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where g : Rn → R is a continuous function, and C is a closed set in Rn. When (P) has
multiple solutions or is very sensitive to data perturbations, a popular way to regularize the
problem is to modify the objective function by adding a new function. This leads to the
following regularized problem

(P(δ)) min g(x)+δf(x) s.t. x ∈ C,

where f : Rn → R is a continuous function and δ is a nonnegative regularization parameter.
The regularization function f may be nonlinear, non-convex or non-differentiable. A popular
choice, commonly known as Tikhonov regularization, of f is ||x||22, which can be used to select
a least two-norm solution. Another popular choice is l1 regularization with f(x) = ||x||1.
See [2] for more examples of f , applications of exact regularization of convex programs, and
connections between exact regularization and exact penalization which is commonly used
for solving constrained nonlinear programs.

We make the following basic assumptions throughout the paper:
A 1: The functions f , g are locally Lipschitz continuous.
A 2: The feasible set C is a nonempty closed set in Rn and is Clarke regular [1] at every

point of C, and the solution set S of (P) is nonempty. The Clarke regularity assumption on
C holds whenever C is convex.

A 3: The level set {x ∈ S | f(x) ≤ β} is bounded for each β ∈ R, and infx∈C f(x) > −∞.
This assumption holds whenever f is coercive.

Similar to the approaches used in [2], central to our analysis is a related nonlinear program
that selects solutions of (P) of the least f−value:

(Q) min f(x) s.t x ∈ C, g(x) ≤ p∗,

where p∗ denotes the optimal value of (P). Note that S = {x ∈ C | g(x) ≤ p∗}. By A 3, (Q)
has at least one optimal solution. Clearly, any solution of (Q) is also a solution of (P), i.e.,
SQ ⊂ S where SQ is the set of solutions of (Q). As already known in the convex case (by
which we mean both the functions g and f , and the set C are convex), solutions of (P(δ))
need not be solutions of (P), here we denote the set of solutions of (P(δ)) by Sδ. Following
[2], we say that the regularization is exact if the solutions of (P(δ)) are also solutions of
(P) for all values of δ below some positive threshold value δ̄. The purpose of this note is
to give necessary and sufficient conditions for the aforementioned exact regularization to
hold. Specifically, in Theorem 2.6, we show that the regularization (P(δ)) is exact if and
only if the Lagrangian function of the selection problem (Q) has a saddle point. Moreover,
the solution set of (P(δ)) coincides with the solution set of (Q) for all δ < 1/ȳ, where ȳ is
the Lagrange multiplier associated with the saddle point. We will report applications of the
main results elsewhere.

The notation used in this note is standard. See e.g. [4].

2 Main Results

Let the Lagrangian function of (Q) be

L(x, y) = f(x) + y(g(x)− p∗)

for x ∈ C and y ≥ 0. Let x̄ ∈ C and suppose that x̄ is a local minimizer of (Q). We say
that ȳ ≥ 0 is a Lagrange multiplier at x̄ if

0 ∈ ∂xL(x̄, ȳ) +NC(x̄),
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where ∂xL(x̄, ȳ) and NC(x̄) denote the Clarke sub-differential [1] of L(·, ȳ) at x̄ and the
Clarke normal cone [1] at x̄ respectively. We say that a pair of vector (x̄, ȳ) ∈ C ×R+ gives
a saddle point of the Lagrangian L on C ×R+ if

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) ∀x ∈ C ⊂ Rn,∀y ∈ R+.

Note that problem (Q) may not have a Lagrange multiplier even for the convex case as
illustrated by the following example.

Example 2.1. Let g(x) = x2, C = R, and f(x) = x. Then S = argminx∈Cg = {0}. For
L(x, y) = x+yx2, there are no saddle points for L over R×R+. For y ≥ 0, infx∈C L(x, y) =
−∞ if y = 0, = − 1

4y if y > 0.

To better understand the role of Lagrange multiplier λ, we define C(u) = {x ∈ C| g(x) ≤
p∗ + u}, and the perturbation function ρ(u) = inf{f(x) | x ∈ C(u)}. We use the convention
that ρ(u) = +∞ if C(u) = ∅.

We begin with a basic characterization concerning saddle points of the Lagrangian L,
which holds for general non-convex programs. More detailed discussion about this charac-
terization along with a proof can be found in [3].

Theorem 2.2 (Theorem 6.1 [3]). For problem (Q), (x̄, ȳ) is a saddle point of the Lagrangian
L for (Q) if and only if

(a) x̄ solves (Q);

(b) ρ(u) + ȳu ≥ ρ(0) ∀u ∈ R.

We now present another characterization of saddle point conditions for (Q), which has
direct consequences on the exact regularization of non-convex programs. Moreover this
characterization is not true for general non-convex programs.

Theorem 2.3. For problem (Q), a pair (x̄, ȳ) ∈ C×R+ is a saddle point of the Lagrangian
L if and only if the pair satisfies the conditions:

(1) x̄ ∈ S;

(2) x̄ is a minimizer of L(·, ȳ) over C.

