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with m,n1, . . . , nm ≥ 1, and n1 + · · · + nm = n. Throughout this paper, corresponding to
the structure of K, we write x = (x1, . . . , xm), y = (y1, . . . , ym) with xi, yi ∈ IRni .

A special case of (1.1) is the generalized second-order cone complementarity problem
(SOCCP) which, for given two continuously differentiable mappings F = (F1, . . . , Fm) and
G = (G1, . . . , Gm) with Fi, Gi : IR

n → IRni , is to find a vector ζ ∈ IRn such that

F (ζ) ∈ K, G(ζ) ∈ K, ⟨F (ζ), G(ζ)⟩ = 0. (1.3)

When G becomes an identity one, (1.3) reduces to finding a vector ζ ∈ IRn such that

ζ ∈ K, F (ζ) ∈ K, ⟨ζ, F (ζ)⟩ = 0, (1.4)

which is a direct extension of the NCPs studied well in the past 30 years (see [22, 24]).
Another special case of (1.1) is the KKT conditions of the second-order cone programming

minimize f(x)
subject to Ax = b, x ∈ K (1.5)

where f : IRn → IR is a twice continuously differentiable function, A is an m×n matrix with
full row rank, and b ∈ IRm. When f is linear, (1.5) becomes the standard linear SOCP that
has wide applications in engineering design, control, finance, management science, and so
on; see [1, 35] and the references therein. In addition, system (1.1) arises directly from some
engineering and practical problems; for example, the three-dimensional frictional contact
problems [34] and the robust Nash equilibria [28].

During the past ten years, there appeared active research for SOCPs and SOCCPs,
and various methods had been proposed which include the interior-point methods [1, 35,
41, 63, 51], the smoothing Newton methods [18, 25, 27], the semismooth Newton methods
[32, 43], and the merit function methods [10, 12]. Among others, the last three kinds
of methods are typically developed by an SOC complementarity function. Recall that a
mapping ϕ : IRn × IRn → IRn is an SOC complementarity function associated with Kn if

ϕ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0. (1.6)

However, there are lack of comprehensive studies for the properties of SOC complementarity
functions and the numerical behavior of related solution methods. In this work, we give a
survey for popular SOC complementarity functions and the related merit function methods,
semismooth Newton methods and smoothing Newton methods.

The squared norm of SOC complementarity functions gives a merit function associated
with Kn, where ψ : IRn × IRn → IR+ is called a merit function associated with Kn if

ψ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0. (1.7)

Apart from this, there are other ways to construct merit functions; for example, the LT
merit function in Subsection 3.3. Here we are interested in those smooth ψ so that the
SOCCP (1.3) can be reformulated as an unconstrained smooth minimization problem

min
ζ∈IRn

Ψ(ζ) :=

m∑
i=1

ψ (Fi(ζ), Gi(ζ)) , (1.8)



A SURVEY ON SOCPS AND SOCCPS 35

in the sense that ζ∗ is a solution to (1.3) if and only if it solves (1.8) with zero optimal value.
This is the so-called merit function approach. Note that with a smooth merit function ψ,
system (1.1) can also be reformulated as a smooth minization problem

min
(x,y,ζ)∈IR2n+l

∥E(x, y, ζ)∥2 + ψ(x, y),

but the reformulation is not effective for the solution of (1.1) due to the conflict between
the feasibility and the decrease of complementarity gap involved in the objective. So, in this
paper we consider the merit function methods for the SOCCP (1.3). In Section 3, we survey
and compare the properties of four classes of popular smooth merit functions associated
with Kn. In Section 4, we focus on the theoretical results of corresponding merit function
methods, and their numerical performance in the solution of linear SOCPs from DIMACS
[52] and nonlinear convex SOCPs generated randomly.

With an SOC complementarity function ϕ associated with Kn, we can rewrite (1.1) as

Φ(z) = Φ(x, y, ζ) :=


E(x, y, ζ)
ϕ(x1, y1)

...
ϕ(xm, ym)

 = 0, (1.9)

By [22, Prop. 9.1.1], system (1.9) is effective only for those nondifferentiable but (strongly)
semismooth ϕ. Two popular such ϕ are the vector-valued natural residual (NR) function
ϕNR : IRn × IRn → IRn and Fischer-Burmeister (FB) function ϕFB : IRn × IRn → IRn:

ϕNR(x, y) := x− (x− y)+ (1.10)

and
ϕFB(x, y) := (x+ y)− (x2 + y2)1/2, (1.11)

where (·)+ denotes the Euclidean projection onto Kn, x2 means the Jordan product of x
and itself, and x1/2 with x ∈ Kn is the unique square root of x such that x1/2 ◦ x1/2 = x.
The two nondifferentiable functions are strongly semismooth, where the proof for ϕNR can
be found in [18, Prop. 4.3], [9, Prop. 7] or [27, Prop. 4.5], and the proof for ϕFB is given by
Sun and Sun [58] and Chen [11] by using different techniques. In Section 5, we review the
nonsingularity conditions for the B-subdifferentials of Φ at a solution of (1.1) without strict
complementarity, and test the behavior of a global FB nonsmooth Newton method.

Let θ : IRn × IRn × IR → IRn be a continuously differentiable on IRn × IRn × IR++ with
θ(·, ·, 0) ≡ ϕ(·, ·) for ϕ = ϕNR or ϕFB . Then (1.1) is also equivalent to the augmented system

Θ(ω) = Θ(ε, x, y, ζ) :=


ε

E(x, y, ζ)
θ(x1, y1, ε)

...
θ(xm, ym, ε)

 = 0, (1.12)

which is continuously differentiable in IR++× IRn× IRn× IRl. In the past several years, some
smoothing Newton methods have been proposed for (1.1) by solving a sequence of smooth
systems or a single augmented system (see, e.g., [25, 18, 27]), but there is no comprehensive
study for their numerical performance. Motivated by the efficiency of the smoothing Newton
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method [54], we in Section 6 apply it for the system (1.12) involving the CHKS smoothing
function and the squared smoothing function of ϕNR , and the FB smoothing function, re-
spectively, and compare their numerical behaviors. Similar to the NR and FB nonsmooth
Newton methods, the locally superlinear (quadratic) convergence of these smoothing meth-
ods does not require the strict complementarity of solutions. So, these nonsmooth and
smoothing methods are superior to interior point methods in theory since singular Jaco-
bians will occur to the latter if strict complementarity is not satisfied.

Throughout this paper, I means an identity matrix of appropriate dimension, IRn (n ≥ 1)
denotes the space of n-dimensional real column vectors, and IRn1×· · ·×IRnm is identified with
IRn1+···+nm . For a given set S, we denote int(S) and bd(S) by the interior and boundary of
S, respectively. For any x ∈ IRn, we write x ≽Kn 0 (respectively, x ≻Kn 0) to mean x ∈ Kn

(respectively, x ∈ int(Kn)). For any differentiable F : IRn → IRl, we denote F ′(x) ∈ IRl×n

by the Jacobian of F at x, and ∇F (x) by the transposed Jacobian of F at x. A square
matrix B ∈ IRn×n is said to be positive definite if ⟨u,Bu⟩ > 0 for all nonzero u ∈ IRn, and
B is said to be positive semidefinite if ⟨u,Bu⟩ ≥ 0 for all u ∈ IRn.

2 Preliminaries

This section recalls some background materials that are needed in the subsequent sections.
For any x = (x1, x2), y = (y1, y2) ∈ IR× IRn−1, their Jordan product [23] is defined by

x ◦ y := (⟨x, y⟩, y1x2 + x1y2).

The Jordan product, unlike scalar or matrix multiplication, is not associative, which is a
main source on complication in the analysis of SOCCP. The identity element under this
product is e := (1, 0, . . . , 0)T ∈ IRn. For any given x = (x1, x2) ∈ IR× IRn−1, the matrix

Lx :=

[
x1 xT2
x2 x1I

]
will be used, which can be viewed as a linear mapping from IRn to IRn given by Lxy= x ◦ y.

For each x = (x1, x2) ∈ IR× IRn−1, let λ1(x), λ2(x) and u
(1)
x , u

(2)
x be the spectral values

and the corresponding spectral vectors of x, respectively, given by

λi(x) := x1 + (−1)i∥x2∥ and u(i)x :=
1

2

(
1, (−1)ix̄2

)
, i = 1, 2

with x̄2 = x2/∥x2∥ if x2 ̸= 0, and otherwise x̄2 being any vector in IRn−1 satisfying ∥x̄2∥ = 1.
Then x admits a spectral factorization [23] associated with Kn in the form of

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x .

When x2 ̸= 0, the spectral factorization is unique. The following lemma states the relation
between the spectral factorization of x and the eigenvalue decomposition of Lx.

Lemma 2.1 ([25]). For any given x ∈ IRn, let λ1(x), λ2(x) be the spectral values of x, and

u
(1)
x , u

(2)
x be the associated spectral vectors. Then, Lx has the eigenvalue decomposition

Lx = U(x)diag (λ2(x), x1, · · · , x1, λ1(x))U(x)T
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where
U(x) =

(√
2u(2)x , u(3)x , · · · , u(n)x ,

√
2u(1)x

)
∈ IRn×n

is an orthogonal matrix, and u
(i)
x for i = 3, . . . , n have the form of (0, ūi) with ū3, . . . , ūn

being any unit vectors in IRn−1 that span the linear subspace orthogonal to x2.

By using Lemma 2.1, it is not hard to calculate the inverse of Lx whenever it exists:

L−1
x =

1

det(x)

 x1 −xT2
−x2

det(x)

x1
I +

1

x1
x2x

T
2

 (2.1)

where det(x) := x21 − ∥x2∥2 denotes the determinant of x.

By the spectral factorization above, for any given scalar function g : IR → J ⊆ IR, we
may define the associated vector-valued function gsoc : IRn → S ⊆ IRn by

gsoc(x) := g(λ1(x))u
(1)
x + g(λ2(x))u

(2)
x . (2.2)

For example, taking g(t) =
√
t for t ≥ 0, we have that gsoc(x) = x1/2 with x ∈ Kn. The

vector-valued gsoc inherits many desirable properties from g (see [9]). The following lemma
provides the formulas to compute the Jacobian of gsoc and its inverse.

Lemma 2.2. Let g : IR → J ⊆ IR be a given scalar function, and gsoc : IRn → S ⊆ IRn be
defined by (2.2). If g is differentiable on int(J), then gsoc is differentiable in int(S) with

∇gsoc(x) =


g′(x1)I if x2 = 0, b(x) c(x)

xT2
∥x2∥

c(x)
x2
∥x2∥

a(x)I + (b(x)− a(x))
x2x

T
2

∥x2∥2

 if x2 ̸= 0

for any x = (x1, x2) ∈ int(S), where

a(x) =
g(λ2(x))− g(λ1(x))

λ2(x)− λ1(x)
, b(x) =

g′(λ2(x)) + g′(λ1(x))

2
, c(x) =

g′(λ2(x))− g′(λ1(x))

2
.

If ∇gsoc(·) is invertible at x ∈ int(S), then letting d(x) = b2(x)− c2(x), we have that

(∇gsoc(x))−1 =


(g′(x1))

−1I if x2 = 0,
b(x)

d(x)
− c(x)

d(x)

xT2
∥x2∥

− c(x)

d(x)

x2
∥x2∥

1

a(x)
I +

(
b(x)

d(x)
− 1

a(x)

)
x2x

T
2

∥x2∥2

 if x2 ̸= 0.

Proof. The first part is direct by Prop. 5.2 of [25] or Prop. 5 of [9]. For the second part,
it suffices to calculate the inverse of ∇gsoc(x) when x2 ̸= 0. By the expression of ∇gsoc,
it is easy to verify that b(x) + c(x) and b(x) − c(x) are the eigenvalues of ∇gsoc(x) with
(1, x2

∥x2∥ ) and (1,− x2

∥x2∥ ) being the corresponding eigenvectors, and a(x) is the eigenvalue of

multiplicity n − 2 with corresponding eigenvectors of the form (0, v̄i), where v̄1, . . . , v̄n−2

are any unit vectors in IRn−1 that span the subspace orthogonal to x2. By this, using an
elementary calculation yields the formula of (∇gsoc(x))−1.
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We next recall some joint properties of two mappings which are the direct extensions
of the uniform Cartesian P -property [17], the uniform Jordan P -property [60], the weak
coerciveness [67], and the R0-property [6], respectively.

Definition 2.3. The mappings F = (F1, . . . , Fm) and G = (G1, . . . , Gm) are said to have

(i) joint uniform Cartesian P -property if there exists a constant ϱ > 0 such that, for
every ζ, ξ ∈ IRn, there exists an index ν ∈ {1, 2, . . . ,m} such that

⟨Fν(ζ)− Fν(ξ)), Gν(ζ)−Gν(ξ)⟩ ≥ ϱ∥ζ − ξ∥2.
(ii) joint uniform Jordan P -property if there exists a constant ϱ > 0 such that, for

every ζ, ξ ∈ IRn,

λ2 [(F (ζ)− F (ξ)) ◦ (G(ζ)−G(ξ))] ≥ ϱ∥ζ − ξ∥2.
(iii) joint Cartesian weak coerciveness if there is an element ξ ∈ IRn such that

lim
∥ζ∥→∞

max
1≤i≤m

⟨Gi(ζ)−Gi(ξ), Fi(ζ)⟩
∥ζ − ξ∥

= +∞.

(iv) joint Cartesian strong coerciveness if the last equation holds for all ξ ∈ IRn.

(v) joint Cartesian Rw
0 -property if, for any sequence {ζk} ⊆ IRn satisfying

∥ζk∥ → +∞, lim sup
k→∞

∥(F (ζk))−∥ < +∞, lim sup
k→∞

∥(G(ζk))−∥ < +∞,

there holds that
lim sup
k→∞

max
1≤i≤m

⟨
Fi(ζ

k), Gi(ζ
k)
⟩
= +∞.

It is easy to see that the joint uniform Cartesian P -property implies the joint Cartesian
strong coerciveness. From the arguments in [47], it follows that the joint uniform Carte-
sian P -property implies the joint uniform Jordan P -property, and the joint Cartesian weak
coerciveness with respect to an element ξ with G(ξ) ∈ K implies the joint Cartesian Rw

0 -
property. Now we are not clear whether the joint uniform Jordan P -property implies the
joint Cartesian weak coerciveness. Note that the above several properties do not imply the
joint monotonicity of F and G, but the joint monotonicity of F and G with some additional
conditions may imply their joint Cartesian Rw

0 -property; see the remarks after Prop. 4.2.
The following definition recalls the concept of linear growth of a mapping, which is weaker
than the global Lipschitz continuity.

