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for nonlinear problems(see ref.[3-8,16]), and the authors in ref.[7,8] also have considered the
existence of the sensitivity solutions of the perturbed problems. But among the existing
methods, there are still some limitations as follows: (a) There are only sensitivities analysis
of the objective function value and the primal variables with respect to the parameters,
but not the sensitivities of the dual variables with respect to the parameters; (b) There
are diverse methods for obtaining each of the sensitivities for different cases, but there is
no integrated approach providing all the sensitivities at once; (c) They assume the active
constraints remain active and the inactive constraints remain inactive, which implies there
is no need to distinguish between equality or inequality constraints. Recently, Castillo in [9]
proposed a new approach to calculate the local sensitivity for mathematical programming
problems. This method can get a simple linear system to calculate the sensitivity of the
objective function and primal and dual variables with respect to all parameters in the case
of regular nondegenerate solutions. But it can not deal with the case of regular degenerate
solutions efficiently. One must compute all the possible combinations of the equalities and
inequalities in the differentiation system of the Karush-Kuhn-Tucker systems and it is a
difficult work.

So in this paper, we will aim to such works: (a) we need not assume any condition
except the linear independent constraint qualification; (b) we transfer the KKT system of
the parametric optimization problem into a system of semismooth equations by using an
NCP function. (c) We get a system of linear equations for solving all the local sensitivities
simultaneously in both the cases of regular nondegegerate solution and regular degenerate
solution by using the semismooth properties.

The construction of this paper is as follows: In Section 2 , we transfer the KKT system
of problem (1.1) into a system of semismooth equations and present the local sensitivity
formulas for both the cases of regular nondegenerate and regular degenerate solutions. In
Section 3, numerical examples are introduced to illustrate the new method of sensitivity
analysis. In Section 4, we get some conclusions of this paper.

A few words about our notation. For the given parameter σ̄, x∗ is the corresponding
optimal solution, λ∗ is the dual variable with respect to h(x∗, σ) = 0 and µ∗ is the dual
variables with respect to g(x∗, σ) ≥ 0, z∗ = f(x∗, σ̄) is the optimal objective function value.
We define the index sets associated with the active and inactive constraints in the usual
way:

E = {j = 1, . . . , l|hj(x
∗, σ̄) = 0}, I = {j = 1, . . . ,m|gj(x∗, σ̄) = 0},

N = {1, . . . ,m} \ I, I0 = {j ∈ I|µ∗
j = 0}, I+ = I \ I0 = {j ∈ I|µ∗

j > 0}.

In this paper, we only consider the sensitivity analysis of the optimal solution which
satisfies the linear independent constraint qualification(LICQ). And the optimal point
(x∗, λ∗, µ∗, z∗) can be classified as follows:

Regular nondegenerate optimal solution. The solution (x∗, λ∗, µ∗, z∗) satisfies the
linear independent constraint qualification(LICQ) and I0 = ∅.

Regular degenerate optimal solution. The solution (x∗, λ∗, µ∗, z∗) satisfies the
linear independent constraint qualification(LICQ) and I0 ̸= ∅.

Note that we deal with local sensitivity, that is, changes produced by differential changes,
and the formulas derived from the KKT system of the parametric optimization problem.
If the condition of LICQ is removed, the KKT conditions do not characterize adequately
this case. It is because there are infinite Lagrange value combinations that hold, see ref.[9].
However, our method can also provide the sensitivities formulas if the values of the Lagrange
multipliers are given. So in this paper, we only consider the most common situation when
we have a regular point.
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2 Sensitivity Analysis Based On Semismooth Equations

In this section, we derive local sensitivity formulas of (x∗, λ∗, µ∗, z∗) for problem (1.1) under
small perturbations in the parameter σ around σ̄.

2.1 Semismooth Equations Equivalent to the KKT Systems of Problem (1.1)

Let x∗ be a local optimal solution and we assume the linear independent constraint qual-
ification is satisfied in problem (1.1). From the first-order optimal condition, there exists a
pair of vectors λ∗ ∈ Rl, µ∗ ∈ Rm satisfying the following KKT systems:

∇xf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xgj(x

∗, σ̄) = 0n,

hk(x
∗, σ̄) = 0, k = 1, 2, . . . , l,

gj(x
∗, σ̄) ≥ 0, j = 1, 2 . . . ,m,

µ∗
jgj(x

∗, σ̄) = 0, j = 1, 2, . . . ,m,
µ∗
j ≥ 0, j = 1, 2, . . . ,m.

