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0-1 knapsack problems arise from task allocation, capital budgeting, VLSI and compiler
design [9, 15].

Global optimization methods for (QKP) are of branch-and-bound framework which is
based on upper bounding procedures via relaxation schemes and branching rules. Various
techniques have been proposed for deriving upper bounds for (QKP), for instance, upper
plane methods [10], linearization methods [2, 15], reformulation method [7], Lagrangian re-
laxation and decomposition [5, 7, 8]. These relaxations and bounds are specially constructed
for (QKP) with a single capacity constraint and often require special properties of the ob-
jective function such as nonnegativity of qij . For a survey of methods for 0-1 quadratic
knapsack problems with a single constraint, see [21].

Semidefinite programming (SDP) has been a powerful relaxation approach for many
NP-hard combinatorial and nonconvex optimization problems due to the development of
efficient interior-point method for SDP problems (see, e.g., [20, 26]). SDP relaxation methods
have been developed for 0-1 linear programs (see [1, 18, 23]). It has been also shown
that SDP relaxations yield tight bounds and good feasible solutions for unconstrained 0-1
quadratic problems and some of its extensions (see, e.g., [11, 19, 27, 28]). For (QKP) with
a single capacity constraint, Helmberg et al. [13] derived several SDP relaxations based on
reformulations of the capacity constraint. Various valid inequalities such as cover inequalities
and triangle inequalities are also investigated in [13]. However, no approximation bounds
for the SDP relaxations of (QKP) have been known in the literature.

Recently, Burer [6] showed that any binary and continuous nonconvex quadratic program
with linear constraints can be expressed as a completely positive program, which is the
dual of a copositive program. Sturm and Zhang [25] introduced copositive matrix cone
over a domain and showed that any quadratically constrained quadratic program can be
represented as a convex conic program over the dual cone of copositive matrices on the
feasible region. We remark that expressing an NP-hard problem as a copositive programming
does not resolve the inherent computational difficulty of the problem despite of its theoretical
interest. Except for some special cases where LMI characterization of the copositive cone
can be obtained, the copositive cones on the positive orthant or a domain have to be relaxed
in order to derive a tractable relaxation.

Billionnet and Elloumi [3] proposed a 0-1 convex quadratic program reformulation for
unconstrained 0-1 quadratic program (P): max{q(x) := xTQx | x ∈ {0, 1}n}. Using the
equivalence x2i = xi ⇔ xi ∈ {0, 1}, q(x) can be rewritten as qρ(x) = xT (Q−Diag(ρ))x+ρTx
for any x ∈ {0, 1}n and ρ ∈ Rn. Choosing ρ such that Q−Diag(ρ) ≼ 0, we have the following
convex relaxation for (P):

β(ρ) = max{qρ(x) | x ∈ [0, 1]n}.

The tightest upper bound generated from the above relaxation is

min
Q−Diag(ρ)≼0

max{qρ(x) | x ∈ [0, 1]n}.

It is shown in [3, 22, 24] that the optimal solution ρ∗ to above problem can be reduced to
an SDP problem. The corresponding equivalent reformulation of (P) is:

(Pρ∗) max{qρ∗(x) | x ∈ {0, 1}n}.

This reformulation is referred to as diagonal perturbed reformulation of (P). Any continuous-
based branch-and-bound method such as the mixed integer quadratic programming (MIQP)
solver in CPLEX can be used to solve (Pρ∗). The above reformulation technique has been
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also generalized in [4] to 0-1 quadratic program with linear constraints, in particular, the
quadratic knapsack problem (QKP).

The purpose of this paper is to present an improved convex 0-1 quadratic program
reformulation for (QKP). This improved reformulation is based on a general decomposition
of the nonconvex objective function:

q(x) = xT (Q−M)x+ xTMx, (1.1)

whereM is a symmetric matrix in certain matrix cone and Q−M ≼ 0. By suitably choosing
the matrixM and using the piecewise linearization of quadratic terms on {0, 1}n, we are able
to get a convex 0-1 quadratic programming reformulation which is more efficient than the
diagonal perturbed reformulation in [3, 4] in the sense that the continuous relaxation of the
new reformulation is always tighter than or at least as tight as that of the diagonal perturbed
reformulation of (QKP). We show that the problem of finding the optimal parameters in
the improved reformulation can be reduced to an SDP problem. Comparison numerical
results show that the improved reformulation is more efficient than the diagonal perturbed
reformulation in terms of the computation time and number of nodes explored by the MIQP
solver in CPLEX 12.1.

