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parameterized by a scalar parameter µ, to solve an original constrained optimization. And
existence of a unique differentiable path x(µ) for positive µ in a neighborhood of µ = 0 was
proven under Mangasarian-Fromowich constraint qualification (MFCQ), strict complemen-
tarity and second-order sufficient conditions. Due to the reasons (e.g., ill-conditioning of the
Hessian matrix of the unconstrained subproblems in the limit) as discussed in [17, 31], IPMs
were not paid enough attention until Karmarkar published his new polynomial algorithm
for linear programming in 1984 (see, e.g., [18]). In the past three decades, the success of
IPMs for linear and convex nonlinear programming stimulated renewed interest in them for
the nonconvex case. Using globalization strategies like line search and trust region to solve
a sequence of subproblems with decreasing parameters µk, the variants of classic IPMs in
[11], with different merit functions, were proposed for nonconvex programming. Global con-
vergence results of some IPMs for nonconvex programming have been established, see, for
example, [1, 6, 8, 15, 22, 34]. Unlike IPMs for linear or convex nonlinear programming, how-
ever, without existence and global convergence of smooth path, the solution of the previous
subproblem may not supply a good initial guess of a solution of the current subproblem for
some parameter µk, and hence a crucial advantage of the interior point method is lost.

Modern homotopy method, whose probability-one global convergence can be proven
under fairly weak conditions by using differential topology tools, is a powerful global conver-
gent method for solving nonlinear problems. See [7, 19, 26] for pioneer works and [2, 13] for
survey monographs. Some homotopy methods, interior point or noninterior point, are pre-
sented for solving nonlinear programming, see, for example, [9, 10, 20, 27, 29, 32, 36]. Their
probability-one convergence was proven for nonconvex programming without uniformly pos-
itive definiteness or even uniform nonsingularity of the Hessian of the Lagrangian function.

The first homotopy method for nonlinear programming was proposed for the solution of
convex programming in [13]. For a given x(0) satisfying g(x(0)) < 0, the homotopy equation

H(x, y, µ) =

(
µ∇f(x) + (1− µ)(x− x(0)) +

∑m
j=1 y

+
j ∇gj(x)

y−j + gj(x), j = 1, . . . ,m

)
= 0,

was constructed, where µ ∈ [0, 1], y = (y1, . . . , ym)T ∈ Rm, y+j = [max{0, yj}]3, y−j =

[max{0,−yj}]3, j = 1, . . . ,m, ∇f(x) and ∇gj(x) are the gradients of f(x) and gj(x) respec-
tively. The homotopy equation is equivalent to the Karush-Kuhn-Tucker (KKT) conditions
of the parameterized and constrained optimization problem

min µf(x) + (1− µ)∥x− x(0)∥2/2, s.t. g(x) ≤ 0.

At µ = 1, it is equivalent to the KKT conditions for the original optimization. Existence and
global convergence of a homotopy path determined by the homotopy equation, were proven
under the nonemptiness and boundedness of the convex feasible set and the regularity of
the homotopy map. Hence, tracing the path from µ = 0 to µ = 1, a solution of KKT system
can be obtained.

In [9, 10], a combined homotopy interior point (CHIP) method was proposed to solve
nonconvex programming with only inequality constraints. The combined homotopy is as
follows

H(x, y, µ) =

(
(1− µ)(∇f(x) +∇g(x)y) + µ(x− x(0))

Y g(x)− µY (0)g(x(0))

)
,

where y ∈ Rm
+ , (x(0), y(0)) ∈ Ω0 × Rm

++, µ ∈ [0, 1], Y and Y (0) are diagonal matrices with

i-th diagonal elements yi and y
(0)
i respectively, and Ω0 = {x ∈ Rn | g(x) < 0}. Existence

and global convergence to a KKT point of a smooth homotopy path emanating from a
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random initial interior point, were proven under the nonemptiness and boundedness of Ω0,
linear independence constraint qualification (LICQ) and a so-called “normal cone condition”.
The CHIP method was implemented by some predictor-corrector procedure for numerically
tracing the homotopy path.

