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by Bennett and Demiriz [2] and the semidefinite programming by Bie and Cristianini [8].
Among all existed approaches the semidefinite programming (SDP) is an important one
because it constructs a tight convex relaxation which can be solved through semidefinite
programming, see, e.g., [3, 10, 11, 13, 14, 20]. Bie and Cristianini in [7] provided an SDP
relaxation for the MINLP problem associated with S3VM for the problem of binary clas-
sification. Their relaxation model has a large scale, say, O((l + (n − l)2)2(l + (n − l)2.5),
where l stands for the number of the labeled examples and n for the number of both the
labeled and unlabeled examples. Obviously, their approach is very expensive and may cause
computational difficulties for practical applications.

In this paper we first consider a semidefinite programming (SDP) relaxation to the
MINLP problem associated with S3VM. To reduce the size of the SDP relaxation formula-
tion, we further modify the SDP problem by decomposing the semidefinite positive matrix
into a sequence of small-size matrices. Finally, we apply the modified SDP relaxation to two
artificial and five real-world classification problems under a common experimental setting.
The numerical examples show that the modified SDP relaxation is effective. In particular,
the relative error of the modified SDP relaxation is within 3% for protein classification test
problems.

The paper is organized as follows. In Section 2 we briefly recall the standard SVM
and S3VM for binary classification problems. In Section 3 we first reformulate the MINLP
problem associated with S3VM into an equivalent continuous quadratic programming (QP)
problem, and then we present an SDP relaxation for the QP problem. Section 4 discusses
the modification of the SDP relaxation by decomposing the large-size semidefinite positive
matrix into a sequence of small-size matrices. The numerical performance of the modified
SDP relaxation to two artificial and five real-world classification problems are shown in
Section 5. Finally, some concluding remarks are given in Section 6.

Throughout the paper, Rn denotes the n-dimensional Euclidean space and Rn×m the
n × m-dimensional matrix space. Sn stands for the set of n × n-dimensional symmetric
matrices, Sn

+ for the cone of n-dimensional positive semidefinite matrices. 0n×m denotes
the n × m-dimensional all zeros matrix, e is the n-dimensional all ones vector and In the
n × n-dimensional identity matrix. For A,B ∈ Sn, Ai,j denotes the (i, j) entry of A and
A{i1,...,ik} the principal sub-matrix indexed by {i1, . . . , ik}. A ≽ 0 means that A is positive
semidefinite and A •B the inner product of matrices A and B.

2 SVM and S3VM

In this section, we briefly review the standard SVM and S3VM for binary classification
problems. For multi-class classification problems, the most popular approach is to reduce
the single multi-class problem into a series of binary classification problems. We first restrict
our attention to linear classifiers. Here our introduction of SVM and S3VM are based on
[5, 6, 7].

Given a training set consisting of l labeled data {(xi, yi)}li=1 and a working set consisting
of (n − l) unlabeled data {xi}ni=l+1, where yi ∈ {−1,+1} for i = 1, . . . , l and xi ∈ Rd for
i = 1, . . . , n.

If the data are linearly separable, then there exists a vector w ∈ Rd and a scalar b ∈ R
such that a separating hyperplane wTx + b = 0 is constructed by using the training set.
Then the separating hyperplane is used to predicate the labels of data in the working set by
letting yi = 1 if wTxi + b > 0 and yi = −1 if wTxi + b < 0 for i = l + 1, . . . , n.

Figure 1 shows two examples of separating hyperplane. The figure in the left part
illustrates the case of many possible separating hyperplane for two data sets.
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Figure 1: Separating hyperplane for maximizing the margin.

The statistical learning theory suggests that the hyperplane which maximizes the margin
(maximizes the distance between it and the nearest data point of each class) shall give rise
to the best estimation. Namely it should work the best on new data [19].