The paper is organized as follows. In Section 2, we present our main results. We
first derive the improved 0-1 convex quadratic program reformulation of (QKP) via matrix
decomposition and piecewise linear representation of quadratic terms in 0-1 variables. The
SDP formulation for finding the optimal parameters in the matrix decomposition is then
derived. Extension to k-item quadratic knapsack problems is also discussed. In Section 3, we
report comparison numerical results on the effectiveness of the improved reformulation for
standard randomly generated test problems from the literature. Some concluding remarks
are given in Section 4.

Notations: Throughout the paper, we denote by v(·) the optimal objective value of an
optimization problem (·). Rn denotes the n-dimensional Euclidean space and Rn

+ the set
of nonnegative vectors in Rn. Let e = (1, . . . , 1)T and let ei denote the ith unit vector in
Rn. For any a = (a1, . . . , an)

T ∈ Rn, Diag(a) denotes the diagonal matrix with diagonal
elements a1, . . . , an. Let S and S+ denote the sets of n×n symmetric matrices and positive
semidefinite matrices, respectively. The standard inner product in S is defined by A • B =
⟨A,B⟩ = trace(AB).

2 Improved Reformulation and SDP Relaxation

In this section, we present our main result on constructing the improved convex 0-1 quadratic
program reformulation for (QKP). We first present the new reformulation by employing
matrix decomposition and piecewise linear representation of quadratic term for 0-1 variables.
We then show that the optimal matrix decomposition can be found by solving an SDP
problem. Extensions to k-item quadratic knapsack problems are also discussed.

2.1 An Improved Reformulation

Let P and N denote the sets of nonnegative and nonpositive n× n matrices, i.e.,

P := {P = (Pij) ∈ S | P ≥ 0}, N := {N = (Nij) ∈ Rn×n | N ≤ 0}.

Consider the following decomposition of q(x):

q(x) = xT (Q−M)x+ xTMx,
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where Q−M ≼ 0 and M = Diag(ρ) + P +N ∈ S with ρ ∈ Rn, P ∈ P and N ∈ N .
For any xi, xj ∈ {0, 1}, it always holds

xixj = min(xi, xj), xixj = max(0, xi + xj − 1).

Thus, for any x ∈ {0, 1}n, we can rewrite q(x) as

q(x) = xT (Q−Diag(ρ)− P −N)x+ xT (Diag(ρ) + P +N)x

= xT (Q−Diag(ρ)− P −N)x+ ρTx+
n∑

i,j=1

[Pijxixj +Nijxixj ]

= xT (Q−Diag(ρ)− P −N)x+ ρTx+
n∑

i,j=1

[Pijsij −Nijtij ], (2.1)

where sij = min(xi, xj) and tij = −max(0, xi + xj − 1).
In view of (2.1), we obtain the following equivalent reformulation of (QKP):

max xT (Q−Diag(ρ)− P −N)x+ ρTx+
n∑

i,j=1

[Pijsij −Nijtij ]

s.t. Ax ≤ b, x ∈ {0, 1}n,
sij = min(xi, xj), tij = −max(0, xi + xj − 1), i, j = 1, . . . , n.

where Q − Diag(ρ) − P − N ≼ 0, P ∈ P and N ∈ N . Since Pij ≥ 0, the constraint sij =
min(xi, xj) can be relaxed to two linear inequalities sij ≤ xi and sij ≤ xj without affecting
the optimal solution of the above problem. Similarly, we can relax tij = −max(0, xi+xj−1)
to tij ≤ 0 and tij ≤ 1 − xi − xj . Therefore, the above reformulation is equivalent to the
following convex 0-1quadratic program:

(QKP(ρ, P,N)) max xT (Q−Diag(ρ)− P −N)x+ ρTx+
n∑

i,j=1

[Pijsij −Nijtij ]

s.t. Ax ≤ b, x ∈ {0, 1}n,
sij ≤ xi, sij ≤ xj , i, j = 1, . . . , n,

tij ≤ 0, tij ≤ 1− xi − xj , i, j = 1, . . . , n.