The normal cone condition is somewhat restricted. To solve more general nonconvex
programming problem, modified combined homotopies were constructed and the normal cone
condition was weaken to a quasi normal cone condition (in [21]) and a pseudo cone condition
(in [35]) respectively, and similar global convergence results were given. In [29], by using
the KKT conditions of a constrained parametric optimization problem, a new homotopy
was constructed. Global convergence of a homotopy path to a KKT point was proven under
assumption, in addition to the nonemptiness and boundedness of a parameterized feasible
set and Arrow-Hurwicz-Uzawa constraint qualification, that the homotopy path does not
go to infinity near the starting hyperplane. In [36], the polynomial complexity of a CHIP
method for convex programming was given. In [27], global convergence to a local minimum
point was proven under some additional assumptions.

In [20], a CHIP method for solving nonconvex programming with both equality and
inequality constraints, as in (1.1), was proposed. The homotopy equation was defined as

H(x, y, z, µ) =

 (1− µ)(∇f(x) +∇g(x)y) +∇h(x)z + µ(x− x(0))
Y g(x)− µY (0)g(x(0))

h(x)

 = 0, (1.2)

where (y, z) ∈ Rm
+ × Rl is a Lagrange multiplier, (x(0), y(0)) ∈ Ω0 × Rm

++, µ ∈ [0, 1] and
Ω0 = {x ∈ Rn | g(x) < 0, h(x) = 0}. Existence and global convergence to a KKT point of a
smooth homotopy path were proven under the nonemptiness and boundedness of Ω0, LICQ
and a normal cone condition on both inequality and equality constraints: ∀x ∈ ∂Ω = Ω\Ω0

(a gap, should be “∀x ∈ Ω”),x+
∑

i∈I(x)

yi∇gi(x) +∇h(x)z

∣∣∣∣∣ yi ≥ 0, i ∈ I(x), z ∈ Rl

 ∩ Ω = {x}, (1.3)

where I(x) = {i | gi(x) = 0, i = 1, . . . ,m}. Due to the last component, h(x) = 0, the
homotopy equation (1.2) needs an interior starting point x(0) which satisfies also equality
constraints. Because finding a point satisfying both equality and strict inequality constraints
may be as difficult as the solving original problem, the CHIP method is not convenient to
use.

In this paper, a new homotopy method, called combined homotopy infeasible interior
point (CHIIP) method, was proposed for (1.1). It requires only the starting point to be
an interior point and not to be a feasible point, so it is more practical than CHIP method
for (1.1). Existence and global convergence of the homotopy path with probability one to a
solution of the KKT system are proven under a normal cone condition concerning only with
the inequality constraints, as well as a stronger positive linear independence assumption.

The rest of this paper is organized as follows. In section 2, the homotopy is constructed,
existence and global convergence of the homotopy path are proven. In section 3, the CHIIP
method is given by numerically tracing the homotopy path, and numerical results are given
to show its convenience and effectiveness.

Throughout this paper, we use the following notations: For any v ∈ Rn, Diag(v) denotes
the diagonal matrix with its i-th diagonal element given by vi. We denote by Rn

+ (Rn
++)

the set of vectors with n nonnegative (positive) components. Finally, we denote by Ω1 =
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{x | g(x) ≤ 0}, Ω0
1 = {x | g(x) < 0}, ∂Ω1 = Ω1 \ Ω0

1, I(x) = {i | gi(x) = 0, i = 1, . . . ,m}. e
represents a vector whose entries are all ones.

2 The Homotopy and Homotopy Path

Let x be a local solution of the problem (1.1). If MFCQ holds at x, then there exists (y, z)
such that

∇f(x) +∇g(x)y +∇h(x)z = 0,
h(x) = 0,
Y g(x) = 0, y ≥ 0, g(x) ≤ 0,

(2.1)

where Y = Diag(y). The system (2.1) is called the KKT system or first order optimality
conditions for the problem (1.1).

For simplicity, we give the following definition.