Definition 2.4. A mapping F : IRn → IRn is said to have linear growth if there exists a
constant C > 0 such that ∥F (ζ)∥ ≤ ∥F (0)∥+ C∥ζ∥ for any ζ ∈ IRn.

We next introduce the Cartesian (strict) column monotonicity of matrices M and N ,
which is weaker than the (strict) column monotonicity introduced in [22, page 1014] and
[37, page 222]. Particularly, when N is invertible, this property reduces to the Cartesian P0

(P )-property of the matrix −N−1M introduced by Chen and Qi [17].

Definition 2.5. The matrices M,N ∈ IRn×n are said to be

(i) Cartesian column monotone if for any u, v ∈ IRn with u ̸= 0, v ̸= 0,

Mu+Nv = 0 =⇒ ∃ν ∈ {1, . . . ,m} s.t. uν ̸= 0 and ⟨uν , vν⟩ ≥ 0.



A SURVEY ON SOCPS AND SOCCPS 39

(ii) Cartesian strictly column monotone if for any u, v ∈ IRn with (u, v) ̸= (0, 0),

Mu+Nv = 0 =⇒ ∃ν ∈ {1, . . . ,m} s.t. ⟨uν , vν⟩ > 0.

To close this section, we recall the concept of B-subdifferential for a locally Lipschitz
continuous mapping. If H : IRn → IRm is locally Lipschitz continuous, then the set

∂BH(z) :=
{
V ∈ IRm×n | ∃{zk} ⊆ DH : zk → z, H ′(zk) → V

}
is nonempty and called the B-subdifferential [55] of H at z, where DH ⊆ IRn is the set of
points at which H is differentiable. The convex hull of ∂BH(z) is called the generalized
Jacobian of Clarke [20], i.e. ∂H(z) = conv∂BH(z). We assume that the reader is familiar
with the concept of (strong) semismoothness, and refer to [49, 55, 56] for the details.

Unless otherwise stated, in the rest of this paper, we assume that F = (F1, . . . , Fm) and
G = (G1, . . . , Gm) with Fi, Gi : IRn → IRni are continuously differentiable. For a given
x ∈ IRl for some l ≥ 2, we write x = (x1, x2) ∈ IR× IRl−1, where x1 is the first component
of the vector x and x2 consists of the remaining l − 1 components of x.

3 Merit Functions Associated with Kn

This section reviews four classes of smooth merit functions associated with Kn and their
properties related to the merit function approach. The nondifferentiable NR function

ψNR(x, y) := ∥x− (x− y)+∥2 ∀x, y ∈ IRn (3.1)

is needed, which plays a crucial role in error bound estimations of other merit functions.

3.1 Implicit Lagrangian Function

The implicit Lagrangian ψMS : IR
n × IRn → IR+, parameterized by α > 1, is defined as

ψMS(x, y) := max
u,v∈Kn

{
⟨x, y − v⟩ − ⟨y, u⟩ − 1

2α
(∥x− u∥2 + ∥y − v∥2)

}
= ⟨x, y⟩+ 1

2α

(
∥(x− αy)+∥2 − ∥x∥2 + ∥(y − αx)+∥2 − ∥y∥2

)
. (3.2)

The function is introduced by Mangasarian and Solodov [38] for NCPs, and extended to
semidefinite complementarity problems (SDCPs) by Tseng [61] and general symmetric cone
complementarity problems (SCCPs) by Kong et al. [33]. By Theorem 3.2(b) of [33], ψMS is
a merit function induced by the trace of the SOC complementarity function

ϕ
MS

(x, y) := x ◦ y + 1

2α

[
(x− αy)2+ − x2 + (y − αx)2+ − y2

]
∀x, y ∈ IRn, α > 1. (3.3)

The following results are extensions of known results, particularly [62, 65, 39], for NCPs.

Lemma 3.1. For any fixed α > 1 and all x, y ∈ IRn, we have the following results.

(a) ψMS(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0 ⇐⇒ ϕMS(x, y) = 0.

(b) ϕMS and ψMS are continuously differentiable everywhere, with

∇xψMS(x, y) = y + α−1 ((x− αy)+ − x)− (y − αx)+,

∇yψMS(x, y) = x+ α−1 ((y − αx)+ − y)− (x− αy)+.
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(c) The gradient function ∇ψMS is globally Lipschitz continuous.

(d) ⟨x,∇xψMS(x, y)⟩+ ⟨y,∇yψMS(x, y)⟩ = 2ψMS(x, y).

(e) ⟨∇xψMS(x, y),∇yψMS(x, y)⟩ ≥ 0.

(f) ψMS(x, y) = 0 if and only if ∇xψMS(x, y) = 0 and ∇yψMS(x, y) = 0.

(g) (α− 1)∥ϕNR(x, y)∥2 ≥ ψMS(x, y) ≥ (1− α−1)∥ϕNR(x, y)∥2.

(h) α−1(α− 1)2ψMS(x, y) ≤ ∥∇xψMS(x, y) +∇yψMS(x, y)∥2 ≤ 2α(α− 1)ψMS(x, y).

Proof. The proofs of parts (a)–(b) and (e)–(f) are given in [33]. Parts (c)–(d) are direct by
the expressions of ψMS and ∇ψMS . Part (g) is a direct application of [62, Prop. 2.2] with
π̃ = −ψMS . Part (h) is easily shown by [50, Theorem 4.2] and (b) and (g).

Analogous to the NCPs and SDCPs, the implicit Lagrangian has the most favorable
properties among all projection merit functions. So, we do not review others in this class.

3.2 Fischer-Burmeister (FB) Merit Function

From [25], ϕ
FB

in (1.11) is an SOC complementarity function, and whence its squared norm

ψFB(x, y) :=
1

2
∥ϕFB(x, y)∥2. (3.4)

is a merit function associated with Kn. The function ψFB was shown to be continuously
differentiable everywhere with globally Lipschitz continuous gradient [10, 16], although ϕFB

itself is not differentiable. Recently, we extend these favorable properties of ψFB to the
following one-parametric class of merit functions (see [14, 15]):

ψτ (x, y) :=
1

2
∥ϕτ (x, y)∥2, (3.5)

where τ ∈ (0, 4) is an arbitrary fixed parameter and ϕτ : IR
n × IRn → IRn is defined by

ϕτ (x, y) := (x+ y)−
[
(x− y)2 + τ(x ◦ y)

]1/2
. (3.6)

Clearly, when τ = 2, ψτ becomes the FB merit function ψFB . The one-parametric class of
functions was originally proposed by Kanzow and Kleinmichel [31] for NCPs, and was proved
to share all desirable properties of the FB NCP function. The following lemma summarizes
those properties of ψτ used in the merit function approach.

Lemma 3.2. For any fixed τ ∈ (0, 4) and all x, y ∈ IRn, we have the following results.

(a) ψτ (x, y) = 0 ⇐⇒ ϕτ (x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0.

(b) ψτ is continuously differentiable everywhere with ∇xψτ (0, 0) = ∇yψτ (0, 0) = 0. Also,
if w = (x− y)2 + τ(x ◦ y) ∈ int(Kn), then

∇xψτ (x, y) =
(
I − Lx+ τ−2

2 yL
−1√
w

)
ϕτ (x, y),

∇yψτ (x, y) =
(
I − Ly+ τ−2

2 xL
−1√
w

)
ϕτ (x, y);
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and if (x− y)2 + τ(x ◦ y) ∈ bd(Kn) and (x, y) ̸= (0, 0),

∇xψτ (x, y) =

[
1−

x1 +
τ−2
2 y1√

x21 + y21 + (τ − 2)x1y1

]
ϕτ (x, y),

∇yψτ (x, y) =

[
1−

y1 +
τ−2
2 x1√

x21 + y21 + (τ − 2)x1y1

]
ϕτ (x, y).

(c) The gradient function ∇ψτ is globally Lipschitz continuous.

(d) ⟨x,∇xψτ (x, y)⟩+ ⟨y,∇yψτ (x, y)⟩ = 2ψτ (x, y).

(e) ⟨∇xψτ (x, y),∇yψτ (x, y)⟩ ≥ 0, with equality holding if and only if ψτ (x, y) = 0.

(f) ψτ (x, y) = 0 ⇐⇒ ∇xψτ (x, y) = 0 ⇐⇒ ∇yψτ (x, y) = 0.

(g) There exist constant c1 > 0 and c2 > 0 independent on x, y such that

c1∥ϕNR(x, y)∥ ≤ ∥ϕτ (x, y)∥ ≤ c2∥ϕNR(x, y)∥.

(h) There exist constants C1 > 0 and C2 > 0 only dependent on n, τ such that

C1∥ϕτ (x, y)∥ ≤ ∥∇xψτ (x, y) +∇yψτ (x, y)∥ ≤ C2∥ϕτ (x, y)∥.

Proof. The proofs of parts (a)–(b) and (d)–(e) can be found in [14]. Part (c) is proved in [15,
Theorem 3.1]. Part (f) follows by parts (a), (b) and (e). Parts (g) and (h) are established
in [3].

Comparing Lemma 3.2 with Lemma 3.1, we see that the functions ψ
FB

and ψ
MS

share
with similar favorable properties, but the properties (e)–(f) of ψFB are stronger than those
of ψMS , which make ψFB require a weaker stationary point condition; see Prop. 4.1.

It should be pointed out that the squared norms of Evtushenko and Purtov [21] SOC
complementarity functions ϕα : IR

n × IRn → IRn and ϕβ : IR
n × IRn → IRn, defined as

ϕα(x, y) := −(x ◦ y) + 1

2α
(x+ y)2− 0 < α ≤ 1,

ϕβ(x, y) := −(x ◦ y) + 1

2β

(
(x)2− + (y)2−

)
0 < β < 1, (3.7)

also provide the smooth merit functions ψα and ψβ associated with Kn. But, since they do
not enjoy the property (e) of ψτ or the weaker property (e) of ψMS , it is hard to find the
conditions to guarantee that every stationary point of Ψα and Ψβ is a solution of SOCCPs
(see the proof of Prop. 4.1). In addition, unlike in the setting of NCPs, the squared norm
of penalized FB SOC complementarity function is not smooth even nondifferentiable. So,
this paper does not include these functions.

3.3 Luo and Tseng (LT) Merit Function

The third class of smooth merit functions is an extension of the class of functions introduced
by Luo and Tseng [37] for NCPs, and subsequently extended to SDCPs in [61, 66]. In the
setting of SOCs, this class of functions is defined as

ψLT(x, y) := ψ0 (⟨x, y⟩) + ψ̂(x, y), ∀x, y ∈ IRn (3.8)
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where ψ0 : IR → IR+ is an arbitrary smooth function satisfying

ψ0(0) = 0, ψ′
0(t) = 0 ∀t ≤ 0, and ψ′

0(t) > 0 ∀t > 0 (3.9)

and ψ̂ : IRn × IRn → IR+ is an arbitrary smooth function such that

ψ̂(x, y) = 0, ⟨x, y⟩ ≤ 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0. (3.10)

The requirment for ψ0 is a little different from the original LT merit functions [37]. There
are many functions satisfying (3.9) such as the polynomial function q−1 max(0, t)q (q ≥ 2),
the exponential function exp(max(0, t)2) − 1, and logarithmic function ln(1 + max(0, t)2).

In addition, there are many choices for ψ̂ such as ψMS , ψτ and the following

ψ̂1(x, y) :=
1

2

(
∥(x)−∥2 + ∥(y)−∥2

)
and ψ̂2(x, y) :=

1

2
∥ϕFB(x, y)+∥

2
. (3.11)

In this paper, we are particularly interested in three subclasses of ψLT with ψ̂ chosen as ψFB ,

ψ̂1 and ψ̂2. Among others, ψLT with ψ̂ = ψFB is an analog of the merit function studied by

Yamashita and Fukushima [66] for SDCPs. In view of this, we write ψLT with ψ̂ = ψFB as

ψYF . We also write ψLT with ψ̂ = ψ̂1 and ψ̂2 as ψLT1 and ψLT2 , respectively.

Lemma 3.3. Let ψ be one of the functions ψYF , ψLT1 and ψLT2 . Then, for all x, y ∈ IRn,

(a) ψ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0.

(b) ψ is continuously differentiable everywhere. Furthermore,

∇xψYF(x, y) = ψ′
0 (⟨x, y⟩) y +∇xψFB(x, y),

∇yψYF(x, y) = ψ′
0 (⟨x, y⟩)x+∇yψFB(x, y),

where ∇xψFB and ∇yψFB are given by Lemma 3.2(c) with τ = 2;

∇xψLT1(x, y) = ψ′
0 (⟨x, y⟩) y + (x)−, ∇yψLT1(x, y) = ψ′

0 (⟨x, y⟩)x+ (y)−;

when ψ = ψLT2 , ∇xψLT2(0, 0) = ∇yψLT2(0, 0) = 0, and if x2 + y2 ∈ int(Kn),

∇xψLT2
(x, y) = ψ′

0 (⟨x, y⟩) y +
(
I − LxL

−1
(x2+y2)1/2

)
ϕ

FB(x, y)+,

∇yψLT2(x, y) = ψ′
0 (⟨x, y⟩)x+

(
I − LyL

−1
(x2+y2)1/2

)
ϕFB(x, y)+,

and if x2 + y2 ∈ bd+(Kn),

∇xψLT2(x, y) = ψ′
0 (⟨x, y⟩) y +

(
1− x1√

x21 + y21

)
ϕFB(x, y)+,

∇yψLT2(x, y) = ψ′
0 (⟨x, y⟩)x+

(
1− y1√

x21 + y21

)
ϕFB(x, y)+.

(c) The gradient ∇ψ is globally Lipschitz continuous on any bounded set of IRn × IRn.

(d) ⟨x,∇xψ(x, y)⟩+ ⟨y,∇yψ(x, y)⟩ ≥ 2ψ′
0 (⟨x, y⟩) ⟨x, y⟩+ 2ψ(x, y) ≥ 2ψ̂(x, y).
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(e) ⟨∇xψ(x, y),∇yψ(x, y)⟩ ≥ 0, and when ψ = ψYF and ψLT2 , ⟨∇xψ(x, y),∇yψ(x, y)⟩ = 0
if and only if ψ(x, y) = 0.

(f) When ψ = ψYF and ψLT2 , ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0 ⇐⇒ ∇yψ(x, y) = 0; and when
ψ = ψLT1 , ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0 and ∇yψ(x, y) = 0.

(g) If ψ0 is convex and nondecreasing in IR, then ψLT1 is a convex function over IRn × IRn.