In particular, x̄ is an optimal solution of (Q).

Proof. [⇒] Let (x̄, ȳ) be a saddle point of L. Then (2) holds. So we only need to show that
(1) holds. If g(x̄) > p∗, then by L(x̄, y) ≤ L(x̄, ȳ) for all y ∈ R+, 0 ≤ (ȳ − y)(g(x̄)− p∗) for
all y ∈ R+. This implies that ȳ cannot be zero. If ȳ ̸= 0, we get a contradiction again by
choosing y = 2ȳ. We conclude that g(x̄) ≤ p∗. So x̄ ∈ S, i.e., (1) holds.

[⇐] We observe the following.

f(x̄) = L(x̄, ȳ) since g(x̄) = p∗

= inf
x∈C

L(x, ȳ) by (2)

≤ inf{L(x, ȳ) | g(x) ≤ p∗ , x ∈ C}
= inf{f(x) | x ∈ S}

The above inequality implies that x̄ is an optimal solution of (Q). Since g(x̄) = p∗, (y −
ȳ)(g(x̄) − p∗) = 0 ≤ 0 for all y ∈ R+. This along with the equality infx∈C L(x, ȳ) = f(x̄)
shows that (x̄, ȳ) is a saddle point of L on C ×R+.
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When (Q) is a convex program, it is well-known that the existence of Lagrange multiplies
for (Q) is equivalent to the existence of saddle point for L, and the set of Lagrange multiplies
is the same for any solutions of (Q). For the non-convex case, Lagrange multiplies are not
necessary the same for different optimal solutions of (Q). However, due to the special
structure of (Q), we do have the following two lemmas on saddle points of the Lagrangian
L, which do not hold for general non-convex programs. The lemmas form the basis for our
research on exact regularization of non-convex programs via saddle point conditions.

Lemma 2.4. Let x1 and x2 be optimal solutions of (Q). Suppose that (x1, ȳ) with ȳ ≥ 0 is
a saddle point of L. Then (x2, ȳ) is a saddle point of L too.

Proof. Since x1 and x2 solve (Q), g(x1) = g(x2) and f(x1) = f(x2). The saddle point (x1, ȳ)
of L implies that

f(x1) + ȳ(g(x1)− p∗) ≤ f(x) + ȳ(g(x)− p∗) ∀x ∈ C.

But f(x2) = f(x1) and g(x2) = p∗ = g(x1). So

f(x2) + ȳ(g(x2)− p∗) ≤ f(x) + ȳ(g(x)− p∗) ∀x ∈ C.

Since g(x2) = p∗, it is easy to verify that L(x2, y) ≤ L(x2, ȳ) for all y ≥ 0. This shows that
(x2, ȳ) is a saddle point of L.

Lemma 2.5. For any given optimal solution x̄ of (Q), let Y ⊂ R+ be the set such that
(x̄, ȳ) is a saddle point of L with ȳ ∈ Y . If Y is non-empty, then Y is a closed convex set.

Proof. Let y1, y2 ∈ Y . Without loss of generality suppose that y1 < y2. Let y ∈ (y1, y2).
Then there is some λ ∈ (0, 1) such that y = λy1 + (1− λ)y2. Then for any x ∈ C,

f(x̄) = f(x̄) + y(g(x̄)− p∗) (since g(x̄) = p∗)

= λ(f(x̄) + y1[g(x̄)− p∗)]) + (1− λ)(f(x̄) + y2[g(x̄)− p∗)])

≤ λ(f(x) + y1[g(x)− p∗)]) + (1− λ)(f(x) + y2[g(x)− p∗)])

= f(x) + y(g(x)− p∗).

This proves the convexity of Y . Let y(i) → ȳ with y(i) ∈ Y as i → +∞. Then f(x̄) ≤
f(x) + y(i)(g(x)− p∗) for each fixed x ∈ C. Letting i → +∞, we get ȳ ∈ R+ and

f(x̄) ≤ f(x) + ȳ(g(x)− p∗)

for each x ∈ C. So Y is closed and convex.

We summarize some important consequences of the proceeding lemmas and theorems
in the following theorem which generalizes the main results (Theorem 2.1) of [2] on exact
regularization to the non-convex case. The proof techniques are similar to these used in [2].

Theorem 2.6. Consider problems (P), (Q), and (P(δ)). Then the following statements
are true.

(a) For any δ > 0, S ∩ Sδ ⊂ SQ.

(b) If there exists a saddle point (x̄, ȳ) of L for (Q) with x̄ ∈ SQ, then S ∩ Sδ = SQ for
all δ ∈ (0, 1/ȳ]. Here we use the convention 1/ȳ = +∞ when ȳ = 0.



EXACT REGULARIZATION OF NON-CONVEX PROGRAMS 31

(c) If there exists δ̄ > 0 such that S ∩ Sδ̄ ̸= ∅, then (x̄, 1/δ̄) is a saddle point of L for (Q)
with any x̄ ∈ S ∩ Sδ = SQ for all δ ∈ (0, δ̄].