Definition 2.1 ([3, 24]).
{
{∇gi(x)}i∈I(x), {∇hj(x)}lj=1

}
is called positive-linearly indepen-

dent at x if

∑
i∈I(x)

αi∇gi(x) +
l∑

j=1

βj∇hj(x) = 0, αi ∈ R+, βj ∈ R ⇒ αi = βj = 0.

Otherwise,
{
{∇gi(x)}i∈I(x), {∇hj(x)}lj=1

}
is called positive-linearly dependent.

Remark. For any given feasible point x, MFCQ holds at x if and only if
{
{∇gi(x)}i∈I(x),

{∇hj(x)}lj=1

}
is positive-linearly independent. For details, see [24].

Definition 2.2. A point x is called PLI-regular if
{
{∇gi(x)}i∈I(x), {∇hj(x)}lj=1

}
is positive-

linearly independent. Otherwise, x is called PLI-nonregular.

The following hypotheses will be used in this paper:
C1. Ω0

1 is nonempty and bounded;
C2 (The normal cone condition). ∀x ∈ ∂Ω1,x+

∑
i∈I(x)

yi∇gi(x)

∣∣∣∣∣ yi ≥ 0

 ∩ Ω1 = {x}.

To solve KKT system (2.1), we construct the following homotopy

H(w, µ) =

 (1− µ)(∇f(x) +∇g(x)y +∇h(x)z) + µ(x− x(0))
Y g(x) + µe
h(x)− µz

 , (2.2)

where w = (x, y, z) ∈ Ω̂ = Ω1 ×Rm
+ ×Rl, µ ∈ [0, 1], x(0) ∈ Ω0

1. For any given x(0) ∈ Ω0
1, we

denote the zero point set of H(w, µ) as

H−1(0) =
{
(w, µ) ∈ Ω1 ×Rm

+ ×Rl × (0, 1] | H(w, µ) = 0
}
.

It follows from x(0) ∈ Ω0
1 that H(w, 1) = 0 has only one simple solution

w(0) =
(
x(0), y(0), z(0)

)
=

(
x(0),−

[
G(x(0))

]−1

e, h(x(0))

)
,
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where, and from here on, G(x) = Diag(g(x)). When µ = 0, the homotopy equation
H(w, µ) = 0 turns to the KKT system.

The following main theorem ensures that the homotopy (2.2) does work.

Theorem 2.3. Suppose that f(x), h(x) and g(x) are three times continuously differentiable,
and conditions C1, C2 hold. Let H(x, y, z, µ) be defined as (2.2), then for almost all x(0) ∈
Ω0

1, H
−1(0) contains a smooth curve Γx(0) , called the homotopy path, starting from (w(0), 1).

It approaches to the boundary of Ω̂× (0, 1].If the x-component of any accumulation point of
any sequence of points on Γx(0) is PLI-regular, then Γx(0) terminates in or approaches to the
hyperplane µ = 0. And if (x∗, y∗, z∗, 0) is a limit point of Γx(0) on the hyperplane µ = 0,
then x∗ is a KKT point for the problem (1.1).

Proof. Let H̃(w, x(0), µ) be the same map withH(w, µ) but taking x(0) as a variate. Consider
the following submatrix of the Jacobian DH̃(w, x(0), µ) of H̃(w, x(0), µ):

∂H̃(w, x(0), µ)

∂(y, z, x(0))
=

 ∗ ∗ −µI
G(x) 0 0
0 −µI 0

 .

For any x(0) ∈ Ω0
1 and (w, µ) ∈ H−1(0), from µ > 0 and Y g(x)+µe = 0, we know that G(x)

is nonsingular. It follows that ∂H̃(w,x(0),µ)
∂(y,z,x(0))

is a nonsingular matrix, and hence, DH̃(w, x(0), µ)

is a matrix of full row rank. That is, 0 is a regular value of H̃(w, x(0), µ).
From the parameterized Sard theorem (Th. 2.1, [7]), we know that for almost all x(0) ∈

Ω0
1, 0 is a regular value of H(w, µ) : Ω̂0×(0, 1) → Rn+l+m. If 0 is a regular value of H(w, µ),

from the implicit function theorem, the nonsingularity of

∂H(w(0), 1)

∂w
=

 I 0 0
∗ G(x(0)) 0
∗ 0 −I

 ,

and the fact that H(w(0), 1) = 0, there must be a smooth curve Γx(0) starting from (w(0), 1)
and going into Ω̂0× (0, 1). Γx(0) must terminate in or approach to the boundary of Ω̂× [0, 1].