Proof. When ψ = ψYF , from the definition of ψYF and Lemma 3.2(a) and (c)–(d), we readily
get parts (a)–(c); parts (d)–(e) are easily verified by using part (b), Lemma 3.2(e) with τ = 2
and equation (3.9). When ψ = ψLT1 and ψLT2 , parts (a)–(b) and (d)–(e) are established in
Prop. 3.1 and Prop. 3.2 of [12] except the smoothness of ψLT2 , which is implied by Lemma 1
of appendix. Part (c) is immediate by using the expressions of ∇ψLT1 and ∇ψLT2 and noting

that ∇ψ̂ is globally Lipschitz continuous on IRn × IRn.

When ψ = ψYF and ψLT2 , part (f) follows by parts (b) and (e), and when ψ = ψLT1 , part

(f) follows by parts (b) and (d). By Prop. 3.1(b) of [12], ψ̂1 is convex over IRn × IRn. Since
ψ0 is convex and nondecreasing in IR, it is easy to verify that ψ0(⟨x, y⟩) is also convex over
IRn × IRn. So, we obtain the result of part (g).

Comparing Lemma 3.3 with Lemmas 3.1 and 3.2, we observe that ψMS and ψτ have two
remarkable advantages over the LT class of merit functions: one is the positive homogeneity
of ψMS and ψτ , which makes the corresponding merit functions for SOCCPs overcome the
bad-scaling of problems; the other is that their gradients have the same growth as the merit
function itself, which is the key to establish convergence rate of some descent algorithms.
It should be pointed out that although the LT class of merit functions does not possess the
property (g) of ψMS and ψFB , the corresponding merit functions for the SOCCPs may provide
a global error bound under a weaker condition (see Prop. 4.3), and moreover, Lemma 3.5
below shows that they have faster growth than ψ

MS
and ψ

FB
.

3.4 A Variant of LT Merit Function

A variant of the LT merit functions is the function ψ̂LT : IRn × IRn → IR+ defined by

ψ̂LT(x, y) := ψ0(∥(x ◦ y)+∥2) + ψ̂(x, y) ∀x, y ∈ IRn, (3.12)

where ψ0 satisfies the first and the third properties of (3.9) and ψ̂ satisfies (3.10). This class

of merit functions was considered by Chen [12]. In this work we are interested in ψ̂LT with

ψ̂ = ψFB , ψ̂1 and ψ̂2, and write them as ψ̂YF , ψ̂LT1 and ψ̂LT2 , successively.

Lemma 3.4. Let ψ be one of the functions ψ̂YF , ψ̂LT1 and ψ̂LT2 . Then, for all x, y ∈ IRn,

(a) ψ(x, y) = 0 ⇐⇒ x ∈ Kn, y ∈ Kn, ⟨x, y⟩ = 0.

(b) ψ is continuously differentiable everywhere, with

∇xψ(x, y) = 2ψ′
0

(
∥(x ◦ y)+∥2

)
Ly(x ◦ y)+ +∇xψ̂(x, y),

∇yψ(x, y) = 2ψ′
0

(
∥(x ◦ y)+∥2

)
Lx(x ◦ y)+ +∇yψ̂(x, y),

where ∇xψ̂(x, y) and ∇yψ̂(x, y) are same as in Lemma 3.3.

(c) The gradient ∇ψ is globally Lipschitz continuous on any bounded set of IRn × IRn.
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(d) ⟨x,∇xψ(x, y)⟩+ ⟨y,∇yψ(x, y)⟩ = 4ψ′
0

(
∥(x ◦ y)+∥2

)
∥(x ◦ y)+∥2 + 2ψ̂(x, y).

(e) ψ(x, y) = 0 ⇐⇒ ∇xψ(x, y) = 0 and ∇yψ(x, y) = 0.

Proof. The proofs are same as that of Lemma 3.3, and we omit them.

For the class of merit functions ψ̂LT , it is difficult to establish the following inequality

⟨∇xψ̂LT(x, y),∇yψ̂LT(x, y)⟩ ≥ 0 ∀x, y ∈ IRn

although numerical simulations show that they possess the property. The main difficulty is
to estimate the terms ⟨Ly(x ◦ y)+,∇yψ̂(x, y)⟩ and ⟨Lx(x ◦ y)+,∇xψ̂(x, y)⟩.

To close this section, we characterize the growth of the above merit functions via a
lemma, whose proof is direct by the arguments of [47, Sec. 4] and the remarks after it.

Lemma 3.5. If the sequence {(xk, yk)} ⊆ IRn × IRn satisfies one of the conditions:

(i) lim infk→∞ λ1(x
k) = −∞ or lim infk→∞ λ1(y

k) → −∞;

(ii) {λ1(xk)} and {λ1(yk)} are bounded below, λ2(x
k), λ2(y

k) → +∞, and xk

∥xk∥ ◦
yk

∥yk∥ 9 0;

(iii) {λ1(xk)} and {λ1(yk)} are bounded below, and lim supk→∞⟨xk, yk⟩ = +∞,

then lim supk→∞ ψ(xk, yk) → ∞ for ψ= ψYF , ψLT1 , ψLT2 , ψ̂YF , ψ̂LT1 and ψ̂LT2 . If {(xk, yk)}
satisfies (i) or (ii), then lim supk→∞ ψ(xk, yk) → ∞ with ψ = ψNR , ψMS , ψτ .

The condition (ii) of Lemma 3.5 implies the condition (iii) since, when {λ1(xk)} and
{λ1(yk)} are bounded below and λ2(x

k), λ2(y
k) → +∞, there must exist a vector d ∈ IRn

such that xk − d ∈ Kn and yk − d ∈ Kn, which along with xk

∥xk∥ ◦ yk

∥yk∥ 9 0 yields that

⟨xk,yk⟩
∥xk∥∥yk∥ → c > 0 (taking a subsequence if necessary), and lim supk→∞⟨xk, yk⟩ = +∞ then

follows. Hence, ψLT and its variant ψ̂LT have faster growth than ψτ and ψMS .

4 Merit Function Approach and Applications

This section is devoted to the merit function methods for the generalized SOCCP (1.3),
which yields a solution of (1.3) by solving an unconstrained minimization (1.8) with ψ being
one of the merit functions introduced in last section. Throughout this section, we assume
that K has the Cartesian structure of (1.2), and for any ζ ∈ IRn, write

∇xψ(F (ζ), G(ζ)) =
(
∇x1ψ(F1(ζ), G1(ζ)), . . . ,∇xmψ(Fm(ζ), Gm(ζ))

)
,

∇yψ(F (ζ), G(ζ)) =
(
∇y1ψ(F1(ζ), G1(ζ)), . . . ,∇ymψ(Fm(ζ), Gm(ζ))

)
.

When applying effective gradient-type methods for the problem (1.8), we expect only a
stationary point due to the nonconvexity of merit functions. Thus, it is necessary to know
what conditions can guarantee every stationary point of Ψ to be a solution of (1.3). The
following proposition provides a suitable condition for the first three classes of functions.

Proposition 4.1. Let Ψ be given by (1.8) with ψ being one of the previous merit functions.
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(a) When ψ = ψτ , ψYF and ψLT2 , every stationary point of Ψ is a solution of (1.3) if ∇F (ζ)
and −∇G(ζ) are Cartesian column monotone for any ζ ∈ IRn.

(b) When ψ = ψMS or ψLT1 , every stationary point of Ψ is a solution of (1.3) if ∇F (ζ) and
−∇G(ζ) are Cartesian strictly column monotone for any ζ ∈ IRn.

Proof. Since F and G are continuously differentiable, by Lemmas 3.1–3.3(b), the function
Ψ is continuously differentiable with

∇Ψ(ζ) = ∇F (ζ)∇xψ(F (ζ), G(ζ)) +∇G(ζ)∇yψ(F (ζ), G(ζ)). (4.1)

Let ζ ∈ IRn be an arbitrary but fixed stationary point of the function Ψ. Then,

∇F (ζ)∇xψ(F (ζ), G(ζ)) +∇G(ζ)∇yψ(F (ζ), G(ζ)) = 0. (4.2)

Suppose that ζ is not a solution of (1.3). When ψ = ψτ , ψYF and ψLT2 , we must have
∇xψ(F (ζ), G(ζ)) ̸= 0 and ∇yψ(F (ζ), G(ζ)) ̸= 0 by Lemma 3.2– 3.3(f). Since ∇F (ζ) and
−∇G(ζ) are Cartesian column monotone, equality (4.2) implies that there exists an index
ν ∈ {1, . . . ,m} such that ∇xνψ(Fν(ζ), Gν(ζ)) ̸= 0 and

⟨∇xνψ(Fν(ζ), Gν(ζ)),∇yνψ(Fν(ζ), Gν(ζ))⟩ ≤ 0.

Along with Lemma 3.2–3.3(e), we have ψ(Fν(ζ), Gν(ζ)) = 0. This, by Lemma 3.2–3.3(f),
implies ∇xνψ(Fν(ζ), Gν(ζ)) = 0, and then we get a contradiction. When ψ = ψMS or ψLT1 ,
by Lemma 3.1 and 3.3(f) we have (∇xψ(F (ζ), G(ζ)),∇yψ(F (ζ), G(ζ)) ̸= (0, 0). Since ∇F (ζ)
and −∇G(ζ) are Cartesian strictly column monotone, (4.2) implies that there exists an index
ν ∈ {1, . . . ,m} such that ∇xνψ(Fν(ζ), Gν(ζ)) ̸= 0 and

⟨∇xνψ(Fν(ζ), Gν(ζ)),∇yνψ(Fν(ζ), Gν(ζ))⟩ < 0,

which is impossible by Lemma 3.1 and 3.3(e). The proof is completed.

When ∇G(ζ) is invertible, since the Cartesian (strict) column monotonicity of ∇F (ζ)
and −∇G(ζ) is equivalent to the Cartesian (P ) P0-property of ∇G(ζ)−1∇F (ζ), Prop. 4.1
extends the results of [10, Prop. 3] and [12, Prop. 3.3] for ψYF and ψLT2 , respectively, as
well as recovers the result of [44, Prop. 5.1]. When G is an identity mapping, in view of
Lemmas 3.1– 3.3(e), using the same arguments as in [33, Theorem 5.3] can prove that every
regular stationary point of Ψ is a solution of (1.3). From [33], we know that the regularity is
weaker than the Cartesian P -property of ∇F , but it is not clear whether it is weaker than
the Cartesian P0-property of ∇F .

The property that ⟨∇xψ(x, y),∇yψ(x, y)⟩ ≥ 0 for all x, y ∈ IRn plays a crucial role in

the proof of Prop. 4.1. For the variant of LT functions Ψ̂LT , since the desirable property is

not established, we can not provide suitable stationary point conditions for Ψ̂LT .

When solving the minimization problem (1.8), to guarantee that the iterative sequence
generated has a limit point, it is necessary to require that Ψ has bounded level sets, which is
implied by the coerciveness of Ψ, i.e., lim sup∥ζ∥→∞ Ψ(ζ) = +∞. The following proposition
provides the weakest coerciveness conditions for the previous merit functions.

Proposition 4.2. Suppose the mappings F and G satisfy one of the following conditions:

(C.1) F and G have the joint uniform Jordan P -property and the linear growth.
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(C.2) F and G have the joint Cartesian weak coerciveness and the linear growth.

(C.3) F and G are the joint Cartesian Rw
0 -functions.

Then ΨNR ,ΨMS and Ψτ are coercive under (C.1) or (C.2); ΨLT1 ,ΨLT2 , Ψ̂LT1 and Ψ̂LT2 are

coercive under (C.3); and ΨYF and Ψ̂YF are coercive under one of (C.1)–(C.3).

Proof. The arguments are similar to those of [47], and we here omit them.

From the remarks after Def. 2.3, we know that the functions ΨNR ,ΨMS and Ψτ require

a stronger coerciveness condition than the functions ΨYF ,ΨLT1 ,ΨLT2 and Ψ̂YF , ψ̂LT1 , Ψ̂LT2 .
It is worthwhile to point out, when F and G are jointly monotone mappings satisfying
lim∥ζ∥→∞ ∥F (ζ)∥ + ∥G(ζ)∥ = ∞ and the generalized SOCCP (1.3) is strictly feasible, i.e.,

there exists ζ̂ ∈ IRn such that F (ζ̂), G(ζ̂) ∈ int(K), using the same arguments as those of
[47, Prop. 3.4] yields that F and G have the joint Cartesian Rw

0 -property. Thus, Prop. 4.2
extends the results of [10, Prop. 6] and [12, Prop. 4.3]. In addition, this proposition also
extends the results obtained in [45, 44] for the boundedness of level sets of ΨNR ,ΨMS ,Ψτ .

Next we review the global error bound results for the previous merit functions. These
results play a key role in establishing the convergence rate of merit function approaches.

Proposition 4.3. Let ζ∗ be a solution of the SOCCP (1.3) and Ψ be given by (1.8) with ψ
being one of the merit functions introduced in last section. Then,

(a) when ψ = ψYF , ψLT1 , ψLT2 and ψ̂YF , ψ̂LT1 , ψ̂LT2 , if F and G have the joint uniform Carte-
sian P -property, then there exists a constant κ > 0 such that for any ζ ∈ IRn,

κ∥ζ − ζ∗∥2 ≤
[
ψ−1
0 (Ψ(ζ))

]1/2
+Ψ(ζ)1/2; (4.3)

(b) when ψ = ψNR , ψMS and ψFB , if F and G are Lipschitz continuous and have joint
uniform Cartesian P -property, then there exist constants κ1, κ2 > 0 such that

κ1Ψ(ζ) ≤ ∥ζ − ζ∗∥2 ≤ κ2Ψ(ζ), ∀ζ ∈ IRn. (4.4)

Proof. (a) From Def. 2.3(i), there exist an index ν ∈ {1, . . . ,m} and ϱ > 0 such that

ϱ∥ζ − ζ∗∥2 ≤ ⟨Fi(ζ)− Fi(ζ
∗), Gi(ζ)−Gi(ζ

∗)⟩ ∀ζ ∈ IRn.

Using the same arguments as Prop. 5 of [10], we obtain that for any ζ ∈ IRn,

κ̂∥ζ − ζ∗∥2 ≤ ⟨Fi(ζ), Gi(ζ)⟩+ ∥(Fi(ζ))−∥+ ∥(Gi(ζ))−∥

where κ̂ :=
ϱ

max{1, ∥Fi(ζ∗)∥, ∥Gi(ζ∗)∥}
. Note that, for any ζ ∈ IRn,

⟨Fi(ζ), Gi(ζ)⟩ ≤ (Fi(ζ)
TGi(ζ))+ or

√
2∥(Fi(ζ) ◦Gi(ζ))+∥.