2.2 Optimal matrix decomposition and SDP relaxation

As (QKP(ρ, P,N)) is a convex 0-1 quadratic program, any continuous-based branch-and-
bound method can be applied to (QKP(ρ, P,N)) for searching an exact solution. Relaxing
{0, 1}n to [0, 1]n, the continuous relaxation of (QKP(ρ, P,N)) is

(QKP(ρ, P,N)) max xT (Q−Diag(ρ)− P −N)x+ ρTx+
n∑

i,j=1

[Pijsij −Nijtij ]

s.t. Ax ≤ b, 0 ≤ x ≤ e, (2.2)

sij ≤ xi, sij ≤ xj , i, j = 1, . . . , n, (2.3)

tij ≤ 0, tij ≤ 1− xi − xj , i, j = 1, . . . , n. (2.4)

Notice that (QKP(ρ, P,N)) is a convex quadratic program and thus is polynomially solvable
by interior-point method. For any (ρ, P,N) satisfying Q − Diag(ρ) − P − N ≼ 0, P ∈ P
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and N ∈ N , solving (QKP(ρ, P,N)) gives an upper bound of (QKP). A natural question is:
How to choose parameters (ρ, P,N) such that v(QKP(ρ, P,N)) provides the tightest upper
bound to (QKP)?

It is clear that the tightest upper bound is given by the optimal value of the following
problem.

(TUB) min v(QKP(ρ, P,N))

s.t. Q−Diag(ρ)− P −N ≼ 0, ρ ∈ Rn, P ∈ P, N ∈ N .

The following theorem shows that problem (TUB) is equivalent to an SDP problem:

Theorem 2.1. The problem (TUB) is equivalent to the following SDP problem:

(TUBs) min τ

s.t.

(
−τ + ϑ(E, µ, ξ) 1

2Γ(ρ, µ, η, ξ, B,C,E)T
1
2Γ(ρ, µ, η, ξ, B,C,E) ψ(ρ, P,N)

)
≼ 0,

B + C = P, D + E = −N,
(ρ, µ, η, ξ) ∈ Rn × Rm

+ × Rn
+ × Rn

+,

P,−N,B,C,D,E ∈ P,

where

ψ(ρ, P,N) = Q−Diag(ρ)− P −N, (2.5)

Γ(ρ, µ, η, ξ, B,C,E) = ρ−ATµ+ η − ξ −
n∑

i=1

n∑
j=1

(Eijei + Eijej −Bijei − Cijej),(2.6)

ϑ(E, µ, ξ) =
n∑

i,j=1

Eij + µT b+ eT ξ. (2.7)

Proof. Associate the following multipliers to the constraints in (QKP(ρ, P,N)):

• µ ∈ Rm
+ , η ∈ Rn

+ and ξ ∈ Rn
+ to the constraints in (2.2);

• B = (Bij) ∈ P and C = (Cij) ∈ P to the constraints in (2.3);

• D = (Dij) ∈ P and E = (Eij) ∈ P to the constraints in (2.4).

Let ω = (µ, η, ξ, B,C,D,E). The nonnegative restriction on the associated multipliers can
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be expressed as ω ≥ 0. The Lagrangian relaxation of (QKP(ρ, P,N)) is

d(ω) = max{xT (Q−Diag(ρ)− P −N)x+ ρTx+

n∑
i,j=1

(Pijsij −Nijtij)

+ηTx− ξT (x− e)− µT (Ax− b) +
n∑

i,j=1

[−Bij(sij − xi)− Cij(sij − xj)]

+
n∑

i,j=1

[−Dijtij − Eij(tij + xi + xj − 1)] | x ∈ Rn, sij , tij ∈ R, i, j = 1, . . . , n}

=

n∑
i,j=1

Eij + µT b+ eT ξ + max
x∈Rn

{xT (Q−Diag(ρ)− P −N)x+ (ρ+ η − ξ −ATµ)Tx

−
n∑

i,j=1

(Eijxi + Eijxj −Bijxi − Cijxj) | B + C = P, D + E = −N}.

Then, the Lagrangian dual of (QKP(ρ, P,N)) is minω≥0 d(ω). By strong duality of convex
quadratic program, we have

v(QKP(ρ, P,N)) = min
ω≥0

d(ω).