(2.1)

To obtain the sensitivity analysis, we perturb or modify x∗, σ, λ∗, µ∗, z∗ in such a way
that the KKT systems (2.1) still hold. Thus we will usually differentiate the objective
function in (1.1) and the KKT systems (2.1) directly (see ref.[10]). But in this kind of
method, one must deal with a lot compositions of equalities and inequalities in the case
of regular degenerate solution, the calculation and analysis become much complex. So in
this paper, we will transfer the KKT systems of problem (1.1) into a system of semismooth
equations by using an NCP function, then we can get the united formulas to calculate the
local sensitivity for both the cases of regular nondegenerate solution and regular degenerate
solution by using the semismooth properties.

Let φ : R2 → R be Fischer-Burmeister function (see ref.[10,11]), the definition is

φ(a, b) =
√
a2 + b2 − (a+ b). (2.2)

It is easily to see that φ(a, b) = 0 if and only if

a ≥ 0, b ≥ 0, aT b = 0.

A function with this property is called an NCP function, see ref.[11,13]. For the sake of
convenience, we denote the Fischer-Burmeister function as FB function. From ref.[10,12],
we know that the FB function is differentiable everywhere except at the point (0, 0) and it
is semismooth at (0, 0). The definition and properties of semismooth function can be found
in ref.[12-15].

By using the FB function, we transfer the KKT systems of problem (1.1) into a system
of semismooth equations

∇xf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xgj(x

∗, σ̄) = 0n,

hk(x
∗, σ̄) = 0, k = 1, 2, . . . , l,

ϕ(x∗, µ∗, σ̄) = 0m.

(2.3)

where

ϕ(x∗, µ∗, σ̄) = (ϕ1(x
∗, µ∗, σ̄), ϕ2(x

∗, µ∗, σ̄) . . . , ϕm(x∗, µ∗, σ̄))T ,

ϕj(x
∗, µ∗, σ̄) = φ(µ∗

j , gj(x
∗, σ̄)) = µ∗

j + gj(x
∗, σ̄)−

√
(µ∗

j )
2 + (gj(x∗, σ̄))2, j = 1, 2, . . . ,m.
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2.2 Local Sensitivity Formulas for the Case of Regular Nondegenerate Solution

In this case, I0 = ∅. From the properties of the FB function, we know that ϕj(x
∗, µ∗, σ)

is continuously differentiable. So we differentiate the object function in (1.1) and the KKT
system (2.3) as follows:

(∇xf(x
∗, σ̄))T dx+ (∇σf(x

∗, σ̄))T dσ − dz = 0,

(∇xxf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xxhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xxgj(x

∗, σ̄))dx

+(∇xσf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xσhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xσgj(x

∗, σ̄))dσ

−∇xh(x
∗, σ̄)dλ−∇xg(x

∗, σ̄)dµ = 0n,
(∇xh(x

∗, σ̄))T dx+ (∇σh(x
∗, σ̄))T dσ = 0l,

(∇xϕ(x
∗, µ∗, σ̄))T dx+ (∇µϕ(x

∗, µ∗, σ̄))T dµ+ (∇σϕ(x
∗, µ∗, σ̄))T dσ = 0m,

(2.4)

where

∇xϕj(x
∗, µ∗, σ̄) =

{
∇xgj(x

∗, σ̄), j ∈ I,
0, j ∈ N.

∇µϕj(x
∗, µ∗, σ̄) =

{
0, j ∈ I,
1, j ∈ N.

∇σϕj(x
∗, µ∗, σ̄) =

{
∇σgj(x

∗, σ̄), j ∈ I,
0, j ∈ N.