From the increasing of ψ−1
0 (t) on [0,+∞) and the nonnegativity of ψFB and ψ̂, we get

(Fi(ζ)
TGi(ζ))+ or ∥(Fi(ζ) ◦Gi(ζ))+∥ ≤

[
ψ−1
0 (ψ(Fi(ζ), Gi(ζ)))

]1/2 ≤
[
ψ−1
0 (Ψ(ζ))

]1/2
.

In addition, using Lemma 8 of [10], it is easy to verify that

∥(Fi(ζ))−∥+ ∥(Gi(ζ))−∥ ≤ 2
√
2ψFB(Fi(ζ), Gi(ζ))

1/2 or 2ψ̂(Fi(ζ), Gi(ζ))
1/2

≤ 2
√
2Ψ(ζ)1/2.
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Combining the last two equations, we readily obtain the result in (4.3) with κ = κ̂/(2
√
2).

(b) When ψ = ψNR and ψMS , the result is established in Theorem 6.3 of [33]. When ψ = ψFB ,
the result is direct by Lemma 3.2(g) and the result for ΨNR .

The constant κ in Prop. 4.3 is dependent on ζ∗ and ϱ, whereas κ1, κ2 are also dependent
on the Lipschitz constants of F and G besides ζ∗ and ϱ. This proposition shows that the
LT class of merit functions ΨLT and its variant Ψ̂LT may provide an upper global error
estimation under a weaker condition than the functions ΨNR ,ΨMS and ΨFB , although the
latter also provides a lower global error estimation. Prop. 4.3(a) extends the results of
[10, Prop. 5] and [12, Prop. 4.1]. From this proposition, we readily recover the error bound
results of these merit functions in the setting of NCPs [30, 37].

Up to now, we have established the theoretical foundations of the merit function methods
when applying existing gradient-type descent methods, for example the BFGS method, for
solving (1.8). Except these existing minimization methods, we may develop new descent
algorithms for the unconstrained reformulation (1.8) in view of the following proposition.
These methods have some attractive features for some special classes of SOCCPs.

Proposition 4.4. Let ψ be one of the first three classes of merit functions in last section.
Suppose that ∇G(ζ) is invertible for every ζ ∈ IRn, and ζ̄ is not a solution of (1.3). Let

d(ζ, β) := −
[
∇G(ζ)−1

]T [∇xψ(F (ζ), G(ζ)) + β∇yψ(F (ζ), G(ζ))
]

∀ζ ∈ IRn. (4.5)

(a) Then, when ψ = ψτ , ψYF and ψLT2 , ⟨d(ζ̄, β),∇Ψ(ζ̄)⟩ < 0 for sufficiently small β > 0,
provided that ∇G(ζ̄)−1∇F (ζ̄) is positive semidefinite.

(b) When ψ = ψMS and ψLT1 , ⟨d(ζ̄, β),∇Ψ(ζ̄)⟩ < 0 for sufficiently small β > 0, provided
that ∇G(ζ̄)−1∇F (ζ̄) is positive definite.

Proof. Using the definition of d(ζ, β) and formula (4.1), we calculate that

⟨d(ζ, β),∇Ψ(ζ)⟩ = −⟨∇xψ(F (ζ), G(ζ)), ∇G(ζ)−1∇F (ζ)∇xψ(F (ζ), G(ζ))⟩
−⟨∇xψ(F (ζ), G(ζ)),∇yψ(F (ζ), G(ζ))⟩
−β⟨∇xψ(F (ζ), G(ζ)), ∇G(ζ)−1∇F (ζ)∇yψ(F (ζ), G(ζ))⟩
−β∥∇yψ(F (ζ), G(ζ))∥2.

Together with Lemmas 3.1–3.3(e)–(f), we obtain the desired results.

Motivated by Prop. 4.4 and the descent algorithms for NCPs (see, e.g., [65, 39, 68]), we
next utilize the direction d(ζ, β) to design an algorithm for the generalized SOCCPs that
involve an invertible ∇G and a positive definite (or positive semidefinite) ∇G−1∇F .

Algorithm 4.1

Step 0. Let ψ be from the first three classes of merit functions of last section. Choose
a point ζ0 ∈ IRn, σ ∈ (0, 1/2) and γ, β ∈ (0, 1) with γ < β. Set k := 0.

Step 1. If Ψ(ζk) = 0, then stop and ζk is a solution of the SOCCP.

Step 2. Let lk be the smallest nonnegative integer l satisfying

Ψ(ζk + γld(ζk, βl))−Ψ(ζk)

≤ −σγ2l∥∇xψ(F (ζ
k), G(ζk)) +∇yψ(F (ζ

k), G(ζk))∥2 (4.6)
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where d(ζ, β) is defined as in (4.5), and set

dk(βlk) := d(ζk, βlk) and ζk+1 := ζk + γlkdk(βlk).

Step 3. Let k := k + 1, and then go to Step 1.

When applying Algorithm 4.1 for solving the SOCCP (1.4), the computation of the
search direction d(ζ, β) and the stepsize does not require the gradients of F . This makes
the method suitable for large-scale problems, as well as applications where the derivatives
of F (·) are not available or are costly to compute.

By Prop. 4.4, when ∇G−1∇F is positive definite (semidefinite), the direction d(ζ, β)
is descent for sufficiently small β > 0. To achieve this goal, we start Algorithm 4.1 with
some reasonable small β and adapt iteratively by decreasing it if the linesearch step fails
or the algorithm does not appear to make predicted progress. Such adaptive choice for the
constant β is also adopted in descent algorithms for NCPs; see [39, 68].

For Algorithm 4.1, by Lemmas 3.1–3.3(e)–(f), using the same arguments as those of [46,
Theorem 4.1] yields the following global convergence results.

Theorem 4.5. Suppose that ∇G(ζ) is invertible for every ζ ∈ IRn, and ∇G(ζ)−1∇F (ζ) is
positive semidefinite for every ζ ∈ IRn when ψ = ψτ , ψYF and ψLT2 , and ∇G(ζ)−1∇F (ζ) is
positive definite for every ζ ∈ IRn when ψ = ψMS and ψLT1 . Then, Algorithm 4.1 is well
defined for any initial point ζ0, and any accumulation point of the sequence {ζk} generated
by Algorithm 4.1 is a solution of the SOCCP (1.3).

When F and G satisfy the corresponding conditions of Prop. 4.2, the sequence {ζk}
generated by Algorithm 4.1 has always an accumulation point. Together with Theorem 4.5,
clearly, when G is an identity mapping and F is strongly monotone and Lipschitz continuous,
the sequence {ζk} converges to the unique solution of (1.3). Particularly, for ψ = ψMS and
ψFB , using the properties (e) and (g)–(h) of Lemmas 3.1 and 3.2, and the same arguments as
those of [46, Theorem 5.1], we may establish the R-linear rate of convergence of Algorithm
4.1 under strong monotonicity.

Theorem 4.6. Let Ψ = ΨMS or ΨFB . Suppose that ∇G(ζ) is invertible for any ζ ∈ IRn,
and F and G are jointly strongly monotone and have linear growth. If ∇F and ∇G are Lip-
schitz continuous on the set LΨ(ζ) :=

{
ζ ∈ IRn : Ψ(ζ) ≤ Ψ(ζ0)

}
, then the sequence {Ψ(ζk)}

converges to zero Q-linearly and {ζk} converges R-linearly to the solution of (1.3).

When ψ = ψYF and ψLT , we can not establish the convergence rate of Algorithm 4.1
since it is not clear whether the inequality ∥∇xψ(x, y) +∇yψ(x, y)∥2 ≥ c1ψ(x, y) for some
c1 > 0 holds or not, although they have more desirable error bound results.

The discussions above show that Ψ
FB

seems to possess more desirable properties than
ΨMS ,ΨYF ,ΨLT1 and ΨLT2 , although for some properties the LT merit functions ΨYF ,ΨLT1 and
Ψ

LT2
need weaker conditions; for example, the coercive property and the global error bound

property. In the next subsections, we compare their numerical performance by applying
these merit function methods for convex SOCPs and SOCCPs.

4.1 Applications in the Solution of Convex SOCPs

We employ the merit function methods to solve the SOCP (1.5) with a twice continuously
differentiable convex f . From [10], it follows that the KKT optimality conditions of (1.5)
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can be reformulated as the generalized SOCCP (1.3) with

F (ζ) = x̂+ (I −AT (AA)−1)ζ and G(ζ) = ∇f(F (ζ))−AT (AAT )−1Aζ

where x̂ ∈ IRn satisfies Ax = b. We apply the BFGS method for the minimization reformu-
lation (1.8) with ψ chosen as one of the previous merit functions.

In the BFGS method, we revert to the steepest descent direction −∇Ψ(ζ) whenever
pT q ≤ 10−5∥p∥∥q∥, where p := ζ−ζold and q := ∇Ψ(ζ)−∇Ψ(ζold). We adopt a nonmonotone
line search as described in [26] to seek a suitable stepsize, i.e., we compute the smallest
nonnegative integer lk such that

Ψ(ζk + ρlkdk) ≤ Wk + σρlk∇Ψ(ζk)T dk

where dk denotes the direction in the kth iteration, ρ and σ are parameters in (0, 1), and
Wk = maxj=k−mk,··· ,k Ψ(ζj) and where, for a given nonnegative integer m̂ and s, we set

mk =

{
0 if k ≤ s

min
{
mk−1 + 1, m̂

}
otherwise

.

Throughout the experiments, unless otherwise stated we choose the following parameters:

ρ = 0.5, σ = 10−4, m̂ = 5 and s = 5.

Since the SOCP instances to solve have a large n, we employ a limited-memory BFGS
method [4] (L-BFGS, for short) with 5 limited-memory vector-updates to solve (1.8). In the
L-BFGS method, we adopt the choice of γ = pT q/qT q recommended by [42, page 226] for
the scaling matrix H0 = γI, where p and q are same as above.

All tests were done at a PC of Pentium 4 with 2.8GHz CPU and 512MB memory. The
computer codes were written in Matlab 6.5. During the testing, we computed the vector x̂
in F as a solution of mind ∥Ad− b∥ using Matlab’s least square solver. We evaluated F and
G with the Cholesky factorization of AAT , which is efficient when A is sparse. In particular,
given such a factorization RRT = AAT , we compute x = F (ζ) and y = G(ζ) for each ζ via
two matrix-vector multiplications and two forward/backward solvers:

Ru = Aζ, RTυ = u, w = ATυ, x = d+ ζ − w y = ∇f(x)− w.

We started the BFGS method with ζ0 = 0, and terminated the iteration whenever one of the
following conditions was satisfied: (1) Ψ(ζ) ≤ ϵ1 and |F (ζ)TG(ζ)| ≤ ϵ2; (2) The step-length
is less than 10−12; (3) The number of iteration is over kmax. The parameter α in ΨMS is

always chosen as 50. For ψ0 in ΨLT and Ψ̂LT , we select ψ0(t) = max(0, t)2/2.

We tested two groups of instances for convex SOCPs. The first one is composed of four
standard linear SOCPs from the DIMACS Implementation Challenge library [52]. We solved
them by use of the L-BFGS method with ϵ1 = 10−6, ϵ2 = 10−4 and kmax = 105. Numerical
results are reported in Table 1, in which NF denotes the function evaluations for solving
each problem, Iter means the number of iterations needed for each problem, Ψ(ζk) denotes
the merit function value at the final iteration, and for ΨLT1 and ΨLT2 , the results on the
second line are obtained by choosing ψ0(t) = log(1 + max(0, t)2).

From Table 1, we see that all merit function methods can not yield desired result for
the difficult “nb L1” within 105 iterations, the implicit Lagrangian function method can not
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Table 1: Numerical results for linear SOCPs from DIMACS Library

yield the desired result for “nb” due to too small stepsize, and Ψ̂LT1 and Ψ̂LT2 can not yield
the desired result for “nb” within 105 iterations. Table 1 shows that the LT merit functions
ΨLT1 and ΨLT2 have similar performance for these problems, and their variants Ψ̂LT1 and

Ψ̂LT2 also have similar performance, but the LT merit functions ΨYF ,ΨLT1 ,ΨLT2 are superior

to their variants Ψ̂YF , Ψ̂LT1 , Ψ̂LT2 . Figures 1 and 2 below also show this fact. In addition,

Figures 1 and 2 indicate that among all merit functions, ΨMS , ΨYF and Ψ̂YF have the worst
convergence rate, and ΨLT1 ,ΨLT2 have the best convergence rate, although Table 1 shows

that Ψ̂YF has better performance than Ψ̂LT1 and Ψ̂LT2 . We observe from Table 1 and Figure
1 that ΨFB has comparable performance with ΨLT1 and ΨLT2 , and moreover has much better
performance than ΨMS and ΨYF for these test problems.

For the LT merit functions ΨLT and its variant Ψ̂LT , we also tested their performance
with ψ0 chosen as log(1 +max(0, t)2), which has slower growth than the quadratic function
max(0, t)2/2. We found that such a choice of ψ0 does not improve numerical performance
of ΨYF and the variant of LT merit functions, and it gives some improvements for ΨLT1 and
ΨLT2 (see the result on the second line for ΨLT1 and ΨLT2 in Table 1).

The second group of problems consists of the nonlinear convex SOCP (1.5) generated
randomly with f(x) = 1

2x
TQx+ cTx, where Q is an n× n symmetric positive semidefinite

matrix, and c ∈ IRn. We generate such instances with m = 120, n = 2602 and

K = K1 ×K1 ×K5 × · · · × K5︸ ︷︷ ︸
200

×K800 ×K800.

During the tests, the vector c is chosen randomly from the interval [−1, 1], Q is given by
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ZTZ with Z being an n × n matrix generated by MATLAB’s “sprand” with %1 nonzero
density, the matrix A ∈ IRm×n is generated by MATLAB’s “sprandn” with %1 nonzero
density, and the vector b ∈ IRm is generated in the following way: choose w ∈ int(K) and
then let b = Aw, which guarantees the feasibility of the SOCPs generated. We observed
that this class of problems has a bad scaling, and their optimal objective values attain 104.