Thus, we have

v(TUB) = min{v(QKP(ρ, P,N)) | Q−Diag(ρ)− P −N ≼ 0, ρ ∈ Rn, P ∈ P, N ∈ N}
= min

ω≥0
{d(ω) | Q−Diag(ρ)− P −N ≼ 0, ρ ∈ Rn, P ∈ P, N ∈ N}

= min τ

s.t. τ ≥ xTψ(ρ, P,N)x+ Γ(ρ, µ, η, ξ, B,C,E)Tx+ ϑ(E,µ, ξ), ∀x ∈ Rn,

B + C = P, D + E = −N,
Q−Diag(ρ)− P −N ≼ 0,

(ρ, µ, η, ξ) ∈ Rn × Rm
+ × Rn

+ × Rn
+,

P,−N,B, C, D, E ∈ P,

where ψ(ρ, P,N), Γ(ρ, µ, η, ξ, B,C,E) and ϑ(τ, E, µ, ξ) are defined in (2.5)-(2.7), respec-
tively. Obviously, the last problem is exactly (TUBs) by noting that the first constraint
in the last problem is equivalent to the first constraint in (TUBs). Therefore, (TUB) and
(TUBs) are equivalent. �

Next, let’s consider the conic dual of (TUBs). It is straightforward (yet tedious) to show
that the conic dual of the SDP problem (TUBs) is

(TUBd) max Q •X
s.t. Xii = xi, i = 1, . . . , n, (2.8)

Xij ≤ xi, Xij ≤ xj , i, j = 1, . . . , n, (2.9)

Xij ≥ xi + xj − 1, Xij ≥ 0, i, j = 1, . . . , n, (2.10)

Ax ≤ b, 0 ≤ x ≤ e,(
1 xT

x X

)
≽ 0.
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Let ρ∗ ∈ Rn, B∗ = (B∗
ij) ∈ P, C∗ = (C∗

ij) ∈ P, D∗ = (D∗
ij) ∈ P, E∗ = (E∗

ij) ∈ P be
the optimal multipliers to constraints (2.8)-(2.10), respectively. Let P ∗ = B∗ + C∗ and
N∗ = −(D∗ + E∗). By conic strong duality and Theorem 2.1, (ρ∗, P ∗, N∗) is an optimal
solution to (TUB). Since the size of the SDP problem (TUBd) is much smaller than (TUBs),
we can solve (TUBd) by primal-dual interior-point method to obtain (ρ∗, P ∗, N∗) . This
can be implemented by using the SDP solvers SeDuMi and SDPT3.

For the sake of convenience, we assume in the sequel that both (TUBs) and (TUBd)
are strictly feasible. Under this standard assumption, (TUBd) is polynomially solvable and
there is no duality gap between (TUBs) and (TUBd).

Corollary 2.2. Let (ρ∗, B∗, C∗, D∗, E∗) be optimal multipliers corresponding to constraints
(2.8)-(2.10) in (TUBd), respectively. Let P ∗ = B∗ + C∗ and N∗ = −(D∗ + E∗). Then,

v(TUBs) = v(TUBd) = v(QKP(ρ∗, P ∗, N∗)).

In summary, we have shown that (QKP(ρ, P,N)) is a convex 0-1 quadratic program
reformulation of (QKP) for any (ρ, P,N) satisfying Q − Diag(ρ) − P −N ≼ 0, P ∈ P and
N ∈ N . Moveover, the parameters (ρ∗, P ∗, N∗) that provides the tightest upper bound of
the continuous relaxation of the reformulation can be found by solving an SDP problem.

Now, let’s compare the reformulation (QKP(ρ, P,N)) with the diagonal perturbed refor-
mulation in [4] when applied to (QKP). The diagonal perturbed reformulation for (QKP)
has the following form:

(QKP(ρ)) max xT (Q−Diag(ρ))x+ ρTx

s.t. Ax ≤ b, x ∈ {0, 1}n,

where Q − Diag(ρ) ≼ 0. Obviously, the diagonal perturbed reformulation is a special case
of the reformulation (QKP(ρ, P,N)) when setting P = N = 0. The optimal parameter ρ in
(QKP(ρ)) can be obtained by solving the following SDP problem:

(DPRd) max Q •X
s.t. Xii = xi, i = 1, . . . , n,

Ax ≤ b, 0 ≤ x ≤ e,(
1 xT

x X

)
≽ 0.

It is obvious that v(TUBd) ≤ v(DPRd). Therefore, (QKP(ρ, P,N)) is an improved reformu-
lation compared with (QKP(ρ)) in the sense that the continuous relaxation of (QKP(ρ, P,N))
is tighter than or at least as tight as that of (QKP(ρ)) when the parameters are optimally
chosen.

