON cannot be
positioned over water, the slope of the terrain cannot be too great, surrounding vegetation
not too dense, and the soil must be sufficiently rich in gamma rays.

The CPU time required to verify if a GMON can or cannot be positioned at a given
location is not significant since the position map is explicitly known. Positioning objects in
the space R3 would require more computing resources.
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The fragmented nature of the domain can cause numerical difficulties for some optimiza-
tion methods since attempting to change the location of a GMON will most often lead
to infeasible solutions. To address this issue, a preprocessing phase is added so that any
location given as input is modified to coincide with a feasible point nearby. This treatment
is performed via a deterministic spiral walk on the set of pixels. More precisely, if a given
coordinate x ∈ N2 is infeasible, then pixels in

{u ∈ N2 : ∥u− x∥∞ = d}

are successively tested for values of d varying from 1 to 15, and by considering the ones
closest to x first. The process stops as soon as a feasible pixel is found, and x is moved to
the corresponding location. Otherwise, x is declared infeasible and the evaluation is declared
a failure. Again, due to the two-dimensional nature of the problem, the CPU time required
by this spiralling strategy is very small.

2.2 The True Objective Function

Using kriging to generate gridded estimates of SWE over a territory also provides an error
estimate at each point of the grid, which is referred to as the error map. To evaluate
the SWE error from a given set of GMONs, kriging must be performed with the values
collected by the GMONs. An important difficulty is that the GMONs are not yet on the
territory. We next describe a way to infer the values returned by the fictive GMONs from
any locations based on historical data. Using a date for which numerous SWEmeasurements
are available, we generate gridded SWE estimates labelled as the reference values for that
date. Having such a reference map, one can infer the SWE value that a fictive GMON
would return from any point on the map.

Therefore, the true objective function is evaluated as follows: GivenmGMON locations,
the value measured by each GMON is read from the location on the reference map. The
gridded SWE estimates is next kriged from those values and a error map is generated.
In order to compare various error maps during the optimization process, the values of the
error map are summed and returned as the objective function value. This sum gives an
appreciation of the quality of the current GMON locations. The smaller the error sum, the
better the set of locations.

In the present work, the reference map date is March 15, 1990. Kriging is performed
with the Isatis software package [27]. Ordinary kriging is currently used but kriging with
external drift will replace it in future work to consider additional information from secondary
variables, such as elevation of measurement locations.

In summary, the computer simulation takes the Cartesian coordinates of the m GMON
locations as input, applies the spiralling strategy on each GMON if necessary, and returns
an error map or a flag indicating failure. The error map is then converted into a single
value by summing the kriging errors at each pixel in the catchment area. This sum is the
objective function value to minimize. The whole process requires between 1 and 2 seconds
to compute.

2.3 The Surrogate Objective Function

As mentioned above, the true objective function can only be executed from within the HQ
installations. The present section describes a surrogate function, developed as a substitute
for the true function. Using a surrogate has three important advantages in the present
situation. First it allows us to test algorithms and grouping strategies outside of the HQ
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research center. Second, the CPU time required for the evaluation of the surrogate is very low
and testing in a parallel environment is possible. Third, the surrogate is used in Section 4.3
to guide the Mads algorithm for optimizing the true objective function.

Ideally a surrogate shares similarities with the true function while being cheaper to
evaluate. Surrogates may be adaptive and dynamically updated based on past evaluations
of the true function as in the surrogate management framework described in [12] and applied
in [38]. However, in the present work, the considered surrogate is non-adaptive meaning that
it is simply viewed as another blackbox that implements a simplified model.

The surrogate is based on a potential-well function that decreases with the proximity to
the GMON. It models the error distribution of the SWE estimate for a set of GMONs.
The surrogate is given by Equation (2.1)

f(x) =

Ni∑
i=1

Nj∑
j=1

αijeij(x) (2.1)

where Ni and Nj are the map dimensions and x ∈ N2m is a vector composed of the locations
of the m GMONs. The boolean value αij is equal to 1 for all pairs (i, j) belonging to the
water-resource system and to 0 otherwise (e.g., for the STM system, αij = 0 if and only if
the corresponding pixel from Figure 2 is white).

Figure 2: Example of a surrogate error map for the STM water-resource system.