In view of the fact that the variant of LT merit function has worse performance than
the corresponding LT merit function, we did not apply them for this class of problems. We
employed the above L-BFGS method with ϵ1 = 10−8, ϵ2 = 10−4 and kmax = 105 to solve
the unconstrained minimization reformulations based on the FB merit function, the implicit
Lagrangian function and the LT merit functions, for 50 test problems generated randomly as
above. We tested that among the three LT merit functions, ΨLT1 and ΨLT2 fail to this class
of test problems; for example, for the first test problem, the function ΨLT2 has the value
3.85 × 10−3 in the 2 × 105th iteration, and the function ΨLT1 has the value 1.37 × 10−2 in
the 2× 105th iteration. Figures 3 and 4 below depict the curves of function evaluations and
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the number of iterations, respectively, of the FB function method, the implicit Lagrangian
function method and the YF function method. From the two figures, we see that the FB
merit function method requires the lest function evaluations and iterations, and the YF merit
function method requires less function evaluations and iterations for most test problems than
the implicit Lagrangian function method.

To sum up, for the linear SOCPs in the DIMACS Implementation Challenge library,
the FB merit function has comparable performance with the LT merit functions, and for
the nonlinear SOCPs with bad scaling, it has much better performance. Among all merit
functions, ΨLT1 and ΨLT2 have best convergence rate, and ΨMS ,ΨYF and Ψ̂YF have the worse
convergence rate. The LT merit functions are always superior to their variants. In addition,
the implicit Lagrangian with α = 50 has worse performance than the YF merit function and
the FB merit function for both groups of test problems.
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5 Semismooth Newton Methods and Applications

This section concentrates on equation reformulation methods based on system (1.9) with ϕ
chosen as ϕNR and ϕFB , respectively. Since the corresponding Φ is not differentiable, the
nonsmooth Newton method [49, 55, 56], i.e. the following iterative method

zk+1 := zk − (W k)−1Φ(zk), W k ∈ ∂BΦ(z
k), k = 0, 1, 2, . . . , (5.1)

can be applied for (1.9) to get a solution of (1.1), where ∂BΦ(z
k) denotes the B-subdifferential

of Φ at zk whose existence is guaranteed by the global Lipschitz continuity of ϕNR and ϕFB

(see [9, 58]). From the results of [55, 56], in order to establish fast local convergence of
the method (5.1), on one hand, Φ is required to be sufficiently ‘smooth’ such as (strongly)
semismooth; and on the other hand, it satisfies a local nonsingularity condition. In view of
the strong semismoothness of ϕNR and ϕFB , we only need to check the nonsingularity of the
B-subdifferential of Φ at an arbitrary solution of (1.1).

5.1 Nonsingularity Conditions

The following two lemmas review the B-subdifferentials of ϕNR and ϕFB at a general point,
respectively, where Lemma 5.1 is a direct consequence of [53, Lemma 14], and Lemma 5.2
is implied by Prop. 4.2–4.3.

Lemma 5.1. For any given (x, y)∈ IRn × IRn, with z = x− y it holds that

∂BϕNR(x, y) =
{
[I − V V ] | V ∈ ∂B(z)+

}
,

where the B-subdifferential ∂B(z)+ of the projector operator is characterized as follows:

(a) If z1 > ∥z2∥, then ∂B(z)+ = {I}; if z1 < −∥z2∥, then ∂B(z)+ = {0}.

(c) If |z1| < ∥z2∥, then ∂B(z)+ =

{
1

2

(
1 z̄T2
z̄2 I +

z1
∥z2∥

(I − z̄2z̄
T
2 )

)}
with z̄2 ≡ z2

∥z2∥
.

(d) If z1 = ∥z2∥ ≠ 0, then ∂B(z)+ =

{
I,

1

2

(
1 z̄T2
z̄2 2I − z̄2z̄

T
2

)}
with z̄2 ≡ z2

∥z2∥
.

(e) If −z1 = ∥z2∥ ̸= 0, then ∂B(z)+ =

{
0,

1

2

(
1 z̄T2
z̄2 z̄2z̄

T
2

)}
with z̄2 ≡ z2

∥z2∥
.

(f) If z = 0, then

∂B(z)+ =
{
0, I
}∪{

1

2

(
1 z̄T2
z̄2 (w0 + 1)I − w0z̄2z̄

T
2

) ∣∣∣∣ |w0| ≤ 1 and ∥z̄2∥ = 1

}
.

Particularly, V and I − V are positive semidefinite symmetric matrices.

Lemma 5.2. For any given (x, y) ∈ IRn × IRn, the following statements hold.

(a) If x2 + y2 ∈ int(Kn), then ϕFB is continuously differentiable at (x, y) with

∂BϕFB(x, y) =
{[
I − L−1

(x2+y2)1/2
Lx I − L−1

(x2+y2)1/2
Ly

]}
.
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(b) If x2 + y2 ∈ bd+(Kn), then

∂BϕFB(x, y) =

{[
I −X − 1

2

(
1

−w̄2

)
uT I − Y − 1

2

(
1

−w̄2

)
vT
] ∣∣∣

u = (u1, u2) =

(
ζT2 y2 + ζ1x1√

x21 + y21
,
−y1ζ2 − ζ1x2√

x21 + y21

)
,

v = (v1, v2) =

(
−ζT2 x2 + ζ1y1√

x21 + y21
,
x1ζ2 − ζ1y2√

x21 + y21

)
for some ζ = (ζ1, ζ2) satisfying ζ

2
1 + ∥ζ2∥2 = 1

}
,

where w̄2 = w2/∥w2∥ with w2 = 2(x1x2 + y1y2), and

X =
1

2
√
x21 + y21

(
x1 xT2
x2 2x1I − w̄2x

T
2

)
,

Y =
1

2
√
x21 + y21

(
y1 yT2
y2 2y1I − w̄2y

T
2

)
.

(c) If (x, y) = (0, 0), then ∂BϕFB(x, y) ⊆ {[I −Lg I −Lh] | g2 + h2 = e} ∪ S, where

S ≡
{[
I − 1

2
puT − 1

2
qξT −HLs I − 1

2
pvT − 1

2
qηT −HLω

] ∣∣∣
p =

(
1

−w̄2

)
, q =

(
1
w̄2

)
, H =

(
0 0
0 I − w̄2w̄

T
2

)
for ∥w̄2∥ = 1;

u, v ∈ IRn satisfy pTu = 2u1, q
Tu = 0, pT v = 0, qT v = 2v1 and

|u1| ≤ ∥u2∥ ≤ 1, |v1| ≤ ∥v2∥ ≤ 1,

(u1 − v1) ≤ ∥u2 − v2∥, (u1 + v1) ≤ ∥u2 + v2∥, (5.2)

(u1 − v1)
2 + ∥u2 + v2∥2 ≤ 2, (u1 + v1)

2 + ∥u2 − v2∥2 ≤ 2;

ξ, η ∈ IRn satisfy pTu = 0, qTu = 2u1, p
T v = 2v1, q

T v = 0 and (5.2);

s = σu+ (1− σ)ξ, ω = σv + (1− σ)η for σ ∈ [0, 1/2]
}
.

Comparing Lemma 5.2 with Lemma 5.1, we observe that the B-subdifferential of ϕFB

at a general point has a more complicated structure than that of ϕNR , and moreover, the
elements in ∂BϕFB do not possess the desired properties of the elements in ∂BϕNR . But, as
will be shown in the sequel, the nonsingularity of B-subdifferential of ΦFB at a solution of
(1.1) can be established under the same conditions as used for the B-subdifferential of ΦNR .

Let (x∗, y∗, ζ∗) be a solution of (1.1). Define the index sets associated with x∗ and y∗:

JI0 :=
{
j ∈ {1, . . . ,m} | x∗j ∈ int(Knj ), y∗j = 0

}
,

JBB :=
{
j ∈ {1, . . . ,m} | x∗j ∈ bd+(Knj ), y∗j ∈ bd+(Knj )

}
,

J0I :=
{
j ∈ {1, . . . ,m} | x∗j = 0, y∗j ∈ int(Knj )

}
, (5.3)

JB0 :=
{
j ∈ {1, . . . ,m} | x∗j ∈ bd+(Knj ), y∗j = 0

}
,

J0B :=
{
j ∈ {1, . . . ,m} | x∗j = 0, y∗j ∈ bd+(Knj )

}
,

J00 :=
{
j ∈ {1, . . . ,m} | x∗j = 0, y∗j = 0

}
.
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From [1], these index sets form a partition of {1, . . . ,m}. We next review two important
properties for the elements of B-subdifferentials of ϕNR and ϕFB at (x∗, y∗).

Lemma 5.3. Let (x∗, y∗, ζ∗) be an arbitrary solution of (1.1). Let [Uj Vj ] ∈ ∂Bϕ(x
∗
j , y

∗
j )

for j = 1, . . . ,m with ϕ = ϕNR or ϕFB . Then, for any (△u)j , (△v)j ∈ IRnj ,

Uj(△u)j + Vj(△v)j = 0 =⇒ ⟨(△u)j , (△v)j⟩ ≤ 0 for j = 1, 2, . . . ,m (5.4)

and

Uj(△u)j + Vj(△v)j = 0 =⇒


(△v)j = 0 if j ∈ JI0,
(△u)j = 0 if j ∈ J0I ,⟨

(△u)j , y∗j
⟩
= 0,

⟨
(△v)j , x∗j

⟩
= 0 if j ∈ JBB ,

(△u)j = IR(y∗j1,−y∗j2) if j ∈ J0B ,
(△v)j = IR(x∗j1,−x∗j2) if j ∈ JB0.

(5.5)

Particularly, for all j ∈ JBB, the following implication also holds:

Uj(△u)j + Vj(△v)j = 0 =⇒ ⟨(△u)j , (△v)j⟩ =
y∗j1
x∗j1

(
(△u)2j1 − ∥(△u)j2∥2

)
. (5.6)

Proof. For ϕ = ϕ
NR

, the implication (5.4) is direct by [40, Prop. 1], and the implications
(5.5) and (5.6) are implied by [64, Prop. 3.1]. For ϕ = ϕFB , the implication (5.4) is given by
[48, Prop. 4.2], and the implications (5.5) and (5.6) are given by [48, Prop. 4.1].

Lemma 5.4. Let (x∗, y∗, ζ∗) be an arbitrary solution of (1.1). Let [Uj Vj ] ∈ ∂Bϕ(x
∗
j , y

∗
j )

for j = 1, . . . ,m with ϕ = ϕNR or ϕFB . Then, for any (△u)j , (△v)j ∈ IRnj ,

U△u+ V△v = 0 =⇒ ⟨△u,△v⟩ ≤
m∑
j=1

Υx∗
j
(y∗j , (△u)j)

where for any given ϖ ∈ IRn, Υϖj : IRnj × IRnj → IR is the linear-quadratic function

Υϖj (ξj , ηj) :=


ξj1
ϖj1

ηTj

(
1 0
0 −I

)
ηj if j ∈ JBB ∪ JB0,

0 otherwise.
(5.7)

Proof. The proof is seen in [64, Prop. 3.1] for ϕ = ϕNR , and [48, Prop. 4.3] for ϕ = ϕFB .

Now we are ready to establish the nonsingularity conditions for the B-subdifferential
∂BΦ(z

∗) with z∗ = (x∗, y∗, ζ∗) and Φ given by the generalized SOCCP (1.3). To the end,
we also need to recall the tangent cone TK(y∗) of K at x∗ and the critical cone C(y∗ −x∗;K)
of K at y∗ − x∗. By [2, Lemma 25], the tangent cone TK(y∗) takes the form of

TK(y∗) :=
{
d ∈ IRn | dj ∈ Knj for j ∈ JI0 ∪ JB0 ∪ J00;

dTj (y
∗
j1,−y∗j2) ≥ 0 for j ∈ JBB ∪ J0B

}
. (5.8)

Noting that C(y∗−x∗;K) = TK(y∗) ∩ (x∗)⊥, we have from [2, Corollary 26] that

C (y∗−x∗;K) =
{
d ∈ IRn

∣∣∣ dj = 0 for j ∈ JI0, dj = IR+(x
∗
j1,−x∗j2) for j ∈ JB0,

⟨dj , x∗j ⟩ = 0 for j ∈ JBB , dj ∈ Knj for j ∈ J00,

dTj (y
∗
j1,−y∗j2) ≥ 0 for j ∈ J0B

}
.
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Consequently, the affine hull of C(y∗−x∗;K), denoted by aff (C(y∗−x∗;K)), has the form

aff (C(y∗−x∗;K)) =
{
d ∈ IRn

∣∣∣ dj = 0 for j ∈ JI0, dj = IR(x∗j1,−x∗j2) for j ∈ JB0, (5.9)

⟨dj , x∗j ⟩ = 0 for j ∈ JBB

}
.

Theorem 5.5. Let ζ∗ be a solution of the SOCCP (1.3) with x∗ = F (ζ∗) and y∗ = G(ζ∗).
Suppose that G′(ζ∗) is invertible with M = F ′(ζ∗)(G′(ζ∗))−1, and

⟨d,H(ζ∗)d⟩ > 0 ∀d ∈ aff (C(y∗−x∗;K)) \{0} (5.10)

where H(ζ∗) =
∑m

j=1Hj(ζ
∗) ∈ IRn×n with Hj(ζ

∗) ∈ IRn×n defined by

Hj(ζ
∗) :=

 −
y∗j1
x∗j1

MT
j

(
1 0
0 −I

)
Mj if j ∈ JBB ∪ JB0

0 otherwise.

Then, any element in ∂BΦ(x
∗, y∗, ζ∗) is nonsingular.

Proof. Let W be an arbitrary element in ∂BΦ(x
∗, y∗, ζ∗). To prove that W is nonsingular,

we let (△x,△y,△ζ) ∈ IRn × IRn × IRm be such that W (△x,△y,△ζ) = 0. Since now

E(x, y, ζ) =

(
F (ζ)− x
G(ζ)− y

)
,

by the definition of Φ and [5, Lemma 1], there exists a [U V ] ∈ ∂Bϕ(x
∗, y∗) such that

W (△x,△y,△ζ) =

 F ′(ζ)△ζ −△x
G′(ζ)△ζ −△y
U△x+ V△y

 = 0 (5.11)

where U = diag(U1, . . . , Um) and V = diag(V1, . . . , Vm) with [Uj Vj ] ∈ ∂Bϕ(x
∗
j , y

∗
j ) for

j = 1, . . . ,m. Note that the third equation of (5.11) is equivalent to

Uj(△x)j + Vj(△y)j = 0, j = 1, 2, . . . ,m.

From the implication (5.5) in Lemma 5.3, it then follows that

(△y)j = 0 for j ∈ JI0; (△y)j = IR(x∗j1,−x∗j2) for j ∈ JB0;
⟨
(△y)j , x∗j

⟩
= 0 for j ∈ JBB .