If there is a separating hyperplane wTx+ b = 0, then there are a nonzero vector w and
a scalar b such that

wTxi + b ≥ 1 if yi = 1 and wTxi + b ≤ −1 if yi = −1 for i = 1, . . . , l (2.1)

or equivalently

yi(w
Txi + b) ≥ 1 for i = 1, . . . , l. (2.2)

Therefore, it is equivalent to maximize the distance between the two parallel planes wTx+
b = 1 and wTx+ b = −1 (see the right part of Figure 1). The Euclidean distance between

these two planes is
2

∥w∥2
. Hence, the hard-margin SVM can be formulated as the following

convex optimization problem:

min
w,b

1

2
∥w∥22 (2.3)

s.t. yi(w
Txi + b) ≥ 1, i = 1, . . . , l.

The dual problem of (2.3) is the standard hard-margin SVM:

maxα eTα− 1
2α

Tdiag(y)Kdiag(y)α
s.t. yTα = 0, α ≥ 0,

(2.4)

where α = (α1, . . . , αl)
T is the Lagrange multiplier or the dual variables of (2.3) and Ki,j =

xT
i xj .

If the data are not linear separable, then the nonnegative variables, ξi ≥ 0, i = 1, . . . , l,
are introduced and the constraints (2.3) are modified as

yi(w
Txi + b) ≥ 1− ξi for i = 1, . . . , l, (2.5)
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where ξi, i = 1, ..., l are introduced to measure the misclassification errors. Naturally, ξi
are added to the objective function in (2.5) to control the misclassification errors, and the
problem (2.3) is modified into the soft-margin SVM:

min
w,b,ξ

1
2∥w∥22 + C

∑l
i=1 ξi

s.t. yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

(2.6)

where C > 0 is a fixed penalty parameter and ξ = (ξ1, . . . , ξl)
T . The dual of this optimization

problem is the standard soft-margin SVM:

(PSVM) max
α

eTα− 1

2
αTdiag(y)Kdiag(y)α (2.7)

s.t. yTα = 0, 0 ≤ α ≤ Ce.

where α = (α1, . . . , αl)
T is the Lagrange multiplier or the dual variable of (2.6) and Ki,j =

xT
i xj .
Since many practical classification problems are too complicated to use the linear clas-

sifiers, the nonlinear classifiers are needed to classify the practical problems. An approach
called kernel technique is introduced to convert nonlinear classifiers into linear classifiers in
a higher dimensional space in terms of a map. Let ϕ : Rd → Rh(h ≥ d) denote such a
map and Ki,j = ϕ(xi)

Tϕ(xj). It is easy to observe that ϕ always appears in linear clas-
sifiers in the inner product form. Thus a kernel function k(·, ·) can be constructed such
that Ki,j = k(xi,xj). Many kernel functions have been introduced in the literatures. The
following two are the typical kernel functions:

linear kernel: k(xi,xj) = xT
i xj ,

Gaussian kernel: k(xi,xj) = exp(−∥xi − xj∥2/2σ2).

The Mercer Theorem states that a symmetric function k(xi,xj) on a finite input space is a
kernel function if and only if the matrix K =

(
k(xi,xj)

)n
i,j=1

is positive semidefinite [6].

Unlike SVM, the idea of S3VM is to apply the maximummargin principle to both training
and working sets. Let γ(y) denote the optimal value of (PSVM) and yu = (yl+1, . . . , yn)

T the
unknown labels for the data in the working set. Following the papers [5, 7], the formulation
of S3VM is as follows:

min
yu

γ(y) (2.8)

s.t. yi ∈ {−1,+1}, i = l + 1, . . . , n,

where y = (y1, . . . , yn)
T . Without loss of generality, the intercept b is assumed to be 0, which

can be easily realized since the hyperplane wTx+ b = 0 can be converted into w∗Tx = 0 by
letting w∗ = (wT , b)T . Thus the constraint yTα = 0 will disappear in the problem (PSVM).
Substituting γ(y) with its dual problem, problem (2.8) can be rewritten as the following
optimization problem

(PS3VM) min
µ,δ,yu

1

2
(e+ µ− δ)Tdiag(y)K−1diag(y)(e+ µ− δ) + CeT δ (2.9)

s.t. µ ≥ 0, δ ≥ 0,

yi ∈ {−1,+1}, i = l + 1, . . . , n,
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where µ = (µ1, . . . , µn)
T and δ = (δ1, . . . , δn)

T are the dual variables of (PS3VM) and K is
the kernel matrix with the pseudo-inverse K−1.