Let (w∗, µ∗) = (x∗, y∗, z∗, µ∗) ∈ ∂(Ω̂× [0, 1]) be an ending limit point of Γx(0) . Only the
following five cases are possible:

(i) w∗ ∈ Ω1 ×Rm
+ ×Rl, µ∗ = 1, ∥(y∗, z∗)∥ < ∞;

(ii) w∗ ∈ Ω1 ×Rm
+ ×Rl, µ∗ ∈ [0, 1], ∥(y∗, z∗)∥ = ∞;

(iii) w∗ ∈ Ω1 × ∂Rm
+ ×Rl, µ∗ ∈ (0, 1), ∥(y∗, z∗)∥ < ∞;

(iv) w∗ ∈ ∂Ω1 ×Rm
++ ×Rl, µ∗ ∈ (0, 1), ∥(y∗, z∗)∥ < ∞;

(v) w∗ ∈ Ω1 ×Rm
+ ×Rl, µ∗ = 0, ∥(y∗, z∗)∥ < ∞.

Because (w(0), 1) is the unique solution of H(w, 1) = 0, and
∂H(w(0),1)

∂w is nonsingular,
the case (i) is impossible.

If the case (ii) happens, by the condition C1, there exists a sequence of points
{(x(k), y(k), z(k), µk)} on Γx(0) such that x(k) → x∗, ∥(y(k), z(k))∥ → ∞, µk → µ∗, as k → ∞.
And only the following three subcases are possible: (a) µ∗ = 1; (b) µ∗ ∈ (0, 1); (c) µ∗ = 0.

(a) µ∗ = 1.
By the first equality of the homotopy equation, we have that

(1− µk)
(
∇f(x(k)) +∇g(x(k))y(k) +∇h(x(k))z(k)

)
+ µk

(
x(k) − x(0)

)
= 0. (2.3)

From the third equality of the homotopy equation, we have that z(k) → h(x∗), as k → ∞.
This implies that

{
z(k)

}
is bounded, hence ∥y(k)∥ → ∞ and x∗ ∈ ∂Ω1.
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If ∥(1 − µk)y
(k)∥ < ∞, suppose without loss of generality that (1 − µk)y

(k) → ȳ, then
ȳi = 0 for i /∈ I(x∗) from the second equality of the homotopy equation. By taking the limit
in (2.3), we get

x(0) = x∗ + lim
k→∞

(1− µk)
(
∇f(x(k)) +∇g(x(k))y(k) +∇h(x(k))z(k)

)
= x∗ + lim

k→∞

∑
i∈I(x∗)

(1− µk)y
(k)
i ∇gi(x

(k))

= x∗ +
∑

i∈I(x∗)

ȳi∇gi(x
∗),

which contradicts with the condition C2.
For the case ∥(1 − µk)y

(k)∥ → ∞, the discussion is the same with the case (b), which
will be done below.

(b) µ∗ ∈ (0, 1).
As in the proof of (a), we have that

{
z(k)

}
is bounded, x∗ ∈ ∂Ω1, and ∥(1−µk)y

(k)∥ → ∞.

Suppose without loss of generality that (1−µk)y
(k)/∥(1−µk)y

(k)∥ → α∗ with ∥α∗∥ = 1 and
α∗
i = 0 for i /∈ I(x∗). Divide (2.3) by ∥(1− µk)y

(k)∥ and take the limit, we have that∑
i∈I(x∗)

α∗
i∇gi(x

∗) = 0,

which contradicts with the condition that x∗ is PLI-regular.
(c) µ∗ = 0.
Suppose without loss of generality that (y(k), z(k))/∥(y(k), z(k))∥ → (ᾱ, β̄) with ∥(ᾱ, β̄)∥ =