Comparing with the definition of aff (C(y∗−x∗;K)) in (5.9), we have

△y ∈ aff (C(y∗−x∗;K)) . (5.12)

This, together with the third equation of (5.11), (5.4) and Lemma 5.4, implies that

0 ≥ ⟨△y,△x⟩ ≥ −
m∑
j=1

Υx∗
j
(y∗j , (△x)j)

= −
∑

j∈JBB∪JB0

y∗j1
x∗j1

(△y)TMT
j

(
1 0
0 −I

)
Mj△y

= ⟨△y,H(ζ∗)△y⟩

where the first equality is using △x = M△y. This by (5.10) implies △y = 0, and △ζ = 0
and △x = 0 then follow successively from the second and first equations of (5.11).
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For the SOCCP (1.4), the conditions of Theorem 5.5 are equivalent to requring that

−
(
F ′
j(ζ

∗)d
)T ( 1 0

0 −I

)(
F ′
j(ζ

∗)d
)
> 0 ∀d ∈ aff (C(y∗−x∗;K)) \{0}.

When (1.1) becomes the KKT optimality conditions of the nonlinear SOCP (1.5), the non-
singularity of ∂BΦ(z

∗) can be established under the strong second-order sufficient condition
[2] and constraint nondegeneracy, which for the nonlinear SOCP (1.5) are as follows.

Definition 5.6. Let x∗ be a stationary point of the SOCP (1.5) such that the multiplier
set Λ(x∗) = {(ζ∗, y∗)}. We say the strong second-order sufficient condition holds at x∗ if

⟨d,∇2f(x)d⟩ > 0 ∀d ∈ aff(C(x∗−y∗;K))\{0}. (5.13)

where aff(C(x∗−y∗;K)) is the affine hull of the critical cone C(x∗−y∗;K) given by

aff(C(x∗−y∗;K)) =
{
d ∈ IRn

∣∣∣ dj = 0 for j ∈ J0I , ⟨dj , y∗j ⟩ = 0 for j ∈ JBB ,

dj ∈ IR(y∗j1,−y∗j2) for j ∈ J0B ; Ad = 0
}
.

Definition 5.7. We say that a feasible point x̂ to (1.5) is constraint nondegenerate if(
A
I

)
IRn +

(
{0}

lin (TK(x̂))

)
=

(
IRm

IRn

)
. (5.14)

Theorem 5.8. Let z∗ = (x∗, y∗, ζ∗) be a KKT point of the nonlinear SOCP (1.5). Suppose
that the strong second-order sufficient condition (5.13) holds at x∗ and x∗ is constraint
nondegenerate, then any element in ∂BΦ(z

∗) is nonsingular.

Proof. The proof is found in [64, Theorem 3.1] and [48, Theorem 4.1].

By [64] the strong second-order sufficient condition and constraint nondegeneracy are
aslo sufficient for the nonsingularity of ∂BΦNR(z

∗), but now it is not clear whether they
are sufficient for the nonsingularity of ∂BΦFB(z

∗). Observe that Kanzow et al. [32] also
present a nonsingularity condition without strict complementartiy for ∂BΦNR(z

∗) by using
the algebraic technique. However, their condition is more complicated than the strong
second-order sufficient condition and constraint nondegeneracy.

5.2 FB Nonsmooth Newton Method

The last subsection discusses the fast local convergence of the NR and FB nonsmooth New-
ton methods. Note that the NR nonsmooth Newton method is hard to be globalized due
to the nondifferentiability of natural residual merit function. On the contrast, the FB nons-
mooth Newton method is easily globalized by the smoothness of FB merit function. In this
subsection, we present a global convergent FB semismooth method for system (1.1).

Let ΦFB : IR
n× IRn× IRl → IRn× IRn× IRl be the operator defined by (1.9) with ϕ = ϕFB ,

and ΨFB : IRn × IRn × IRl → IR+ be the natural merit function for the system ΦFB(z) = 0,
i.e., ΨFB(z) = ∥ΦFB(z)∥2 for any w ∈ IRn × IRn × IRl. The following algorithm is similar to
the global convergent semismooth Newton methods developed in [36] for NCPs.
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Algorithm 5.1 (FB semismooth Newton method)

Step 0. Choose constants ρ > 0, p > 2, δ ∈ (0, 1) and σ ∈ (0, 1/2). Choose a starting
point z0 = (x0, y0, ζ0) ∈ IRn × IRn × IRl. Set k := 0.

Step 1. If ∥ΦFB(z
k)∥ = 0, then stop.

Step 2. Select an element W k ∈ ∂BΦFB(z
k), and find the solution dk of the system

W kd = −ΦFB(z
k). (5.15)

If the solution dk does not satisfy the condition that

∇ΨFB(z
k)T dk ≤ −ρ∥dk∥p, (5.16)

then set dk = −∇ΨFB(z
k).

Step 3. Let lk be the smallest nonnegative integer l satisfying

ΨFB(z
k + δldk) ≤ ΨFB(z

k) + σδl∇ΨFB(z
k).

Step 4. Define zk+1 := zk + δlkdk. Let k := k + 1, and then go to Step 1.

As remarked in [36], Algorithm 5.1 is virtually indistinguishable from a global Newton
algorithm for the solution of an differentiable system of equations, except the selection of
W k in Step 2. From the definition of ΦFB , any element W k in ∂BΦFB(z

k) has the form

W k =

[
E′

x(x
k, yk, ζk) E′

y(x
k, yk, ζk) E′

ζ(x
k, yk, ζk)

Uk V k 0

]
,

where Uk = diag(Uk
1 , . . . , U

k
m) and V k = diag(V k

1 , . . . , V
k
m) with [Uk

j V k
j ] ∈ ∂BϕFB(x

k
j , y

k
j ).

Hence, the selection of W k from ∂BΦFB(z
k) reduces to the selection of [Uk

j V k
j ] from

∂BϕFB(x
k
j , y

k
j ). We next give a simple way to evaluate an element [Uk

j V k
j ] ∈ ∂ϕFB(x

k
j , y

k
j ),

which is verified to be effective by the subsequent numerical experiments.

Procedure to evaluate an element [Uj Vj] ∈ ∂ϕ
FB
(xj, yj)

Step 1: If xj , yj ∈ IR, then go to Step 2; otherwise go to Step 3.

Step 2: If xj = yj = 0, then set Uj = Vj = 1/2. Otherwise, let

Uj = 1− xj/
√
x2j + y2j and Vj = 1− yj/

√
x2j + y2j .

Step 3: Let wj = x2j + y2j . If wj ∈ int(Knj ), set

Uj = I − L−1√
wj
Lxj and Vi = I − L−1√

wj
Lyj .

If wj ∈ bd+(Knj ), set w̄j2 =
wj2

∥wj2∥ , uj = vj =
1√
2

(
1

−w̄j2

)
, and

Uj = I − 1

2
√
x2j1 + y2j1

[
xj1 xTj2
xj2 2xj1I − w̄j2x

T
j2

]
− 1

2

(
1

−w̄j2

)
uTj ,

Vj = I − 1

2
√
x2j1 + y2j1

[
yj1 yTj2
yj2 2yj1I − w̄j2y

T
j2

]
− 1

2

(
1

−w̄j2

)
vTj .
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If (xj , yj) = (0, 0), let g̃j = (1, 1, . . . , 1)T , h̃j = (1,−1, . . . ,−1)T ∈ IRnj , and set

gj =
g̃j√

∥g̃j∥2 + ∥g̃j∥2
and gj =

h̃j√
∥g̃j∥2 + ∥g̃j∥2

;

and let w̄j2 =
wj2

∥wj2∥ with wj2 = (1, 1, . . . , 1) ∈ IRnj−1 and calculate

ξj = ηj =

(
1
w̄j2

)
, uj = vj =

(
1

−w̄j2

)
, sj = ωj = uj ,

Ũj = I − 1

2

(
1
w̄j2

)
ξTj − 1

2

(
1
w̄j2

)
uTj −

[
0 0
0 (I − w̄j2w̄

T
j2)

]
Lsj ,

Ṽj = I − 1

2

(
1
w̄j2

)
ηTj − 1

2

(
1
w̄j2

)
vTj −

[
0 0
0 (I − w̄j2w̄

T
j2)

]
Lωj .

Finally, take Uj =
1
2 (Lgj + Ũj) and Vi =

1
2 (Lhj + Ṽj).

For Algorithm 5.1, using the similar arguments as in [36] and the properties of FB merit
functions in Sections 3–4, it is not hard to establish its global convergence. Now we take a
closer look at the numerical performance of Algorithm 5.1. We implemented a nonmontone
line search version of Algorithm 5.1, i.e., in Step 3 we compute the smallest nonnegative
integer lk satisfying

ΨFB(z
k + δlkdk) ≤ Wk − σδlkΨFB(z

k)

where Wk = maxj=k−mk,··· ,k ΨFB(z
j) and where, for a given nonnegative integer m̂ and s,

mk =

{
0 if k ≤ s

min
{
mk−1 + 1, m̂

}
otherwise

.

Throughout the tests, we used m̂ = 5, s = 5 and the parameters below for Algorithm 5.1:

ρ = 10−8, p = 2.1, δ = 0.5, σ = 0.5× 10−4. (5.17)

We terminated the algorithm once ΨFB(z
k) ≤ ϵ and k ≤ 150. The linear system (5.15) in

Algorithm 5.1 is solved by “\” of Matlab, i.e., dk = −W k\ΦFB(z
k). All tests were done in

Matlab 6.5 on a PC of Pentium 4 with 2.8GHz CPU and 512MB memory.

Table 2: Numerical results of Algorithm 5.1 for linear SOCPs

(m,n) NF Iter Ngra ΨFB(z
k) Time Optval

nb (123, 2383) 89 38 3 7.48e–9 128.4 −0.05070337

nb L1 (915, 3176) 268 149 1 6.74e–9 489.1 −13.01227034

nb L2 (123, 4195) 64 14 0 2.10e–9 1360.8 −1.62897295

nb L2 bessel (123, 2641) 24 15 0 3.60e–10 50.6 −0.10256981
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We tested two groups of convex SOCP instances. The first one is composed of four
standard linear SOCPs from the DIMACS Implementation Challenge library [52]. We solved
them by Algorithm 5.1 with the error tolerance ϵ chosen as 1.0×10−8. Numerical results are
reported in Table 2 where NF and Iter have the same meaning as in Table 1, Ngra means
the number of negative gradient steps adopted by Algorithm 5.1 for solving each problem,
Time denotes the CPU time in seconds for solving each problem, and Optval denotes the
optimal objective values of linear SOCPs. We note that Algorithm 5.1 yields solutions with
desirable accuracy to four test problems within 150 iterations.

The second group of test instances is composed of nonlinear convex SOCPs in (1.5)
generated randomly with f(x) same as that of Subsection 4.1, but K has the structure

K = K1 × · · · × K1︸ ︷︷ ︸
50

×K5 × · · · × K5︸ ︷︷ ︸
200

×K800 ×K800,

and m = 120, n = 2650. The matrices Q ∈ IRn×n and A ∈ IRm×n and the vectors b ∈ IRm

and c ∈ IRn are generated in the same way as in Subsection 4.1. We applied the above
nonmonotone line search version of Algorithm 5.1 with the parameters in (5.17) and tolerance
ϵ = 1.0 × 10−9 for 50 test instances generated randomly. The computational results are as
follows: Algorithm 5.1 solves all problems successfully with given accuracy, the average
function evaluations and the average iterations needed are 11 and 10, respectively, the
average CPU time used by each problem is 857.3(s), and all problems do not make use of
the negative gradient steps. As pointed out in Subsection 4.1, this class of problems has a
bad scaling, and the optimal value attains the order of 103, but numerical results show that
the FB semismooth Newton method does not suffer from this.

6 Smoothing Newton Methods and Applications

This section focuses on equation reformulation methods based on smoothing functions of
SOC complementarity functions ϕNR and ϕFB , that is, the smoothing Newton methods
based on the augmented system (1.12) involving the Chen-Mangasarian (CM) smoothing
functions of ϕNR , the squared smoothing function of ϕNR , and the smoothing function of
ϕFB . In particular, we provide numerical comparisons for their behaviors in solving linear
SOCPs from DIMACS and nonlinear convex SOCPs generated randomly.

6.1 Smoothing Newton Methods

Let g : IR → IR+ be an arbitrary continuously differentiable convex function satisfying

lim
t→−∞

g(t) = 0, lim
t→+∞

(g(t)− t) = 0 and g′(t) ∈ (0, 1) for all t ∈ IR. (6.1)

The CM family of smoothing functions of ϕNR associated with Kn [25] is defined as

φCM(x, y, ε) := x− εgsoc
(
x− y

ε

)
∀x, y ∈ IRn, ε > 0 (6.2)

which is a natural generalization of CM family of smoothing functions [8] for the NCPs. Two
most popular smoothing functions among the CM family are the CHKS smoothing function
[7, 29, 57] and the log-exponential smoothing function [8], respectively, with

g(t) :=

√
t2 + 4 + t

2
and g(t) := ln (exp(t) + 1) . (6.3)
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Another common smoothing function of ϕNR is the squared smoothing function given by

φSQ(x, y, ε) :=
1

2

[
(x+ y)−

(
(x− y)2 + 4ε2e

)1/2] ∀x, y ∈ IRn, ε > 0. (6.4)

This function was employed to develop a smoothing Newton method in [18], where numerical
comparisons with the interior point method SDPT3 for linear SOCPs indicate that the
former is very promising. The FB smoothing function associated with Kn is

φFB(x, y, ε) := (x+ y)− (x2 + y2 + 2ε2e)1/2 ∀x, y ∈ IRn, ε > 0. (6.5)

The following proposition shows that φCM , φSQ and φFB defined as above are the uniform
smooth approximation of the corresponding SOC complementarity function, and character-
izes the properties of Jacobians of these smoothing functions.

Proposition 6.1. Let φ be one of φCM , φSQ and φFB defined as above. Then,

(a) φ is positively homogeneous, i.e., φ(tx, ty, tε) = tφ(x, y, ε) for all x, y ∈ IRn, ε, t > 0.

(b) For any x, y ∈ IRn and ε2 > ε1 > 0, there hold that

κ(ε2 − ε1)e ≽Kn φ(x, y, ε2)− φ(x, y, ε1) ≻Kn 0,

κε1e ≽Kn φ(x, y, 0)− φ(x, y, ε1) ≻Kn 0.

where φ(x, y, 0) = limε↓0 φ(x, y, ε), and κ = g(0) if φ = φCM , and otherwise κ =
√
2.