2.3 Extensions

The reformulation method via matrix decomposition discussed in previous subsections can
be easily generalized to 0-1 quadratic programs with equality and inequality constraints. In
particular, we consider the following k-item quadratic knapsack problem (see [17]):

(k-QKP) max q(x) := xTQx

s.t. Ax ≤ b,

eTx = K,

x ∈ {0, 1}n.
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The only difference between (QKP) and (k-QKP) is the introduction of a cardinality con-
straint eTx = K in the problem (k-QKP). As in [4, 17], the objective function in (k-QKP)
can be rewritten as

q(x, ρ, α) = xTQx−
n∑

i=1

ρi(x
2
i − xi)−

n∑
i=1

αixi(e
Tx−K)

= xT [Q−Diag(ρ)− 1

2
(αeT + eαT )]x+ (ρ+Kα)Tx, ∀x ∈ {0, 1}n.

Suppose that Q−Diag(ρ)− 1
2 (αe

T + eαT ) ≼ 0. Replacing q(x) by q(x, ρ, α) in (k-QKP), we
obtain a convex 0-1 quadratic program reformulation of (k-QKP). Similar to (DPRd), the
optimal parameters (ρ, α) can be obtained by solving the following SDP problem:

(k-DPRd) max Q •X
s.t. Xii = xi, i = 1, . . . , n,

n∑
j=1

Xij = Kxi, i = 1, . . . , n.

Ax ≤ b, 0 ≤ x ≤ e,(
1 xT

x X

)
≽ 0.

Now, we can apply our matrix decomposition scheme in Subsection 2.1 to (k-QKP). The
objective function can be further rewritten as

q(x, ρ, α, P,N) = xT [Q−Diag(ρ)− 1

2
(αeT + eαT )− P −N ]x+ (ρ+Kα)Tx

+
n∑

i,j=1

[Pijsij −Nijtij ], (2.11)

where sij = min(xi, xj) and tij = −max(0, xi + xj − 1). Let Q−Diag(ρ)− 1
2 (αe

T + eαT )−
P − N ≼ 0. Replacing q(x) by q(x, ρ, α, P,N) in (k-QKP), we obtain an improved convex
0-1 quadratic program reformulation of (k-QKP). Again, the optimal parameters (ρ, α, P,N)
can be found by solving the following SDP problem:

(k-TUBd) max Q •X
s.t. Xii = xi, i = 1, . . . , n,

n∑
j=1

Xij = Kxi, i = 1, . . . , n.

Xij ≤ xi, Xij ≤ xj , i, j = 1, . . . , n,

Xij ≥ xi + xj − 1, Xij ≥ 0, i, j = 1, . . . , n,

Ax ≤ b, 0 ≤ x ≤ e,(
1 xT

x X

)
≽ 0.

3 Computational Results

In this section, we report comparison numerical results on the effectiveness of the improved
reformulation for randomly generated instances of problems (QKP) and (k-QKP). The nu-
merical test was implemented in Matlab 7 and run on a PC (2.4G MHz, 3GB RAM). The
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SDP problems involved in computing the parameters of the reformulations were modeled by
CVX 1.2 [12] and solved by SDPT3 within CVX.

We consider standard randomly generated instances of (QKP) (see, e.g., [10, 4, 13, 17]).
The elements in Q = (qij) are uniformly taken from [1, 100]. The parameters in linear
constraints Ax ≤ b are set as follows: aij is uniformly distributed in [1, 50] and bi is uniformly

taken from [50,
n∑

j=1

aij ]. The instances of (k-QKP) are also randomly generated, in which

qij and aij are uniformly taken from [1, 100] and bi =
1
2 (

n∑
j=1

aij).

To compare the efficiency of different reformulations of (QKP) and (k-QKP), we use
the mixed integer quadratic programming (MIQP) solver in IBM CPLEX 12.1 with Matlab
interface (see [14]) to solve the reformulations. The MIQP solver in CPLEX 12.1 is based
on a branch-and-bound method which uses one of two options for convex relaxations at
each node of the searching tree (except the root node): continuous relaxation and linear
programming relaxation. At the root node, CPLEX uses continuous relaxation for both
options. In our numerical experiment, we will respectively use the two options to solve
the convex 0-1 quadratic program reformulations (QKP(ρ̄)) and (QKP(ρ∗, P ∗, N∗)), where
ρ̄ is obtained by solving the SDP problem (DPRd) and (ρ∗, P ∗, N∗) is obtained by solving
(TUBd). To reduce the size of the reformulation (QKP(ρ,P,N)), we only use partial elements
of P and N . More precisely, we set Pij = Nij = 0 for i, j = 1, . . . , n with |i− j| > 5.