The objective function of (PS3VM) is an inhomogeneous polynomial of degree 4 so that it
is a nonconvex and nonlinear function. Problem (PS3VM) contains both continuous variables
µ and δ and discrete variable yu.

3 SDP Relaxation to S3VM

In this section we first introduce two novel transformations such that the discrete variable
yu is implied in terms of two continuous variables. We aim to rewrite the problem (PS3VM)
into an equivalent continuous quadratic programming (QP) problem. Then we further relax
the QP problem into an SDP problem.

We intend to modify the problem (PS3VM) by using the following transformations:

ω = diag (y)(e+ µ), ν = diag (y)δ. (3.1)

These two transformations aim to imply the discrete variable yu in the problem (PS3VM)
in terms of two continuous variables ω and ν.

Given µ ≥ 0 and δ ≥ 0, the equations in (3.1) are essentially equivalent to

ωiyi ≥ 0, i = 1, . . . , l and ω2
i ≥ 1, νiωi ≥ 0, ν2i = δ2i , i = 1, . . . , n. (3.2)

Thus (PS3VM) can be rewritten into the following equivalent continuous optimization prob-
lem:

minω,ν,δ,t t
s.t. 1

2 (ω − ν)TK−1(ω − ν) + CeT δ ≤ t,
ω2
i ≥ 1, νiωi ≥ 0, ν2i = δ2i , i = 1, . . . , n,

ωiyi ≥ 0, i = 1, . . . , l,
δ ≥ 0.

(3.3)

Let z = (ωT ,νT , δT , t)T be a (3n+1)-dimensional vector. Problem (3.3) can be rewritten
as the following QP problem.

(PQP) minz cT z
s.t. zTGz+ gT z ≤ 0,

zTAiz+ 1 ≤ 0, zTBiz ≤ 0, zTDiz = 0, i = 1, . . . , n,
Hz ≤ 0,

(3.4)

where c = (01×3n, 1)
T ∈ R3n+1 and g = (01×2n, CeT ,−1)T ∈ R3n+1, and G and H are

defined as follows, respectively.

G =

(
1
2P

TK−1P 0(3n+1)×1

01×(3n+1) 0

)
∈ S3n+1,

H =

(
−diag (ȳ) 0l×(2n−l) 0n×n 0l×1

0n×l 0n×(2n−l) −In 0n×1

)
∈ R(l+n)×(3n+1),

where P = (In,−In,0n×n), ȳ = (y1, . . . , yl)
T . For i = 1, . . . , n, Ai ∈ S3n+1 is an all zeros

matrix except for the ith diagonal which is equal to −1, Bi ∈ S3n+1 is an all zeros matrix
except for the two elements (i, n+ i) and (n+ i, i) which are equal to −1, and Di ∈ S3n+1

is an all zeros matrix except for the two elements (n + i, n + i) and (2n + i, 2n + i) which
are equal to 1 and −1, respectively.
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Therefore, problem (PS3VM) is converted into a QP problem (PQP). Obviously, the
objective function is a convex function since it is linear. However, except for the first
quadratic constraint, the other constraints are not convex. The idea of the relaxation is to
introduce into some convex form.

Let X =

(
1 zT

z Z

)
. It is easy to verify that Z = zzT is equivalent to X ≽ 0 and

rank (X) = 1. We then present an SDP relaxation for (PQP) below.
The problem (PQP) is equivalent to

min
z,Z

cT z (3.5)

s.t. G • Z + gT z ≤ 0,

Ai • Z + 1 ≤ 0, Bi • Z ≤ 0, Di • Z = 0, i = 1, . . . , n,

Hz ≤ 0,

X =

(
1 zT

z Z

)
∈ S3n+2

+ and rank(X) = 1.

Dropping the constraint rank(X)=1, we then obtain the following SDP relaxation:

(PSDP) min
z,Z

cT z (3.6)

s.t. G • Z + gT z ≤ 0,

Ai • Z + 1 ≤ 0, Bi • Z ≤ 0, Di • Z = 0, i = 1, . . . , n,

Hz ≤ 0,

X ≽ 0.