(c) φ is continuously differentiable everywhere in IRn × IRn × IR++. Furthermore,

φ′
CM

(x, y, ε) =
[
I −∇gsoc(z) ∇gsoc(z) ∇gsoc(z)T z −gsoc(z)

]
with z =

x− y

ε

where ∇gsoc(z) has the same expression as given in Lemma 2.2, and

φ′
SQ
(x, y, ε) =

1

2

[
I− L−1

z Lx−y I +L
−1
z Lx−y −4εL−1

z e
]
with z = ((x− y)2 + 4ε2e)1/2;

φ′
FB
(x, y, ε) =

[
I − L−1

z Lx I − L−1
z Ly − 2εL−1

z e
]

with z = (x2 + y2 + 2ε2e)1/2.

(d) The partial Jacobians φ′
x and φ′

y of φ are nonsingular in IRn × IRn × IR++.

(e) The matrices (φ′
x)

−1φ′
y and (φ′

y)
−1φ′

x are positive definite in IRn × IRn × IR++.

Proof. Part (a) is direct by the expression of φ. When φ = φCM and φFB , part (b) is proved
in [25, Prop. 5.1]. Using similar arguments, we can prove that part (b) holds for φ = φSQ .
Part (c) is immediate by [9, Prop. 5]. When φ = φCM , the proof of part (d) can be found
in [25, Prop. 6.1], and when φ = φSQ and φFB , part (d) is direct by the expressions of φ′

x

and φ′
y. When φ = φSQ and φFB , the proof of part (e) can be found in Prop. 6.1 and 6.2

of [25], respectively; and when φ = φSQ , since z
2 ≻Kn (x − y)2 and z ≻Kn 0, we have from

Prop. 3.4 of [25] that L2
z − L2

x−y is positive definite, and part (e) follows by noting that
L2
z − L2

x−y = (Lz − Lx−y) (Lz + Lx−y) + (Lz + Lx−y) (Lz − Lx−y) .

With φ = φCM , φSQ and φFB above, we define the function θ : IRn × IRn × IR → IRn by

θ(x, y, ε) :=

{
φ(x, y, |ε|) if ε ̸= 0,
ϕ(x, y) if ε = 0.

(6.6)

The following proposition summarizes some favorable properties of the function θ.
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Proposition 6.2. Let θ be defined as in (6.6) with φ = φCM , φSQ or φFB . Then,

(a) θ is continuously differentiable at any (x, y, ε) with ε ̸= 0. In particular, in this case,

∥θ′(x, y, ε)∥ ≤ C,

where C > 0 is a constant independent on x, y and ε.

(b) θ is globally Lipschitz continuous and directionally differentiable everywhere.

(c) θ is a strongly semismooth function if φ = φCM with g given by (6.3), φSQ or φFB .

Proof. (a) The first part is a direct consequence of Prop. 6.1(c). For the second part, when
φ = φ

CM
, by the properties of g in (6.1) and the expression of ∇gsoc(z) in Lemma 2.2, it is

easy to verify that the boundness of θ′; when φ = φSQ and φFB , using the same arguments
as in those of [10, Lemma 4] can show that θ′ is bounded.
(b) Using part (a) and Prop. 6.1(b) and noting that ϕNR and ϕFB are globally Lipschitz
continuous and directionally differentiable everywhere, we readily get the result.
(c) When φ = φCM with g given by (6.3), letting h : IR2 → IR be defined by

h(t, ε) :=

√
t2 + 4ε2 + t

2
and h(t, ε) := ε ln (1 + exp(−t/ε)) ∀t, ε ∈ IR,

it is not hard to see that for any x, y ∈ IRn and ε ∈ IR,

θ(x, y, ε) = x−
[
h(λ1(z), ε)u

(1)
z + h(λ2(z), ε)u

(2)
z

]
where λ1(z)u

(1)
z + λ2(z)u

(2)
z is the spectral decomposition of z = x − y. From Prop. 1

and Prop. 2 of [54], the above h are strongly semismooth functions. Hence, θ is strongly
semismooth everywhere in IRn× IRn× IR by [9, Prop. 7]. When φ = φSQ and φFB , the result
is implied by [18, Theorem 4.2] and [58, Theorem 3.2], respectively.

Unless otherwise stated, θ(x, y, ε) in the rest of this section is the function associated
with K, i.e. θ(x, y, ε) = (θ(x1, y1, ε), . . . , θ(xm, ym, ε)) with θ(xi, yi, ε) defined as in (6.6).
Let Θ : IR × IRn × IRl × IRn → IR × IRn × IRl × IRn be the operator defined by (1.12)
with such θ. The following proposition shows that Θ is continuously differentiable at any
ω ∈ IR++ × IRn × IRn × IRl, and has nonsingular Jacobians under some mild assumptions.

Proposition 6.3. Let Θ be defined by (1.12) with θ given as in (6.6). Then,

(a) the operator Θ is continuously differentiable at any ω ∈ IR++ × IRn × IRn × IRl and

Θ′(ω) =

 1 0 0 0
0 E′

x(x, y, ζ) E′
y(x, y, ζ) E′

ζ(x, y, ζ)

θ′ε(x, y, ε) Dx(x, y, ε) Dy(x, y, ε) 0


where

Dx(x, y, ε) := diag
(
θ′x1

(x1, y1, ε), · · · , θ′xm
(xm, ym, ε)

)
,

Dy(x, y, ε) := diag
(
θ′y1

(x1, y1, ε), · · · , θ′ym
(xm, ym, ε)

)
. (6.7)

(b) Θ′(ω) is nonsingular provided that rank E′
ζ(x, y, ζ) = l and for any u ̸= 0, v ̸= 0,

E′(x, y, ζ)(u, v, s) = 0 ⇒ ∃ν ∈ {1, . . . ,m} s.t. uν ̸= 0 and ⟨uν , vν⟩ ≥ 0. (6.8)
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Proof. Part (a) is direct by Prop. 6.2(a) and the definition of Θ. We next prove part (b).
By the expression of Θ′(ω), it suffices to prove that the following system

E′
x(x, y, ζ)u+ E′

y(x, y, ζ)v + E′
ζ(x, y, ζ)s = 0

Dx(x, y, ζ)u+Dy(x, y, ζ)v = 0 (6.9)

has only zero solutions. If one of u and v is zero, then we must have u = 0 and v = 0
from the second equation since Dx(x, y, ζ) and Dy(x, y, ζ) are nonsingular by Prop. 6.1(c).
Together with the first equation and the assumption of rank E′

ζ(x, y, ζ) = l, we get s = 0.
Thus, we prove that u = 0, v = 0, s = 0 under this condition. If u ̸= 0 and v ̸= 0, then the
first equation of (6.9) and the given assumption imply that there exists a ν ∈ {1, . . . ,m}
such that uν ̸= 0 and ⟨uν , vν⟩ ≥ 0. Note that the second equation of (6.9) is equivalent to

φ′
xi
(xi, yi, ε)ui + φ′

yi
(xi, yi, ε)vi = 0 for all i = 1, 2, . . . ,m.

For i = ν, since φ′
yν
(xν , yν , ε) is nonsingular by Prop. 6.1(d), it follows that

uTν
[
φ′
yν
(xν , yν , ε)

]−1 [
φ′
xν
(xν , yν , ε)

]
uν + ⟨uν , vν⟩ = 0.

From Prop. 6.1(e), the matrix
[
φ′
yν
(xν , yν , ε)

]−1 [
φ′
xν
(xν , yν , ε)

]
is positive definite, and

from the last equality and ⟨uν , vν⟩ ≥ 0, it then follows that uν = 0. Thus, we obtain a
contradiction. The proof is completed.

The condition in Prop. 6.3(b) is weaker than the conditions (6.2)–(6.3) of [25]. When
l = 0, the condition of Prop. 6.3(b) is equivalent to saying that E′

x and E′
y are Cartesian

column monotone, whereas the condition (6.3) of [25] is equivalent to saying that E′
x and E′

y

are column monotone. For the SOCCP (1.4), the condition in Prop. 6.3(b) is equivalent to
requiring the Cartesian P0-property of F ′, whereas the condition (6.3) of [25] is equivalent
to requiring the positive semidefiniteness of F ′. Recently, for the SOCCP (1.4), Chua et
al. [19] establish the nonsingularity of Θ′(ω) with φ = φCM and φSQ under the uniform
nonsingularity of F , which is another nonmonotone property of F . Now it is not clear
whether this condition is weaker than the Cartesian P0-property of F ′ for differentiable F .

Let Ξ: IR+ × IRn × IRn × IRl → IR+ be the natural merit function of Θ(w) = 0, i.e.,

Ξ(ω) = ∥Θ(w)∥2 ∀ω ∈ IR+ × IRn × IRn × IRl. (6.10)

The following proposition provides the coerciveness conditions of Ξ for the SOCCP (1.3).

Proposition 6.4. Let Θ and Ξ be defined by (1.12) and (6.10), respectively. Suppose that

E(x, y, ζ) ≡
(
F (ζ)− x
G(ζ)− y

)
with F and G being continuous. Then Ξ is coercive under (C.1) or (C.2) of Prop. 4.2.

Proof. We first prove the result under the condition (C.1) of Prop. 4.2. Suppose on the
contrary that there exist a constant γ ≥ 0 and a sequence {ωk} with ∥ωk∥ → ∞ such
that Ξ(ωk) ≤ γ. Since {εk} is bounded by Ξ(ωk) ≤ γ, we must have ∥(xk, yk, ζk)∥ → ∞.
Observe that ∥ζk∥ → ∞ necessarily holds. If not, using the continuity of F and G, and
Ξ(ωk) ≤ γ, we deduce that {xk} and {yk} are bounded, which contradicts the fact that
∥(xk, yk, ζk)∥ → ∞. From the uniform Jordan P -property and the linear growth of F and
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G, it then follows that ∥F (ζk)∥, ∥G(ζk)∥ → ∞. If not, we assume without loss of generality
that {F (ζk)} is bounded. Define the bounded sequence {ξk} by

ξki =

{
ζki if i ∈ J
0 otherwise

where J :=
{
i ∈ {1, . . . ,m} | ∥ζki ∥ is unbounded

}
̸= ∅. Using the boundedness of {F (ζk)}

and {F (ξk)}, and the linear growth of G, we obtain that

λ2
[
(F (ζk)− F (ξk)) ◦ (G(ζk)−G(ξk))

]
≤ C1∥ζk∥+ C2

for some C1, C2 > 0, which contradicts the uniform Jordan P -property of F and G. Thus,

∥ζk∥ → +∞, ∥F (ζk)∥ → ∞, ∥G(ζk)∥ → ∞, ∥xk∥ → ∞, ∥yk∥ → ∞.

By Prop. 6.1 and Ξ(ωk) ≤ γ, we have that {ϕ(xk, yk)} is bounded with ϕ = ϕNR or ϕFB .
This together with Lemma 3.5 and the last equation implies that {λ1(xk)} and {λ1(yk)}
are bounded below, but λ2(x

k), λ2(y
k) → +∞. From the proof of [47, Prop. 4.2(a)], we

know that the uniform Jordan P -property and the linear growth of F and G implies that

limk→∞
F (ζk)

∥F (ζk)∥ ◦
G(ζk)

∥G(ζk)∥ ̸= 0. Using the boundedness of {F (ζk)−xk} and {G(ζk)−yk}, it is

easy to argue that limk→∞
xk

∥xk∥ ◦
yk

∥yk∥ ̸= 0. From Lemma 3.5, it then follows that {ϕ(xk, yk)}
is unbounded, which is impossible.

When the condition (C.2) of Prop. 4.2 holds, using the similar arguments as above and
those of [47, Prop. 4.2(d)], we can prove the desired result.

Note that, when E(x, y, ζ)≡
(

Ax− b
AT ζ + y − c

)
with A ∈ IRm×n, b ∈ IRm and c ∈ IRn,

the row full rank of A can not guarantee the coerciveness of Ξ. For example, let

A =

(
1 −1 1
−1 1 2

)
, xk =

 k
k − 1
0

 , yk = 0, εk ∈ [0, 1],

and {ζk} is an arbitrary bounded sequence in IR2. Clearly, A has full row rank. Since
xk ∈ K3 and yk = 0, we have that {ϕ(xk, yk)} is bounded with ϕ = ϕ

NR
or ϕ

FB
, and so

is {θ(xk, yk, εk)}. In addition, it is easy to verify that {Axk − b} and {AT ζk + yk − c} are
bounded. This means that {Ξ(ωk)} is bounded, but ∥ωk∥ → ∞, i.e., Ξ is not coercive. This
partly interprets why in Subsection 6.2 using the smoothing method below to solve some
linear SOCPs requires much more iterations than the interior point methods.

Motivated by the efficiency of the smoothing Newton method [54], we next apply this
method for solving the SOC complementarity system (1.1), i.e., we want to obtain a solution
of (1.1) by solving a single augmented smooth system Θ(ω) = 0. Choose ε̄ > 0 and γ ∈ (0, 1)
such that ε̄γ < 1, and let ω̄ = (ε̄, 0) ∈ IR++ × IR2n+l. Define

β(ω) := γmin {1, Ξ(ω)} .

The smoothing Newton method [54] for solving system (1.1) is described as follows.

Algorithm 6.1 (Smoothing Newton method)

Step 0. Select a smoothing function φ of ϕNR or ϕFB . Choose constants δ ∈ (0, 1) and
σ ∈ (0, 1/2), and a point (x0, ζ0, y0) ∈ IRn × IRl × IRn. Let ε0 = ε̄ and k := 0.
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Step 1. If Θ(ωk) = 0, then stop. Otherwise, let βk := β(ωk).

Step 2. Compute the direction dωk := (dεk, dxk, dyk, dζk) ∈ IR× IRn × IRn × IRl by

Θ(ωk) + Θ′(ωk)dω = βkω̄. (6.11)

Step 3. Let lk be the smallest nonnegative integer l satisfying

Ξ(ωk + δldωk) ≤
[
1− 2σ(1− γ∥w̄∥)δl

]
Ξ(ωk). (6.12)

Step 4. Define ωk+1 := ωk + δlkdωk. Let k := k + 1, and then go to Step 1.

From Prop. 6.3(a), it follows that the mapping Θ(·) is continuously differentiable at any
ωk ∈ IR++ × IRn × IRn × IRl, and if for each ε > 0 and (x, y, ζ) ∈ IRn × IRn × IRl, the
mapping E satisfies the condition of Prop. 6.3(b), then Θ′(ω) is nonsingular. As remarked
after Prop. 6.3, there are many types of SOCCPs, even nonmonotone SOCCPs, such that
E satisfies this condition. The main computation work of Algorithm 6.1 is to calculate the
direction dωk by (6.11). In Subsection 6.2, we analyze that for the standard linear SOCPs,
the calculation of dωk needs only one factorization of an m × m positive definite matrix,
whereas for nonlinear SOCPs, it requires one factorization of an n × n positive definite
matrix and one factorization of an m×m positive definite matrix.