1 and ᾱi = 0 for i /∈ I(x∗). Divide the both sides of (2.3) by ∥(y(k), z(k))∥ and take the limit,
we have that ∑

i∈I(x∗)

ᾱi∇gi(x
∗) +

l∑
i=1

β̄i∇hi(x
∗) = 0,

which contradicts with the condition that x∗ is PLI-regular.
From (a), (b) and (c), we conclude that the case (ii) is impossible.
From G(x∗)y∗ + µ∗e = 0, we know that µ∗ > 0 and y∗ ∈ ∂Rm

+ , i.e., y∗i = 0 for some
i ∈ {1, . . . ,m}, can not happen simultaneously, which implies that the case (iii) is impossible.
If y∗ > 0 and µ∗ > 0, from G(x∗)y∗+µ∗e = 0, we have that g(x∗) < 0, which implies that the
case (iv) is impossible. As a result, the case (v) is the only possible case. Hence, (x∗, y∗, z∗)
is a solution of the KKT system (2.1). This completes the proof.

Remark. a) Different with [20], the normal cone condition C2 concerns only with inequality
constraints g(x) ≤ 0 and does not concern with the equality constraints h(x) = 0. Specially,
it is satisfied if only inequality constraints are convex.

b) On the other hand, a posteriori condition that the x-component of any limit point of
any sequence of points on Γx(0) is PLI-regular, which is not satisfying, is used in Theorem
2.1.

3 Implementation of the CHIIP Method and Numerical Tests

For numerically tracing the homotopy path Γx(0) , a predictor-corrector algorithm is given
below. The first predictor step is taken by computing the tangent direction, and the midway
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predictor steps are taken by using secant directions. The corrector steps proceed with
Newton iterations for solving the extended system H(w, µ) = 0 by adding a linear equation
(d(k))T ((w, µ)− (w(k+1,0), µk+1,0)) = 0, where d(k) is the predicting direction and (w(k+1,0),
µk+1,0) is the predicted point at the k-th step. At each predictor step and corrector step,
we need to check if the computed point is in Ω0

1 or not. If not, we take some damped step.
Detailed descriptions on predictor-corrector algorithms with discussions on their convergence
were given in [2, 13, 30].
Algorithm 3.1 (The CHIIP method for solving NLP)

Step 1. Give the accuracy parameters ϵ1 ≥ ϵ2 > 0, the initial steplength s0 > 0, the initial
point

(
w(0), 1

)
, the steplength adjusting parameters 0 < θ1 < θ2 < θ3 < 1 < θ4 <

θ5, the maximum number K of the corrector steps, the threshold value 0 < θα < 1
for the angle between two neighboring predictor directions, and the threshold value
0 < θµ < 1 for starting the end game.

Step 2. The first predictor step.

Set s = s0, ϵ = ϵ1, k = 0;

Compute d(0) ∈ Rn+m+l+1, such that DH(w(0), 1)d(0) = 0, ∥d(0)∥ = 1 and

d
(0)
n+m+l+1 < 0;

Set d(−1) = d(0);

Determine the smallest nonnegative integer i such that (w(0), µ0) + θi3sd
(0) ∈

Ω̂0 × (0, 1), set s = θi3s and (w(1,0), µ1,0) = (w(0), µ0) + sd(0).

Step 3. The corrector step.

Set j = 0;

Repeat

Compute the Newton step d̄ by solving

{
DHk+1,j d̄ = −Hk+1,j ,
(d(k))T d̄ = 0;

Determine the smallest nonnegative integer i such that (w(k+1,j), µk+1,j) +

θi3d̄ ∈ Ω̂0 × (0, 1), set (w(k+1,j+1), µk+1,j+1) = (w(k+1,j), µk+1,j) + θi3d̄;

j = j + 1,

Until ∥Hk+1,j∥∞ ≤ ϵ or j = K.