If the problem (PSDP) is solved and the optimal solution z̄ is obtained, we can use the
signs of z̄i for i = l + 1, . . . , n to label yi for the unlabeled data xi for i = l + 1, . . . , n
according to the definitions of ω and z̄.

Note that problem (PSDP) is a large-size problem with (9n2+15n+4)/2 variables. It also
has mixed constraints, including a convex quadratic constraint, (4n + l) linear constraints
and a positive semidefinite positive matrix constraint. The semidefinite positive matrix X
is a large size matrix. This leads to the issue of how to decompose the semidefinite positive
matrix X.

4 Modification of SDP Relaxation

We have observed that problem (PSDP) is a large-size problem since the vector z is a (3n+1)-
dimensional vector and the matrix X is a (3n + 1) × (3n + 1)-dimensional matrix. Since
z = (ωT ,νT , δT , t)T and the relations among ω, ν and δ depend on the system of inequalities
and equation of ω2

i ≥ 1, νiωi ≥ 0, ν2i = δ2i , i = 1, . . . , n, respectively. In fact these are
the constraints of problem (3.3). Note that there is no relation among ωi, νi and δi if their
indexes are not equal.

Motivated by this observation, we shall attempt to reduce the size of problem (PSDP) by
decomposing X.

Instead of requiring X ≽ 0 in (PSDP), we decompose it into a set of small-size positive
semidefinite principal sub-matrices.

Let

Xi =

(
1 zTi
zi Zi

)
≽ 0, i = 1, . . . , n, (4.1)
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where zi = (zi, zn+i, z2n+i)
T and Zi = Z{i,n+i,2n+i}. Constraints Ai • Z + 1 ≤ 0, Bi • Z ≤

0, Di • Z = 0, i = 1, . . . , n are then equivalent to

Âi • Zi + 1 ≤ 0, B̂i • Zi ≤ 0, D̂i • Zi = 0, i = 1, . . . , n (4.2)

where Âi = Ai{i,n+i,2n+i}, B̂i = Bi{i,n+i,2n+i} and D̂i = Di{i,n+i,2n+i}. This leads to the
following relaxed problem:

(PFRSDP) min
z,Zi

cT z (4.3)

s.t. zTGz+ gT z ≤ 0,

Âi • Zi + 1 ≤ 0, B̂i • Zi ≤ 0, D̂i • Zi = 0, i = 1, . . . , n,

Hz ≤ 0,

Xi ≽ 0, i = 1, . . . , n.

Note that the number of variables of problem (PFRSDP) is reduced to (9n+1). Obviously, it
is much less than that of problem (PSDP), which has (9n2+15n+4)/2 variables. Moreover,
we replace the constraint zTGz + gT z ≤ 0 by a second-order cone constraint due to a
computational consideration.

The following proposition states that the optimal solution provided by problem (PFRSDP)
is a lower bound of problem (PSDP).

Proposition 4.1. Let FSDP and FFRSDP denote the feasible regions of (PSDP) and (PFRSDP),
respectively. One has

FSDP ⊆ FFRSDP.

It is straightforward to prove Proposition 4.1 and we omit the proof here. The following
theorem establishes the relation between (PFRSDP) and (PQP).

Theorem 4.2. Let z∗ and X∗
i , i = 1, . . . , n be a solution of (PFRSDP). If rank(X∗

i ) = 1
for i = 1, . . . , n, then z∗ is a solution of (PQP).