The value eij(x) corresponds to the error at the location (i, j) and depends on theGMON
locations. It is calculated as follows

eij(x) =


1 if dij(x) ≥ 1,
(dij(x))

−0.5 if 0.030 ≤ dij(x) < 1,
(dij(x))

−0.6 if 0.025 ≤ dij(x) < 0.030,
(dij(x))

−0.75 if 0.020 ≤ dij(x) < 0.025,
(dij(x))

−1 if dij(x) < 0.020,

with

dij(x) =
m∑
q=1

cij(x2q−1, x2q)

and where

cij(xu, xv) =

{
1 if xu = i and xv = j,

0.8√
(xu−i)2+(xv−j)2

otherwise.
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The error eij equals 1 when there are no errors, and is greater than 1 otherwise. It is minimal
at the GMON location (i, j), and since it is computed by taking powers of the distance to
a GMON, the least value that it may take is 1. Figure 2 illustrates the values of eij on
the STM system for 12 GMONs. The darker the pixel, the lower is the SWE error. In this
example, there are two locations covered by two GMONs, as seen by the larger circles in
the top part of the figure.

The constant values appearing in the definition of cij and of eij were not arbitrarily
chosen. In fact, a large number of values for these constants were considered and submitted
to experts at HQ. The corresponding error maps such as the one represented in Figure 2
were compared to true error maps and analyzed. The experts agreed on the ones that gave
satisfactory visual representations of the errors.

Note finally that the surrogate blackbox also uses the preprocessing spiralling strategy
described in Section 2.1 to handle the fragmented domain.

3 Mesh Adaptive Direct Search and Groups of Variables

Mads [7] is a directional direct search algorithm from the family of derivative-free methods
reviewed in [18]. Mads is designed to solve constrained blackbox minimization of a function
f : Rn → R ∪ {∞} over a domain Ω ∈ Rn. The functions defining f and Ω are typically
obtained through a computer simulation which is often expensive and may fail to return a
result even at some feasible trial points.

A mechanism for handling groups of variables is detailed in [9] in the context of paral-
lelism, where the difficulty of dealing with numerous variables is addressed by working on
subsets of variables. That work focusses on the parallel framework based on generic groups
and no specific strategy was used to construct these groups. The present study proposes
strategies for grouping variables, some are specific to positioning problems while others are
generic. Another difference with the present work is the way by which the convergence
analysis is ensured. In [9], a specialized parallel process considers all the variables with a
reduced number of directions. Here the convergence analysis is derived from the grouping
strategy evolution.

3.1 Mads Overview

The Mads algorithm evolved from the generalized pattern search (Gps) [45] which itself
evolved from the coordinate (or compass) search (Cs) [20]. These are all iterative algorithms
where every iteration (indexed by the number k) attempts to generate a feasible trial point in
Rn having a better objective function value than the current best solution, denoted xk ∈ Rn.
If iteration k is a success, then iteration k+1 starts with a new incumbent xk+1, otherwise it
starts with xk+1 = xk. Each iteration tests a finite number of trial points and the algorithms
differ by the way that these trial points are generated.

Iterations are divided in a search and a poll step. In both steps of iteration k, tentative
trial points are generated on a discretization of the space of variables called the mesh

Mk =
{
xk +∆m

k Dz : z ∈ Z|D|
+

}
where Z+ is the set of the nonnegative integers, ∆m

k is a strictly positive real number called
the mesh size parameter, and D is a constant positive spanning matrix [3, 21]. The only
requirement of the search step is that finitely many mesh points be generated. The search
step allows the user to exploit his knowledge of the problem to generate trial points.



SNOW WATER EQUIVALENT ESTIMATION USING BLACKBOX OPTIMIZATION 7

The convergence analyses of these methods rely on the study of the points generated
during the poll step. In Cs, there are exactly 2n poll points at each iteration:

{xk ±∆m
k ei : i = 1, 2, . . . , n},

where ei is the ith coordinate vector in Rn. This set of poll points can also be written as
the union of n groups

{xk ±∆m
k e1} ∪ {xk ±∆m

k e2} ∪ . . . ∪ {xk ±∆m
k en}.