Step 4. The steplength adjusting.
If j = K and ∥Hk+1,j∥∞ > ϵ,

Set s = θ2s and (w(k+1,0), µk+1,0) = (w(k), µk) + sd(k);

go to Step 3;

else

(w(k+1), µk+1) = (w(k+1,j), µk+1,j);

Adjust the steplength s as follows:

i. If d(k)T d(k−1) < θα, set s = θ1s;

ii. If j > 4, set s = θ2s;

iii. If j = 2, set s = θ4s;

iv. If j < 2, set s = θ5s.

If µk+1 < θµ, go to Step 6;

If ∥H(w(k+1), 0)∥∞ ≤ ϵ2, terminate the algorithm (w∗ = w(k+1) is the com-
puted solution of the KKT system);
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Set ϵ = min{µk+1, ϵ1}, k = k + 1.

Step 5. The midway predictor step.

Let d(k) = ((w(k), µk)− (w(k−1), µk−1))/∥(w(k), µk)− (w(k−1), µk−1)∥;
Determine the smallest nonnegative integer i such that (w(k), µk) + θi3sd

(k) ∈
Ω̂0 × (0, 1), set s = θi3s and (w(k+1,0), µk+1,0) = (w(k), µk) + sd(k).

Step 6. The end game.

Set j = 0 and w(k+1,0) = w(k+1);

Repeat

Compute the Newton step dend ∈ Rn+m+l by solving the equation
∂H
∂w (w(k+1,j), 0)dend = −H(w(k+1,j), 0). Set w(k+1,j+1) = w(k+1,j)+ dend,
j = j + 1,

Until ∥H(w(k+1,j), 0)∥∞ ≤ ϵ2 or j = K;

If j < K, set w(k+1) = w(k+1,j);

Set θµ = 0.1θµ.

In Algorithm 3.1, for convenience, we used Hk,j and DHk,j to denote H(w(k,j), µk,j) and
DH(w(k,j), µk,j) respectively.

Algorithm 3.1 was implemented by programming in Matlab language and preliminary
numerical tests were done. Some examples of nonconvex programming problems and nu-
merical results, with comparison with the CHIP method and LOQO 6.01 (student edition),
are listed below.

Example 3.1 is taken from [28]. Example 3.2 and 3.3 are taken from [16]. Example 3.4
from [23] is a problem with variable dimension and number of constraints.

In Table 1–4, the initial point x(0), the final approximate solution x∗, the corresponding
objective value f(x∗), and the number N of overall iterations are listed. In Table 4, the
integer M is listed, but the computed solution is not listed due to the large number of
variables.

For M = 500, we can not compute Example 3.4 by LOQO 6.01 student edition because
of its limitations: 300 variables, 300 constraints and objectives, and 500 iterations, so the
results are indicated by “−−”.

For all examples, we set parameters in Algorithm 3.1 as: K = 6, h0 = 0.7, θ1 = 0.4,
θ2 = 0.6, θ3 = 0.9, θ4 = 1.4, θ5 = 2.5, θµ = 0.1, θα =

√
2/2, ϵ1 = 1e− 2 and ϵ2 = 1e− 6.

Example 3.1 ([28]).
min x1,
s.t. x2

1 − x2 − 1 = 0,
x1 − x3 − 1 = 0,
x2 ≥ 0, x3 ≥ 0.

Example 3.2 ([16]).

min ex1x2x3x4x5 − 0.5(x3
1 + x3

2 + 1)2,
s.t. x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 10,
x2x3 − 5x4x5 = 0,
x3
1 + x3

2 = −1,
l ≤ x ≤ u,

where l = (−2.3,−2.3,−3.2,−3.2,−3.2)T , u = −l.
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Table 1: Numerical results of Example 3.1.

x(0) method N x∗ f(x∗)

CHIPM — — —
(-6,10,10) CHIIPM 100 (1.00,-0.00,-0.00) 1.0000

LOQO6.01 469 (1.00,0.00,0.00) 1.0000

CHIPM — — —
(-2,3,1) CHIIPM 13 (1.00,0.00,0.00) 1.0000

LOQO6.01 74 (1.00,0.00,0.00) 1.0000
The failure of a method is indicated by the dash

Table 2: Numerical results of Example 3.2.

x(0) method N x∗ f(x∗)