Proof. Suppose that rank(X∗
i ) = 1 for i = 1, . . . , n. To prove z∗ is a solution of (PQP), we

need to verify that z∗ satisfies the constraints of (PQP). In other words, z∗ must satisfy
zTAiz + 1 ≤ 0, zTBiz ≤ 0, zTDiz = 0, i = 1, . . . , n, respectively. By using the definition
of Xi, rank(X

∗
i ) = 1 implies that Z∗

i − z∗i z
∗T
i = 0. Thus we have

Z∗
i,i = z∗2i , Z∗

n+i,i = z∗n+iz
∗
i , Z∗

n+i,n+i = z∗2n+i, Z∗
2n+i,2n+i = z∗22n+i. (4.4)

Combining (4.4) and the definitions of Ai, Bi, Di, Âi, B̂i and D̂i, it follows that

z∗TAiz
∗ + 1 = z∗2i + 1 = Z∗

i,i + 1 = Âi • Z∗
i + 1 ≤ 0,

z∗TBiz
∗ = 2z∗n+iz

∗
i = 2Z∗

n+i,i = B̂i • Z∗
i ≤ 0,

and

z∗TDiz
∗ = z∗2n+i − z∗22n+i = Z∗

n+i,n+i − Z∗
2n+i,2n+i = D̂i • Z∗

i = 0.

This proves the theorem.
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Table 1: Basic properties of the six data sets.

Data set Classes Dimension Points Comment

g241c 2 241 1500 artificial
g241d 2 241 1500 artificial
USPS 2 241 1500 imbalanced
COIL2 6 241 1500
BCI 2 117 400
Text 2 11,960 1500 sparse discrete
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Figure 2: Two-dimensional examples of g241c (left) and g241d (right). Black plus signs,
class +1; blue circles, class −1.

5 Numerical Examples

In this section, we apply the relaxation (PFRSDP) to two artificial data sets, g241c and g241d,
and five real-world data sets, USPS, COIL2, BCI, Text and SCOP40mini, respectively.
The real-world data sets are derived from the fields of the hand written digit recognition,
the image recognition, the brain-computer interface, the text classification and the protein
classification. The computational results are obtained by solving the relaxation (PFRSDP)
with SeDuMi 1.3 of Matlab 7.6 (R2008a) on a workstation under Red Hat Linux 5.1.

Six data sets, g241c, g241d, USPS, COIL2, BCI and Text, are obtained from

http://www.kyb.tuebingen.mpg.de/ssl-book/ [4]. Their basic properties are shown in Table
1.

The data sets g241c and g241d are generated from two and four normal distributions
respectively. Two-dimensional examples of g241c and g241d are shown in Figure 2. The
data set USPS is derived from the famous USPS set of handwritten digits. The digits “2”
and “5” are assigned to the class +1, and all the others form class −1. The data set COIL2
includes 1500 images of 24 different objects taken from different angles. Each class consists
of 12 objects. The data set BCI is derived from the research toward the development of a
brain-computer interface (BCI). Each data of BCI is resulted from the subject’s imagination
of moments, the left hand (class −1) or the right hand (class +1). The data set Text is the
5 comp.* groups from the Newsgroups data set and the goal is to classify the ibm category
versus the rest.
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Table 2: Average test errors (in %, in front of /) and average CPU-times (in second, behind
/) on g241c, g241d, USPS, COIL2, BCI and Text.

g241c g241d USPS COIL2 BCI Text
L 47.48/110 46.28/110 45.74/145 48.47/101 31.44/27 41.90/1894FRSDP
G 30.95/1370 30.33/1436 13.51/1383 19.40/1262 31.33/37 32.85/1298

SVM G 35.81 35.74 15.76 20.1 43.28 47.46

Table 3: Average test errors (in %, in front of /) and average CPU-times (in second, behind
/) on SCOP40mini.

BLAST SW NW LA PRIDE
FRSDP G 3.01/2534 3.00/2462 3.00/2329 3.00/2543 3.53/2356
SVM G 2.84 2.49 2.46 2.25 2.89

The data set SCOP40mini is derived from the data set SCOP40 Minidatabase (Accession
Number: PCB00019) downloaded from the Protein Classification Benchmark Collection [18].
The protein classification is on hierarchial levels: the first two levels, family and superfam-
ily, describe near and far evolutionary relationships; the third, fold, describes geometrical
relationships. The goal of SCOP40 Minidatabase is to classify protein domain sequences
and structures into superfamilies, based on families. The members in the same superfamily
form class +1, and the rest members form class −1. In the data set SCOP40 Minidatabase,
there are 55 families. The data set SCOP40mini is generated by discarding the families with
less than 10 members. Thus, there are 32 families in SCOP40mini.