In Mads, the poll points can be generated with more flexibility, as the method ensures
that the set of normalized directions

∞∪
k=0

{
tk − xk

∥tk − xk∥
: tk is a poll point generated at iteration k

}
is dense in the unit sphere. This is done by introducing the poll size parameter ∆p

k, which
governs the distance from the poll center xk to the poll points. In Cs and Gps, both the
mesh and poll size parameters are identical, but in Mads, ∆m

k is always less than or equal
to ∆p

k. The interested reader may consult [2] for details about how such directions may be
constructed in practice.

There are two types of iterations. The first type occurs when either the search or the
poll step generates a feasible trial point with a lower objective function value than f(xk).
These are called successful iterations. The other type of iterations occurs when no trial
points improve the objective function value. These are called unsuccessful iterations. In
Mads, the parameters ∆m

k+1 and ∆p
k+1 are reduced with respect to ∆m

k and ∆p
k if and only

if iteration k is unsuccessful. A high level summary of a Mads algorithm is presented in
Figure 3.

Initialization
starting point: x0

initial mesh and poll size parameters: ∆m
0 , ∆p

0 > 0
iteration counter: k ← 0

search and poll steps
search (optional)

launch the simulation on a finite number of mesh points
poll (optional if search was successful)

launch the simulation on a finite number of mesh points
within a radius of ∆p

k of xk

Updates
determine if iteration k is successful or unsuccessful
update the incumbent xk+1

update the mesh and poll size parameters ∆m
k+1 and ∆p

k+1

increase the iteration counter k ← k + 1
goto search and poll steps if no stopping condition is met

Figure 3: A general Mads algorithm.

For Cs, the union of normalized directions is simply the finite set {±e1,±e2, . . . ,±en}.
For Gps, this union also consists of a finite set, and the convergence results of Cs and Gps
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are limited to these sets. Only the Mads algorithm ensures that the Clarke generalized
derivative [17] f◦(x̂; v) (evaluated at some accumulation point x̂ of the sequence of unsuc-
cessful iterates xk, where f is locally Lipschitz) is nonnegative for every direction v in the
hypertangent cone [17].

3.2 Grouping Variables

There are cases where there is some known structure concerning the variables. In [25] for
example, the variables are partitioned into groups of three, where two of them define the
location of a pump, and the third a pumping rate. If one wants to modify a solution, it seems
more natural to explore modifications of the locations and pumping rate of a single pump
rather than simultaneously changing the x coordinate of a first pump, the y coordinate of a
second pump, and the pumping rate of a third one.

More generally, letN = {1, 2, . . . , n} be the set of indices of all the optimization variables.
Groups of variables are obtained by considering a finite number of subsets Nq ⊆ N with
q ∈ Q. The number of variables in the group Nq is denoted by nq = |Nq|.

The Mads algorithm with groups of variables requires more structure on the matrix D
used to define the mesh Mk: for each group Nq, there exists a subset Dq of the columns
of D that positively spans the subspace defined by the variables of Nq. Notice that this
supplementary condition is trivially satisfied with D = [I;−I] used in the two existing
Mads implementations LtMads [6, 7] and OrthoMads [2] as well as in Cs.

Figure 4 illustrates a grouping strategy on a problem with six variables representing
the locations in R2 of three GMONs. The initial location vector xk ∈ R6 is represented
in the three subfigures by the • symbols. Trial points generated by Cs will only differ
from xk by a single variable, as represented by the ⊗ symbol in the leftmost illustration,
in which a single GMON moved vertically. With Mads, the three GMONs are allowed
to move simultaneously on a fine mesh as shown in the central illustration. If three groups
are formed with the new strategy, then a single GMON can be moved on the fine mesh, as
depicted on the third subfigure.

Figure 4: The • symbols represent the initial locations of three GMONs and the ⊗ symbols
the locations provided by a local poll.

With this strategy, Cs can be seen as a specific grouping instance in which there are
n groups, each with a single variable, and Mads can be seen as an instance with a single
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group containing all n variables.