CHIPM — — —
(-1,1,2,0,-2) CHIIPM 27 ( -1.71,1.59,1.82,-0.76,-0.76) 0.0539

LOQO6.01 35 ( -0.69,-0.86,2.78,-0.69,0.69) 0.4388

CHIPM — — —
(1.5,-1.5,-2.2,2,2.4) CHIIPM 53 ( -0.69,-0.86,-2.78,0.69,0.69) 0.4388

LOQO6.01 117 ( -0.69,-0.86,-2.78,0.69,0.69) 0.4388
The failure of a method is indicated by the dash

Example 3.3 ([16]).

min −(0.063x4x7 − 5.04x1 − 3.36x5 − 0.035x2 − 10x3),
s.t. x5 = 1.22x4 − x1,

x8 = (x2 + x5)/x1,
x4 = 0.01x1(112 + 13.167x8 − 0.6667x2

8),
x7 = 86.35 + 1.098x8 − 0.038x2

8 + 0.325(x6 − 89),
x10 = 3x7 − 133,
x9 = 35.82− 0.222x10,
x6 = 98000x3/(x4x9 + 1000x3),
l ≤ x ≤ u,

where l = (1e− 5, 1e− 5, 1e− 5, 0, 0, 85, 90, 3, 0.01, 145)T , u = (2000, 16000, 120,
5000, 2000, 93, 95, 12, 4, 162)T .

Example 3.4 ([23]). Let α = 350, h = 1/M ,

min
ti,vi,ui

0.5h
M−1∑
i=0

(u2
i+1 + u2

i + α(cos ti+1 + cos ti)),

s.t. vi+1 − vi − 0.5h(sin ti+1 + sin ti) = 0, i = 0, . . . ,M − 1,
ti+1 − ti − 0.5hui+1 − 0.5hui = 0, i = 0, . . . ,M − 1,
−1 ≤ ti ≤ 1, i = 1, . . . ,M − 1,
−0.05 ≤ vi ≤ 0.05, i = 1, . . . ,M − 1,

where M is a positive integer, v0, vM , t0 and tM are all 0.
From the numerical results, we see that different starting points affect the efficiency

of the methods. For given starting points, simple experiments show that our algorithm is
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Table 3: Numerical results of Example 3.3.

x(0) method N f(x∗)

CHIPM — —
(1,10,1,1,10,90,93,8,1,155) CHIIPM 200 -1162.0269

LOQO6.01 271 -686.485

CHIPM — —
(10,10,1,10,10,90,94,10,2,150) CHIIPM 206 -1162.0269

LOQO6.01 254 -481.391

CHIIPM x∗=(1728.37,16000.00,98.13,3056.04,2000.00,90.61,94.18,10.41,2.61,149.56)
LOQO 6.01 x∗

−686=(1004.95,10595.8,54.43,1757.11,1138.73,91.45,94.79,11.68,2.2,151.36)
LOQO 6.01 x∗

−481=(768.37,6388.8,44.98,1359.27,889.94,89.88,93.63,9.47,2.99,147.88)
The failure of a method is indicated by the dash

Table 4: Numerical results of Example 3.4.

M x(0) method N f(x∗)

vi = 0.05cos ih, i = 1, . . . ,M − 1 CHIPM — —
50 ti = 0.05cos ih, i = 1, . . . ,M − 1 CHIIPM 467 344.8687

ui = −50, i = 0, . . . ,M LOQO6.01 490 344.8687

vi = 0.05cos ih, i = 1, . . . ,M − 1 CHIPM — —
100 ti = 0.05cos ih, i = 1, . . . ,M − 1 CHIIPM 634 344.8775

ui = 60, i = 0, . . . ,M LOQO6.01 440 348.151

vi = 0.05cos ih, i = 1, . . . ,M − 1 CHIPM — —
500 ti = 0.5cos ih, i = 1, . . . ,M − 1 CHIIPM 1096 344.8763

ui = −45, i = 0, . . . ,M LOQO6.01 −− −−
The failure of a method is indicated by the dash

feasible and effective. We will continue work on more efficient linear equation solver for
Newton corrector and strategy on the ill-conditioning.
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