Note that ε̄ > 0 and the starting ω0 =(ε0, x0, y0, ζ0) belongs to the following set

Ω :=
{
ω = (ε, x, y, ζ) ∈ IR× IRn × IRn × IRl | ε ≥ β(ω)ε̄

}
.

Therefore, using the same arguments as those of [54], we can prove that Algorithm 6.1
generates an infinite sequence {ωk} with εk ∈ IR++ and ωk ∈ Ω, provided that for each
k with εk > 0 and ωk ∈ Ω, the Jacobian Θ′(ωk) is invertible. Particularly, we have the
following global convergence result, whose proof is similar to that of [54, Theorem 4].

Theorem 6.5. Suppose that for all ω = (ε, x, y, ζ) ∈ Ω, rank E′
ζ(x, y, ζ) = l and the

implication (6.8) holds for any u ̸= 0, v ̸= 0. Then, an infinite sequence {ωk} is generated
by Algorithm 6.1 and each accumulation point ω∗ of {ωk} is a solution of Θ(w) = 0.

When applying Algorithm 6.1 for the SOCCP (1.3), the sequence generated is bounded
if the mappings F and G satisfy one of the conditions of Prop. 4.2. For the linear SOCPs,
the counterexample after Prop. 6.4 shows that the full row rank of A can not guarantee the
boundedness of level sets of the merit function Ξ, although numerical results in Subsection
6.2 demonstrate that the sequence generated by Algorithm 6.1 is generally bounded for this
class of problems.

Assume that φ in Algorithm 6.1 is chosen as φCM with g given by (6.3), φSQ or φFB .
By Prop. 6.2(c), the operator Θ is semismooth everywhere whenever E is semismooth, and
strongly semismooth everywhere whenever E is strongly semismooth. Therefore, under the
nonsingularity assumption of ∂BΘ(ω∗), using the similar arguments to those of [54], we can
establish the following local superlinear (or quadratic) convergence results.

Theorem 6.6. Suppose that for all ω = (ε, x, y, ζ) ∈ Ω, rank E′
ζ(x, y, ζ) = l and the

implication (6.8) holds for any u ̸= 0, v ̸= 0, and ω∗ is an accumulation point of the infinite
sequence {ωk} generated by Algorithm 6.1 with φ = φCM for g given by (6.3), φSQ or φFB .
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If E is semismooth at ω∗ and all V ∈ ∂BΘ(ω∗) are nonsingular, then the whole sequence
{ωk} converges to ω∗, and

∥ωk+1 − ω∗∥ = o(∥ωk − ω∗∥) and εk+1 = o(εk).

If, in addition, E is strongly semismooth at ω∗, then

∥ωk+1 − ω∗∥ = O(∥ωk − ω∗∥2) and εk+1 = O((εk)2).

Using the same arguments as in [64] and [48], it is not hard to verify that the conditions of
Theorems 5.5 and 5.8 may guarantee the nonsingularity of ∂BΘ(ω∗). Thus, analogous to the
NR and FB semismooth Newton methods, the local superlinear (or quadratic) convergence
of the smoothing Newton methods with the CHKS smoothing function, the log-exponential
smoothing function, the squared smoothing function and the FB smoothing function do not
require the strict complementarity of solutions.

6.2 Applications of Smoothing Newton Methods

In what follows, we use Algorithm 6.1 with φ chosen as the CHKS smoothing function,
the squared smoothing function, and the FB smoothing function, respectively, to solve the
SOCP (1.5) with a twice continuously differentiable convex f . Unless otherwise stated, φCM

appearing in the subsection denotes the CHKS smoothing function.

First, let us take a closer look at the calculation of Newton direction dωk for this class
of problems. Let θ be defined by (6.6) with φ being one of φCM , φSQ and φFB . It is easy to
see that the KKT optimality conditions of (1.5) can be reformulated as Θ(ω) = 0 with

E(x, y, ζ) ≡
(

Ax− b
AT ζ + y −∇f(x)

)
.

By Prop. 6.3(a) and the expression of E, equation (6.11) can be equivalently written as

dε = βkε̄− εk

Adx = b−Axk

−∇2f(xk)dx+ dy +AT dζ = ∇f(xk)−AT ζk − yk (6.13)

Dk
xdx+Dk

ydy = −θ′ε(xk, yk, εk)dε− φ(xk, yk, εk)

where Dk
x = Dx(x

k, yk, ζk) and Dk
y = Dy(x

k, yk, ζk) with Dx(·, ·, ·) and Dy(·, ·, ·) defined by

(6.7). Since Dk
x and Dk

y are nonsingular by Prop. 6.1(d) and the definition of θ, we obtain
from the last two equations of (6.13) that[

(Dk
y)

−1Dk
x +∇2f(xk)

]
dx = AT dζ +Resk (6.14)

where

Resk = (−∇f(xk) +AT ζk + yk)− (Dk
y)

−1
[
θ′ε(x

k, yk, εk)dε+ φ(xk, yk, εk)
]
.

Since (Dk
y)

−1Dk
x is positive definite by the definition of θ and Prop. 6.1(e), and ∇2f(xk) is

symmetric positive semidefinite by the convexity of f , it follows that (Dk
y)

−1Dk
x +∇2f(xk)

is nonsingular. Using (6.14) and the second equation of (6.13) then yields that

dζ = (Σk)−1
[
(b−Axk)−A

[
(Dk

y)
−1Dk

x +∇2f(xk)
]−1

Resk
]
, (6.15)
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where
Σk = A

[
(Dk

y)
−1Dk

x +∇2f(xk)
]−1

AT .

Substituting dζ into (6.14) yields dx, and dy follows from the third equation of (6.13).

We see from (6.15) that, if ∇2f(xk) ̸= 0, then calculating dωk requires a factorization of
n× n positive definite matrix [(Dk

y)
−1Dk

x +∇2f(xk)] and a factorization of m×m positive

definite matrix Σk. Note that, when φ = φCM , the ith block of the block diagonal matrix
(Dk

y)
−1Dk

x can be achieved by calculating (∇gsoc(zi))−1 − I via the formula in Lemma 2.2;

and when φ = φSQ and φFB , this can be achieved by calculating L−1
zi+(xi−yi)

Lzi−(xi−yi) and

L−1
zi−yi

Lzi−xi , respectively, via the formula in (2.1), where zi has the same expression as z in

Prop. 6.1(b). If ∇2f(xk) = 0, then the computation work of dωk is greatly reduced. Under
this case, Σk =

∑m
i=1AiD

k
i A

T
i with Ai ∈ IRm×ni such that A = [A1 · · · Am], and

Dk
i =


(I −∇gsoc(zi))−1 − I if φ = φCM ,
L−1
zi−(xi−yi)

Lzi+xi+yi if φ = φSQ ,

L−1
zi−xi

Lzi−yi if φ = φFB .

So, the calculation of dωk only requires a factorization of m×m positive definite matrix Σk,
where using the same technique as in Lemma 2.2 yields that (I −∇gsoc(zi))−1 equals

1

(1− b(zi))2 −c2(zi)

 1− b(zi) c(zi)
zTi2
∥zi2∥

c(z)
zi2
∥zi2∥

(1− b(zi))
2− c2(zi)

1− a(zi)

(
I − zi2z

T
i2

∥zi2∥2

)
+

(1− b(zi))zi2z
T
i2

∥zi2∥2

 .
We implemented the nonmontone line search version of Algorithm 6.1, i.e., in Step 3 we

compute the smallest nonnegative integer lk satisfying ωk + δlk ∈ Ω and

Ξ(ωk + δlkdωk) ≤ Wk − 2σ(1− γ)δlkΞ(ωk)

where Wk = maxj=k−mk,··· ,k Ξ(ζ
j) and where, for a given nonnegative integer m̂ and s,

mk =

{
0 if k ≤ s

min
{
mk−1 + 1, m̂

}
otherwise

.

During the testing, we used m̂ = 5, s = 5 and the following parameters of Algorithm 6.1:

δ = 0.5, σ = 0.5× 10−4, γ = 0.5. (6.16)

We terminated the algorithm once Ξ(ωk) ≤ ϵ and k ≤ 100. Throughout the tests, the
linear system of equations Σkdζ = Resk is computed by dζ = Σk \ Resk, and the inverse of
[(Dk

y)
−1Dk

x+∇2f(xk)] with ∇2f(xk) ̸= 0 were computed by “inv” of Matlab. All tests were
done in Matlab 6.5 on a PC of Pentium 4 with 2.8GHz CPU and 512MB memory.

We tested two groups of convex SOCP instances. The first one is composed of four
standard linear SOCPs from the DIMACS Implementation Challenge library [52]. We solved
them by Algorithm 6.1 with error tolerance ϵ chosen as 1.0 × 10−8, and the interior point
method software SeDuMi [59] with the default tolerances, respectively. We tested that
ε̄ = 0.5 are favorable for the FB smoothing method and the squared smoothing method,
whereas ε̄ = 0.1 is suitable for the CHKS smoothing method. Table 3 reports the results
of three smoothing methods with such ε̄, and those of the SeDuMi, where NF, Iter, Time
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Table 3: Numerical results of Algorithm 6.1 for linear SOCPs

Problem nb nb L1

NF Iter Ξ(ωk) Optval Time NF Iter Ξ(ωk) Optval Time

φ = φ
FB

51 29 5.88e–9 −0.0507032 38.6 124 45 1.52e–12 −13.0122707 92.9

φ = φCM 228 64 8.89e–9 −0.0507044 88.3 380 61 2.35e–9 −13.0122708 134.3

φ = φSQ 146 37 8.34e–9 −0.0507031 56.6 196 48 7.45e–10 −13.0122705 104.6

SeDuMi 21 −0.0507031 14.8 18 −13.0122706 16.7

Problem nb L2 nb L2 bessel

φ = φFB 32 15 3.58e–9 −1.6290027 95.1 28 15 5.02e–13 −0.1025695 22.8

φ = φCM 32 11 2.47e–10 −1.6289721 68.1 14 7 9.60e–11 −0.1025940 9.6

φ = φSQ 27 13 2.95e–9 −1.6291627 81.6 18 11 7.43e–14 −0.1025706 15.9

SeDuMi 15 −1.6289719 30.8 16 −0.1025695 17.7

and Optval have the same meaning as in Table 2.

Table 3 shows that the three smoothing methods with the above ε̄ solve all test prob-
lems with the given accuracy successfully. We note that for the easier problems “nb L2”
and “nb L2 bessel”, the FB smoothing method needs a little more iterations and function
evaluations than the other two smoothing methods, but for difficult “nb” and “nb L1”, the
former is superior to the latter. The squared smoothing method has better performance
than the CHKS smoothing method for the two difficult problems. We also found that, when
setting ϵ = 10−10, the FB smoothing method may yield the solutions with desirable accu-
racy for “nb L1” within 100 iterations, but the CHKS smoothing method and the squared
smoothing method fail to this. In addition, compared with the SeDuMi, the three smoothing
methods require more iterations for those two difficult problems, but less iterations for those
simple problems.

The second group of test instances is composed of nonlinear convex SOCPs in (1.5) with
f(x) and K same as in Subsection 5.2. The matrices Q ∈ IRn×n and A ∈ IRm×n and the
vectors b ∈ IRm and c ∈ IRn are generated in the same way as in Subsection 5.2. We applied
the above nonmonotone line search version of Algorithm 6.1 with the parameters in (6.16)
and ϵ = 3.0 × 10−9 for the same 50 test instances as in Subsection 5.2. Table 4 reports
the results of three smoothing methods with two different ε̄, where SN means the number
of problems with desired accuracy, Fail column gives the No. of the failure problems, and
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ANF columns lists the average function evaluations of the successful problems.

Table 4: Numerical results of Algorithm 6.1 for 50 convex SOCPs

Name ε̄ SN Fail ANF ε̄ SN Fail ANF

3-5th, 15th,

FB 0.5 47 6th, 19th, 21th 12 0.1 42 20th, 49th, 40-41th 10

11-12th, 16th,21-22th

CHKS 0.5 37 24th, 28th, 32th, 10 0.1 50 8
42-44th, 48th

SQ 0.5 47 16th, 19th, 24th 11 0.1 50 8

From Table 4, we observe that the value of ε̄ has influence on the performance of three
smoothing methods, and the influence is remarkable for the CHKS smoothing method. In
other words, the FB smoothing method and the squared smoothing method have better
robustness than the CHKS smoothing method. The FB smoothing method requires a little
more function evaluations and iterations than the other two smoothing methods. Together
with the results in Table 3, we conclude that the squared smoothing method is superior
to the CHKS smoothing method, and for those difficult problems, it seems that the FB
smoothing method has better performance than the squared smoothing method.

Comparing the results in Tables 3–4 with those of Subsection 5.2, we see that the FB
semismooth method has comparable performance with the three smoothing methods in
terms of functions evaluations, the number of iterations, and the accuracy, but the former
requires more CPU time than the latter since the former requires one factorization of an
(2n +m) × (2n +m) nonsingular matrix at each iteration. For example, for the nonlinear
convex SOCP instances, the average CPU time required by the FB semismooth method for
each problem is 857.3(s), whereas that of the smoothing methods is less than 300(s).

7 Conclusions

We have made a survey for the properties of SOC complementarity functions and theoretical
results of related solution methods, including the merit function methods, the semismooth
Newton method and the smoothing Newton methods, and pay attentions to the performance
of these methods. Among the four classes of common merit functions, the FB merit function
is the most desirable whether in theory or in numerical performance, although the LT merit
function ΨLT and its variant Ψ̂LT has some advantages in some aspects. Among the three
popular smoothing methods, the squared smoothing method seems superior to the CHKS
smoothing method, and the FB smoothing method has better performance than the squared
smoothing method for those difficult problems. The global FB semismooth Newton method
is comparable with the smoothing Newton methods in terms of iterations and the accuracy
of solutions, despite of more CPU time.
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In addition, we also observe that, compared with primal-dual interior point methods
(such as the SeduMi software [59]), the semismooth Newton method and the smoothing
Newton methods have worse performance for “nb L1”. One of main reasons is, as remarked
after Prop. 6.4, the natural merit functions of systems Φ(z) = 0 and Θ(ω) = 0 may have
unbounded level sets only under the full row rank of A.
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