3.3 Clarke Stationarity in Subspaces

The Mads algorithm with groups of variables belongs to the class of Mads algorithm, and
therefore it inherits its convergence analysis. The fundamental result is Theorem 3.12 of [7]
that relies on the definition of refining directions. A convergent sequence of feasible unsuc-
cessful iterates {xk}k∈K , for some subset of indices K, is said to be a refining subsequence
if {∆p

k}k∈K converges to zero. The limit x̂ of a convergent refining subsequence is called a
refined point∗. Consider the normalized direction vk = tk−xk

∥tk−xk∥ where tk is a feasible poll

point generated at iteration k ∈ K. Any convergent subsequence {vk}k∈L with L ⊆ K is
said to be a refining direction for x̂.

The convergence result ensures that if the objective function f is Lipschitz near the
refined point x̂, then the Clarke directional derivative satisfies f◦(x̂; d) ≥ 0 for every refining
direction d belonging to the hypertangent cone to the feasible region at the limit point x̂.

With the default Mads implementation [2], the set of refining directions is dense in the
unit sphere. With Cs, the set of refining directions is simply composed of the 2n positive
and negative standard orthogonal directions.

Theorem 3.1. Let Fq be the linear subset of Rn spanned by the variables in the group Nq,
for every q ∈ Q. If the directions used to generate the poll points are using Mads in each
nq dimensional subspace Fq, then the set of refining directions will be dense in the union of
the subspaces

∪
q∈Q Fq.

Proof. The additional restriction on the set of directions D used in conjunction with the
groups of variables makes it such that the directions used by the algorithm to generate the
poll points will necessarily be contained in one or more subspaces Fq for q ∈ Q. Using the
Mads directions in the subspaces implies that positive bases will be used in each subspace,
leading to an asymptotically dense set of directions in each Fq. Therefore, the set of refining
directions is dense in

∪
q∈Q Fq.

Consider for example a problem in R5 with three groups N1 = {1, 2, 3}, N2 = {3, 4}
and N3 = {5}. This would mean that the convergence result could only guarantee that the
Clarke derivatives are nonnegative in the 3-dimensional subspace {x ∈ R5 : x4 = x5 = 0},
the 2-dimensional subspace {x ∈ R5 : x1 = x2 = x5 = 0} and the 1-dimensional subspace
{x ∈ R5 : x1 = x2 = x3 = x4 = 0}. It would be possible to have a problem where f ′(x̂; d) < 0
at a refining point in the direction d = (0, 0, 0, 1, 1) for example.

In summary it appears natural to explore subspaces associated to groups of variables
when the problem possesses such a structure. However restricting the exploration to these
groups weakens the theoretical convergence analysis and may lead to practical difficulties
by making it impossible to escape from an undesirable region by varying only a subset of
variables.

A trivial way to ensure that the set of refining directions would be dense in the unit
sphere is to make sure that one of the groups contains all the variables: Nq = N for one q in
Q. This strategy is easy to implement but requires a large number of function evaluations. A
more sophisticated strategy consists in periodically reforming the groups in such a way that
after finitely many reconfigurations a single group contains all the variables. The easiest way
to implement this strategy is to simply set Q = {1} and N1 = N when a stopping criteria

∗The term refined point was introduced in [8].
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is met for the original grouping. Another strategy consists in progressively merging groups
together as proposed in the next subsection.

3.4 Grouping and Dynamic Regrouping Strategies

Grouping and regrouping the n variables requires three elements: an initial grouping strat-
egy, a stopping criteria for regrouping and a regrouping strategy. In this section, we propose
strategies for these three elements. Every combination of these strategies is tested in Sec-
tion 4.

Initial Grouping Strategy

In the context of GMON positioning, n is an even number and (x2q−1, x2q) represents the
Cartesian locations of the q-th GMON. Let m denote the number of GMONs, and therefore
there are n = 2m variables. The initial grouping strategies studied in this paper are chosen
from the following:

Indiv : Individual variable: Nq = {q}, q = 1, 2, . . . , n.
Pairs : Pairs by GMON in Cartesian coordinates: Nq = {2q − 1, 2q}, q = 1, 2, ...,m.
All : All n variables belong to a single group: N1 = N .

Stopping Criteria for Regrouping

Regrouping the variables should be frequent enough to be useful, but should not impede the
progress of the algorithm. To limit the number of tests and generate useful results for the
true location problem from HQ, we opted for the following strategy:

Step 1 Set nr = 1.
Step 2 Launch Mads. Terminate after nr consecutive failed Mads iterations.
Step 3 Set nr ← nr + 1 and go to Step 2 with a new group of variables.