For g241c, g241d, USPS, COIL2, BCI and Text, each data set has been equipped with
12 subsets of 100 labeled data [4]. Thus there are 12 classification tasks for each data set.
Here we use both linear kernel and Gaussian kernel. The parameter σ is chosen as the
median of the pairwise distances and the parameter C is fixed to 3500 for linear kernel and
1.5 for Gaussian kernel. For SCOP40mini, the members outside the family but within the
same superfamily and partial members outside the superfamily are selected as labeled data
[18]. Since protein sequences are alphabetic sequences with variant lengths, they should
be represented as fixed-length vectors of real numbers so that they can be used as inputs
for classification algorithms. Many approaches have been developed to represent protein
sequences, such as BLAST [1], Smith-Waterman (SW) [17], Needleman-Wunsch (NW) [15],
Local Alignment Kernel (LA) [16], PRIDE [9] and so on. Here we use the approaches,
BLAST, SW, NW, LA and PRIDE, to show their effect on our method. We only use the
Gaussian kernel for this data set. The parameter σ is also chosen as the median of the
pairwise distances and C is fixed to 3500.

For the purpose of comparison, we present the results of the SVM equipped with Gaussian
kernel. The parameter σ is chosen as the median of the pairwise distances. The results are
obtained by using Spider 1.71.

Table 2 reports the results of (PFRSDP) and SVM on g241c, g241d, USPS, COIL2, BCI
and Text. The results are the average test errors (in %) and average CPU-times (in second)
of the 12 tasks. L denotes the linear kernel and G denotes the Gaussian kernel. We see from
Table 2 that (PFRSDP) equipped with Gaussian kernel performs better than that equipped
with linear kernel on these data sets, though the former needs more time than the latter
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except for the case of Text. There is an interesting phenomenon that in the case of Text,
(PFRSDP) equipped with Gaussian kernel not only performs better but also needs less time
than that equipped with linear kernel. We also see from Table 2 that the performance of
(PFRSDP) equipped with Gaussian kernel is evidently better than that of SVM. The average
test errors of (PFRSDP) are approximate 80% of that of SVM except in the case of COIL2.
Especially in the case of Text, the average error of (PFRSDP) is only about 69.2% of that
of SVM. The results show that our method is effective on these data sets. Furthermore, its
performance on Text confirms that S3VMs are particularly well suited for text classification
and several other (typically high-dimensional) learning problems [4].

Table 3 shows the results of (PFRSDP) and SVM on the data set SCOP40mini. The
results are the average test errors (in %) and average CPU-times (in second) of the 32 tasks.
We see that although (PFRSDP) performs a little worse than SVM, its average test errors are
only about 3%. We also see that the approaches, BLAST, SW, NW, LA and PRIDE, have
approximately same average test error and average CPU-time. The results on SCOP40mini
indicate that our method is well suited for dealing with the protein classification problems.

6 Conclusions and Remarks

We have presented two SDP relaxations for the MINLP problem (PS3VM) associated with
S3VM. By decomposing the semidefinite positive matrix into a sequence of small-size ma-
trices, our second SDP relaxation (PFRSDP) has the reasonable size compared with the first
SDP relaxation. Furthermore, we have applied the modified SDP relaxation (PFRSDP) to
two artificial and five real-world classification problems which are derived from the five fields
of the hand-written digit recognition, the image recognition, the brain-computer interface,
the text classification and the protein classification. The numerical examples indicated that
(PFRSDP) is effective. In particular, the relative error of (PFRSDP) is within 3% for protein
classification test problems.

There are two directions for future research. The first one is to establish a second-order
cone relaxation for S3VM because it is well-known that the other possibility is to further
modify Problem (PS3VM ) to suit other needs. The other direction is to modify problem
(PS3VM) such that it is able to deal with various cases. For example, we can add a balance
constraint −λ ≤

∑n
i=l+1 yi ≤ λ to the problem, where λ is a given constant [21]. The

balance constraint can prevent the unlabeled data from being classified into the same class.
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