For each n = 60, 70, 80, 90, 100 andm = 1, 5, we generate 5 test problems. The maximum
CPU time for CPLEX 12.1 is set to be 1800 seconds. The relative error is measured by

rel.error =
(upper bound− lower bound)

upper bound

when the branch-and-bound process is terminated. The average CPU time, the average
number of nodes explored and the average relative errors are recorded. The comparison
results between the two reformulations (QKP(ρ̄)) and (QKP(ρ∗,P∗,N∗)), when using MIQP
solver in CPLEX 12.1 with LP relaxation and continuous relaxation, are summarized in
Tables 1-4, where

• n is the dimension of x and m is the number of linear constraints;

• Columns 2 and 6 of the tables are the CPU time for computing the parameters by
solving the SDP problems (DPRd) and (TUBd), respectively;

• Columns 3-5 and Columns 7-9 of the tables record the average CPU time, average
number of nodes explored and the average relative errors of the two reformulations.

From Tables 1-4, we see that the improved reformulation (QKP(ρ∗, P ∗, N∗)) is much
more efficient than the diagonal perturbed reformulation (QKP(ρ̄)) for the randomly gen-
erated instances of (QKP) in terms of the CPU time, number of nodes and relative errors.
For both relaxation options in the MIQP solver, the number of nodes explored by the MIQP
solver for (QKP(ρ∗,P∗,N∗)) is much less than that for (QKP(ρ̄)). This is mainly because
the continuous relaxations of the subproblems of (QKP(ρ∗,P∗,N∗)) are tighter than the
subproblems of (QKP(ρ̄)) during the branch-and-bound process. We also see that the rel-
ative error achieved in solving (QKP(ρ∗,P∗,N∗)) is much smaller than that of (QKP(ρ̄))
when the branch-and-bound method is terminated with the 1800 seconds maximum CPU
time. We observe that the CPU time for computing the parameters of (QKP(ρ∗,P∗,N∗))
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is longer than that of (QKP(ρ̄)). However, this additional CPU time is neglectable when
compared the total CPU time used by the branch-and-bound method.

Table 1: Comparison results for (QKP) with LP relaxation (m = 1)

Table 2: Comparison results for (QKP) with continuous relaxation (m = 1)

Tables 5-6 summarize the numerical results of the MIQP solver in CPLEX 12.1 with LP
relaxation and continuous relaxation respectively for the two reformulations of (k-QKP). We
observe that the average performance of the improved reformulation (k-QKP(ρ∗, α∗, P ∗, N∗))
is slightly better than the reformulation (k-QKP(ρ̄, ᾱ)) in terms of the CPU time, the num-
ber of nodes and the relative errors. This is partly because that the difference between the
continuous relaxations of (k-QKP(ρ∗, α∗, P ∗, N∗)) and (k-QKP(ρ̄, ᾱ)) is not significant due
to the presence of the additional constraints:

∑n
j=1Xij = Kxi (i = 1, . . . , n) in (k-DPRd)

and (k-TUBd).

4 Conclusions

We have presented in this paper an improved convex 0-1 quadratic program reformulation
for quadratic knapsack problems. This new reformulation is based on matrix decomposition
of the objective function and the piecewise linear representation of quadratic terms in 0-1
variables. We have shown that the optimal parameters in the improved reformulation can
be obtained by solving an SDP problem. Comparison numerical results suggest that the
improved reformulation is more efficient than the existing reformulation based on diagonal
perturbation in terms of the CPU time, the number of nodes explored and the relative errors
when the MIQP solver in CPLEX 12.1 is used to solve the reformulations.

We point out that the matrix decomposition method can be extended to any 0-1 quadratic
program. Although the continuous relaxation of the new reformulation is always tighter
than or at least as tight as that of the diagonal perturbed reformulation, the size of the new
reformulation also increases significantly. There is a trade-off between the quality of the
bound and its computation time in a branch-and-bound method. For this reason, we can
use partial elements of the matrix P and N when constructing the new reformulation, as is
the case in our numerical experiments.
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Table 3: Comparison results for (QKP) with LP relaxation (m = 5)

Table 4: Comparison results for (QKP) with continuous relaxation (m = 5)

Table 5: Comparison results for (k-QKP) with LP relaxation (m = 1, K = ⌊n
8 ⌋)

Table 6: Comparison results for (k-QKP) with continuous relaxation (m = 1, K = ⌊n
8 ⌋)
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