Regrouping Strategy

A coherent set of rules that manages the merger, division and conservation of groups of
variables is called regrouping strategy. The regrouping algorithms used are:

Static : Keep the same groups.
Dist : Merge by smallest distance.
Cluster : Merge by distance with a K-means method.
Mvt : Group all variables that did not change in the previous run.
Regres : Use linear regression to identify important variables.

Below is a more detailed description of these regrouping strategies.

Static: This strategy does not modify the groups. It is presented for comparison purposes
as it corresponds to existing optimization algorithms. Combining the Static regrouping
strategy with Indiv initial grouping is equivalent to the Cs algorithm. Combining it with
the All initial grouping is equivalent to the Mads algorithm.
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Dist: This regrouping strategy is specific to positioning problems. The first time that it
is invoked, it groups the four variables associated to the two GMONs that are the closest to
each other. The remaining variables are grouped in pairs as in the initial grouping Pairs.
Then, every time that the strategy is called, it moves to the group the pair of variables
corresponding to the closest GMON. Ties are broken arbitrarily. This regrouping strategy
ensures that after m calls, there will be a single group containing all variables.

Cluster: This regrouping strategy is specific to positioning problems. The first time that
the strategy is called, the variables are grouped into m pairs, as in the initial grouping
Pairs. Then, each time that the strategy is invoked, the pairs are clustered using a K-
means algorithm [29]. In the numerical tests, we use the kmeans() function from the R

software [41]. The number of clusters, initialized to m, decreases incrementally with each
new call to this strategy, resulting in a single group containing all variables after m calls.

Mvt: This strategy compares the initial solution x0 supplied to the previous run of the
Mads algorithm (from Step 2) with the final solution xk produced by that same run. All
variables associated to the GMONs that did not move are grouped together. This strategy
allows stationary GMONs to be moved together in order to unlock suboptimal configura-
tions. As a local optimal configuration is approached, the movement of the GMONs become
less frequent, and will necessarily entail a single group containing all variables.

Regres: In optimization, the objective function value is often more sensitive to some
variables than others. For example, analyses of variance are performed in [12] to reduce
the size of an helicopter rotor design problem. The Regres strategy consists of a linear
regression with simple rank transformation [32, 33] using trial points evaluated during the
previous step. The lm() function from the R software is used to rank the variables in
decreasing order of regression coefficient magnitude. The first variables have priority and
are grouped individually (one group per variable), while the remaining ones are placed in a
single group. Each time this strategy is invoked, the set of priority variables is reduced by
two elements, leading to a single group after m calls.

All regrouping strategies presented above (except Static) ensure that after finitely many
reconfigurations, there will be a single group containing all the variables. This implies, at
that point, that the algorithm corresponds to the Mads algorithm described in [7] and
inherits from its convergence analysis.

4 Numerical Experiments

Numerical experiments are conducted in two phases. The first one studies combinations of
preprocessing, grouping and regrouping strategies on the surrogate objective function. The
aim of this first phase is to identify a limited number of strategies that stand out as being
preferable to others. These specific strategies are then tested on the true problem in the
second phase.

4.1 Testing Methodology

For each of the three water-resource systems, we study the situations in which the number
m of GMONs varies from 5 to 10. This leads to a total of 18 instances. For the tests
conducted on the surrogate function, realistic initial GMON locations were generated by
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visually spreading the m GMONs over the domain for each of the instances. For the tests
on the true function, the starting point for a given instance consists of the best solution
produced by all runs made while optimizing the surrogate problem.

The Nomad blackbox optimization software [1, 36] is used for the numerical tests of this
paper, with all default settings. In particular, these settings ensure that the components of
the initial mesh size parameter ∆m

0 associated to the variables with even (odd) index are
set to one tenth of the maximum length (width) of the considered map. The settings also
ensure an opportunistic approach, i.e., an iteration of the Mads algorithm terminates as
soon as a new improvement is made.

The regrouping strategies consist in launching a series of Nomad runs with different
sets of parameters and stopping criteria. More precisely, every time a regrouping strategy
is performed, Nomad is launched from the best solution from the previous run, with the
same mesh size parameter from the end of the previous run.