(d) If there exists δ̄ > 0 such that S ∩ Sδ̄ ̸= ∅, then Sδ ⊂ S for all δ ∈ (0, δ̄).

Proof. (a). Let x̄ ∈ S and x̄ ∈ Sδ with δ > 0. Then x̄ is a minimizer of f(x) + (1/δ)g(x)
over C since x̄ ∈ Sδ. So Theorem 2.3 informs us that x̄ ∈ SQ. that is, S ∩ Sδ ⊂ SQ.

(b). We consider two cases ȳ = 0 and ȳ > 0. Case 1: ȳ = 0. Then for any x̂ ∈ SQ,
by Lemma 2.4, (x̂, 0) is a saddle point of L. So f(x̂) ≤ f(x) for all x ∈ C. Since x̂ ∈ S,
g(x̂) ≤ g(x) for all x ∈ C. Then for any δ ≥ 0,

g(x̂) + δf(x̂) ≤ g(x) + δf(x), ∀x ∈ C.

So x̂ ∈ Sδ.
Case 2: ȳ > 0. For any x̂ ∈ SQ, by Lemma 2.4, (x̂, ȳ) is a saddle point of L. Then

x̂ ∈ argminx∈C [(1/ȳ)f(x) + (g(x)− p∗)] = argminx∈C [(1/ȳ)f(x) + g(x)].

Also since x̂ ∈ S, g(x̂) ≤ g(x) for all x ∈ C. The above two relations yield that

g(x̂) + (λ/ȳ)f(x̂) ≤ g(x) + (λ/ȳ)f(x), ∀x ∈ C, ∀λ ∈ [0, 1].

So x̂ ∈ Sδ for all δ ∈ [0, 1/ȳ].
(c). For any x̄ ∈ S ∩ Sδ̄, x̄ is a minimizer of f(x) + (1/δ̄)g(x) over C. By Theorem 2.3,

x̄ ∈ SQ and (x̄, 1/δ̄) is a saddle point of L. By (b), S ∩ Sδ = SQ for all δ ∈ (0, δ̄].
(d). Let gδ = g + δf . Assume that there exists a δ̄ > 0 such that S ∩ Sδ̄ ̸= ∅. Let

x̄ ∈ S ∩ Sδ̄ be given. For any δ ∈ (0, δ̄) and any x ∈ C\S, we have

gδ̄(x̄) ≤ gδ(x), g(x̄) < g(x).

Since 0 < δ
δ̄
< 1, we have

gδ(x̄) =
δ

δ̄
gδ̄(x̄) + (1− δ

δ̄
)g(x̄) <

δ

δ̄
gδ̄(x) + (1− δ

δ̄
)g(x) = gδ(x).

This shows that x ∈ C\S cannot be a solution of (P(δ)). So Sδ ⊂ S.

Corollary 2.7. If there is some ȳ > 0 such that (x̄, ȳ) is a saddle point of L, then x̄ ∈ Sδ

where δ = 1/ȳ. Conversely if Sδ ∩ S ̸= ∅, then for any x̄ ∈ Sδ ∩ S, (x̄, ȳ) is a saddle point
of L where ȳ = 1/δ.

Proof. Suppose that (x̄, ȳ) ∈ C×R+ with ȳ > 0 is a saddle point of L. Then x̄ is a minimizer
of L(·, ȳ) over C. So x̄ is an optimal solution of (P(δ)) with δ = 1/ȳ.

Conversely if Sδ ∩ S ̸= ∅, then for any x̄ ∈ Sδ ∩ S, then x̄ is an optimal solution of
minimizing f(x) + 1

δ g(x) over C. Also x̄ ∈ S. By Theorem 2.3, (x̄, 1/δ) is a saddle point of
L. This completes the proof.

To illuminate our achieved results further, we provide below a non-convex program ex-
ample.

Example 2.8. Let g(x1, x2) = max{−x1+x2, 0}, C = {(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1+x2 ≤
4}, and f(x1, x2) = −(x1−4)2− (x2−4)2. Then the solution set S (i.e., argminx∈Cg(x)) of
(P) is the convex hull of the points (0, 0), (4, 0) and (2, 2) and p∗ = 0. Since f is a concave
function, (Q) is not a convex program. But the optimal value of (Q) is achieved at an
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extreme point of S due to the concavity of f and the convexity of S. An easy computation
shows that SQ = {(0, 0)}. We can easily verify that, for any ȳ ≥ 0, (0, 0) is a minimizer
of L(·, ȳ) over C where L(x, ȳ) = f(x) + ȳ(g(x) − p∗). By Theorem 2.3, we conclude that
((0, 0), ȳ) is a saddle point of L.

Example 2.8 can also be used to verify the conclusions of Theorem 2.6 and Corollary 2.7.
The details are omitted here.
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