For comparison purposes, we set the overall stopping criteria to be a limit of 1000 on the
total number of blackbox evaluations, regardless of the problem. This value is reasonable
in terms of computing time, and reveals the evolution of different algorithms, both on the
problem of HQ and on the surrogate. The typical behavior of direct-search algorithms is
that most of the objective function reduction is achieve in the early iterations. We have ran
some limited tests with more function evaluations, and the improvements in the objective
functions were marginal.

Tables are presented below to summarize the results of the numerical experiments. Each
row corresponds to a specific combination of initial grouping and regrouping strategies.
Columns give the average relative improvement in percentage, of the objective function
value after a total evaluation budget (TEB) chosen in the set {250, 500, 1000}, and the
column labelled Mean gives the average over the 18 instances. The relative improvement is
computed with respect to the objective function value of the initial solution. The rows are
presented by decreasing order of the mean values.

The numerical experiments are conducted in two phases. Section 4.2 establishes a basis
for comparison by launching the Mads algorithm without any regrouping strategy, and
analyses the effect of the spiralling strategy proposed in Section 2.1. Then, computational
results are reported for combinations of grouping and regrouping strategies on the surrogate
problem. The most promising strategies are then tested in Section 4.3 on the true function
from HQ.

4.2 Testing Strategies on the Surrogate Optimization Problem

The first three rows of Table 1 summarize the performance of three static strategies, without
the spiralling strategy designed to produce feasible locations. The Indiv strategy corre-
sponds to coordinate search, in which the algorithm only changes a single variable at a time.
The All strategy corresponds to the Mads algorithm, and allows simultaneous variations
of all variables. The Pairs strategy is intermediate, and attempts to move the two variables
defining the location of a single GMON. The three bottom rows of the table compare the
same strategies but uses the spiralling treatment to move the trial points to nearby feasible
locations. Without any surprise, the spiralling treatment significantly allow all strategies
to generate better solutions. Therefore, all further tests are performed with the spiralling
treatment.

The next series of tests were performed to exploit the fact that the Mads algorithm
uses an opportunistic strategy when processing a list of trial points. This means that the
evaluation of the trial points in the list can be interrupted as soon as a new incumbent
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Table 1: Effect of the spiralling strategy for feasibility for static strategies. Numbers corre-
spond to the average relative improvement (%) compared to the starting solution.

Without spiralling
Initial Regroup TEB = 250 TEB = 500 TEB = 1000 Mean
Pairs Static 0.89 0.92 0.92 0.91
All Static 0.77 0.77 0.77 0.77
Indiv Static 0.42 0.42 0.42 0.42

With spiralling
Initial Regroup TEB = 250 TEB = 500 TEB = 1000 Mean
Pairs Static 1.31 1.60 1.71 1.54
All Static 1.23 1.55 1.71 1.50
Indiv Static 1.25 1.53 1.70 1.49

solution is generated. Therefore, the order in which the trial points are evaluated can
affect the number of function evaluations required by the algorithm. Table 2 shows the
performance of the same three strategies when ordering the trial points following the values
on the error map associated to the GMON locations. The rationale behind this ordering is
that positioning GMONs where the error is large is probably more efficient than positioning
them in places where the estimation has a low error. The ordering strategy helped the
algorithm on almost all instances tested, and therefore it will be applied in the remaining
tests on the surrogate function. The last column of the table identifies some of the strategies
that will be compared when solving the problem on the true objective function.

Table 2: Effect of ordering trial points for static strategies.

Initial Regroup TEB = 250 TEB = 500 TEB = 1000 Mean Selected
Indiv Static 1.40 1.65 1.74 1.60 X
Pairs Static 1.36 1.61 1.70 1.56
All Static 1.30 1.54 1.64 1.50 X

These numerical results suggest that moving individual variables is preferable to moving
pairs of variables, and that both these strategies are preferable to changing simultaneously
the values of all the variables. These conclusions are unusual since the theoretical conver-
gence results are stronger with the All strategy. This behavior can be explained by the
use of the error map for ordering the trial points. Indeed, the error map does not reflect
the consequences of simultaneously varying several variables, as it only quantifies potential
locations for GMONs.

Table 3 shows the results of applying all three initial groupings with the four dynamic
regrouping strategies for a total of 12 combinations.

HQ provided computer resources to apply six algorithmic strategies on the original prob-
lem. For each of the five regrouping strategies, we selected the initial grouping that produced
the best mean improvement value. The last column of Tables 2 and 3 lists the selected
static and dynamic strategies. The reason why the mean value criterion is used instead of
the best solution after 1000 evaluations in to favor robust strategies, i.e., strategies whose
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Table 3: Grouping and regrouping strategies on the surrogate.

performance is less likely to fluctuate. For example, Table 3 reveals that the All Regres
strategy found the overall best solution, but its performance after 250 evaluations is inferior
to all the selected strategies. For comparison purposes, and even though it did not produce
as good results, we added the All Static strategy which corresponds to applying the Mads
algorithm directly without any grouping strategies.

4.3 Numerical Results on the True Objective Function

This section compares the performance of the six selected grouping and regrouping strategies
on the true objective function. In all tests, the spiralling treatment for feasibility is applied
since the three domains representing the feasible locations are identical to those studied with
the surrogate. As mentioned previously, for each instance, the starting point consists of the
best solution produced by all runs made with the surrogate.

The surrogate function on which the numerical experiments of the previous section were
conducted is still used to guide the optimization algorithm. At each iteration, before invoking
the evaluation of the function with Isatis, the trial points are evaluated and ordered by their
surrogate objective value. This strategy aims at evaluating the true objective function value
at the most promising trial points first. Preliminary tests showed that this ordering is
preferable to using the error map as in Section 4.2.

Unlike the work done in the previous section, the objective is not to identify promising
strategies, but instead we want to compare which strategy is the most efficient on the 18
instances. Therefore, we only consider the final relative improvement after 1000 function
calls for each instance, and do not consider the evaluations budgets of 250 and 500. Table 4
shows the detailed performance of the six selected combinations of grouping and regrouping
strategies for each of the three water-resource systems, when the number of GMONs varies
between 5 and 10. The rows in the table are not sorted according to the mean value but
are listed with the same order as in Tables 3 and 2, with the dynamic strategies first. The
shaded entries indicate which strategy gave the best result for a given column.

The main difference between the results on the true problem and those on the surrogate is
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Table 4: Selected strategies on the three catchment areas with the true objective function.

Saint-Maurice (STM)
m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 Mean

Indiv Dist 3.02 5.30 6.19 7.86 7.37 7.66 6.23
Pairs Regres 3.07 5.31 6.76 7.43 6.55 7.77 6.15
Pairs Cluster 3.04 5.31 6.75 7.61 6.48 7.44 6.10
Indiv Mvt 3.07 5.28 6.72 7.75 7.33 7.51 6.28
Indiv Static 2.97 5.29 6.58 7.41 6.47 7.74 6.08
All Static 3.06 5.29 6.80 7.73 7.06 7.62 6.26

Gatineau (GAT)
m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 Mean

Indiv Dist 1.77 4.28 5.74 6.61 5.28 4.08 4.63
Pairs Regres 1.80 4.67 5.65 5.74 5.31 4.27 4.58
Pairs Cluster 1.80 4.70 5.74 6.60 5.13 4.23 4.70
Indiv Mvt 1.80 4.30 5.74 6.56 5.96 4.24 4.77
Indiv Static 1.77 4.28 5.57 6.44 5.55 3.90 4.58
All Static 1.77 4.20 5.69 6.62 4.50 4.21 4.50

La Grande (LG)
m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 Mean

Indiv Dist 1.05 2.37 4.14 5.10 6.54 6.28 4.25
Pairs Regres 1.07 2.51 4.22 4.82 6.88 6.40 4.32
Pairs Cluster 1.07 2.29 4.20 5.09 6.90 6.15 4.28
Indiv Mvt 1.09 2.47 4.24 5.09 6.82 6.31 4.34
Indiv Static 1.05 2.45 4.21 4.92 6.83 6.25 4.28
All Static 1.06 2.43 4.23 5.07 6.79 6.04 4.27

that the Indiv Static strategy did not perform well. On each of the 18 instances considered,
it never found the best solution, and on 7 instances it found the worst solution. The opposite
behavior was observed on the surrogate problem.

Another observation is that the All Static strategy failed to approach the best solution
on a large number of test cases. Theses observations suggest that the surrogate function
was possibly too simple and did not oppose a challenge to the simple static strategies. The
true objective function however is more complex and introduced more nonlinearities and
possibly discontinuities which caused difficulties to the static strategies.

Each of the dynamic strategies found the best solution on at least four instances. The
Pairs Regres strategy stands out by being the only combination that found the best
strategy in 7 out of the 18 instances. The Indiv Mvt strategy produced the worst solution
on only one instance (STM with m = 6) and this instance has the smallest gap between the
best and worst solutions.

Table 5 orders the six strategies by taking the average over all instances. The shaded
cells indicate again the best values for each column. Although the numerical values share
the same magnitude, three conclusions can be drawn for this table.

i) For each of the STM, GAT and LG systems, the Indiv Mvt strategy dominates all
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others. Each of the other strategies produced significantly worse averages on at least
one of the three systems.

ii) Both static strategies did worse on average than each of the dynamic ones. This
observation suggests that dynamically regrouping the variables is preferable than either
moving individual variables, or moving all variables simultaneously.

iii) Even if the variables represent locations in R2, pairing them at the initial iteration
does not appear to be beneficial. Both strategies with initial individual variables are
preferable on average to the ones where the variables are paired.

Table 5: Summary of selected strategies on the three catchment areas with the true objective
function.

STM GAT LG Mean
Indiv Mvt 6.28 4.77 4.34 5.13
Indiv Dist 6.23 4.63 4.25 5.04
Pairs Cluster 6.10 4.70 4.28 5.03
Pairs Regres 6.15 4.58 4.32 5.02
All Static 6.26 4.50 4.27 5.01
Indiv Static 6.08 4.58 4.28 4.98

Another way to compare different algorithmic strategies consists in analyzing their per-
formance profile [23]. Figure 5 represents the performance of the strategies versus a scalar
α. It shows the proportion out of the 18 test instances for which the strategy produced a
solution with an objective function value within ln(α)% of the best known value. The higher
the curve is, the better is the strategy.

The figure clearly shows that the Indiv Mvt strategy dominates all other strategies for
most values of α. The Indiv Static strategy is dominated by all other strategies on the
left part of the figure. This is a consequence of the fact that it never found the best solution
on any of the instances. The four other strategies are comparable on the left part of the
graph, but when α belongs to the interval [1.01, 1.015], the All Static strategy is the only
one that does not reach 100%. This indicates that this strategy performed very poorly on
some of the test problems. Indeed, analyzing further Table 4 reveals that it did not produce
a good solution on GAT with m = 9 and on LG with m = 10.

5 Discussion

The motivation for this work was to find the GMON locations that minimize the snow
water equivalent estimation error. Our prior work in tsunami buoy positioning [5] and in
hydraulic capture problems [10, 25] encouraged us to further study grouping strategies for
the variables. The present paper develops these ideas by formally defining initial grouping
strategies for positioning problems and by introducing regrouping strategies, some specific
to positioning, and others generic. The proposed regrouping strategies have the property
that after a finite number of iterations all variables belong to the same group and therefore
the entire convergence analysis of Mads applies.

The true objective function was not available at the time that this research project was
initiated and this lead us to perform exhaustive testing on the surrogate function. Additional
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Figure 5: Performance profile [23] for the six selected algorithms applied to the 18 instances
using the true objective function.

initial and regrouping strategies are found in [26] but only the most efficient and intuitive
ones are reported in the present paper.

The usefulness of the regrouping strategies is not apparent from the numerical tests on
the surrogate function. This is probably because the surrogate function did not capture
enough of the complexity of the true objective. However when considering the true func-
tion, one strategy stood out as being preferable to the others. This strategy is not specific
to positioning problems as it forms groups with idle variables and could be used in a more
general context. Furthermore the numerical experiments suggest that dynamically regroup-
ing the variables improves the quality of the final solution compared to the standard Mads
and Cs methods.
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nique de Montréal, June, 2010.
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E-mail address: Vincent.Garnier@gerad.ca
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École Polytechnique de Montréal
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