Denote

Fx = ∇xf(x
∗, σ̄), Fσ = ∇σf(x

∗, σ̄),

Fxx = ∇xxf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xxhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xxgj(x

∗, σ̄),

Fxσ = ∇xσf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xσhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xσgj(x

∗, σ̄),

Hx = (∇xh(x
∗, σ̄))T ,Hσ = (∇σh(x

∗, σ̄))T , Gx = (∇xg(x
∗, σ̄))T ,

ϕx = (∇xϕ(x
∗, µ∗, σ̄))T , ϕσ = (∇σϕ(x

∗, µ∗, σ̄))T , ϕµ = (∇µϕ(x
∗, µ∗, σ̄))T .

In matrix form, the system (2.4) can be written as


Fx Fσ 0 0 −1
Fxx Fxσ −HT

x −GT
x 0

Hx Hσ 0 0 0
ϕx ϕσ 0 ϕµ 0




dx
dσ
dλ
dµ
dz

 = 0. (2.5)

Obviously, (2.5) is a system of linear equation, so we can get all the sensitivities from
(2.5) easily. Furthermore, (2.5) can be written as

U [dx, dλ, dµ, dz]T = Sdσ, (2.6)

where U, S are

U =


Fx 0 0 −1
Fxx −HT

x −GT
x 0

Hx 0 0 0
ϕx 0 ϕµ 0

 , S = −


Fσ

Fxσ

Hσ

ϕσ

 .

It is obvious that U is a square matrix and we can get the following conclusion.
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Theorem 2.1. Let σ̄ be a given parameter, (x∗, λ∗, µ∗) be the corresponding local optimal
solution which is regular and nondegenerate, z∗ be the optimal objective function value,
assume that ∣∣∣∣∣∣

Fxx −HT
x −GT

Ix

Hx 0 0
GIx 0 0

∣∣∣∣∣∣ ̸= 0, (2.7)

where GIx = (∇xgj(x
∗, σ̄))T , j ∈ I, then (2.6) has a unique sensitivity solution

[∂x/∂σ, ∂λ/∂σ, ∂µ/∂σ, ∂z/∂σ]
T
= U−1S

under small perturbations in σ around σ̄.

Proof. From the definition of ϕx, ϕµ in (2.4), U can be written as

U =


Fx 0 0 0 −1
Fxx −HT

x −GT
Ix 0 0

Hx 0 0 0 0
GIx 0 0 0 0
0 0 0 IN 0

 ,

where IN is the unit matrix whose cardinality is equal to the number of all inactive inequal-
ities (i.e. gj(x

∗, σ) > 0, j ∈ N). Let q = (q1, q2, q3, q4, q5) ∈ Rn × Rl × RmI × RmN × R
be an appropriately partitioned vector with Uq = 0, where mI is the the number of active
inequalities and mN is the the number of inactive inequalities. Then we can get that

Fxq
1 − q5 = 0,

Fxxq
1 −HT

x q
2 −GT

Ixq
3 = 0n,

Hxq
1 = 0l,

GIxq
1 = 0mI

,
q4 = 0mN .

This together with the condition (2.7) implies q = (q1, q2, q3, q4, q5) = 0. So we can get that
det(U) ̸= 0 and (2.6) has a unique solution

[∂x/∂σ, ∂λ/∂σ, ∂µ/∂σ, ∂z/∂σ]
T
= U−1S.

Theorem 2.1 allows one diriving all the sensitivities with respect to all the parameters si-
multaneously. It is easy to see that there are two particular cases in which the nonsingularity
of (2.7) is guaranteed.

Case 1: l +mI = n, and the matrix

M =

(
H
G

)
is invertible.

Case 2: Fxx is positive and the matrix

M =

(
H
G

)
is full row rank.

Moreover, if the matrices involved in Theorem 2.1 become singular, we can get the
sensitivity of the solution by the linear system (2.6) directly. But the corresponding solution
has the structure of a cone in this case.
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2.3 Local Sensitivity Formulas for the Case of Regular Degenerate Solution

In this case, I0 ̸= ∅, i.e. there exists the case of µ∗
j = gj(x

∗, σ̄) = 0, j ∈ I0. So ϕj(x
∗, µ∗, σ)

is not differentiable but semismooth at this time. From the semismooth properties of

φ(µ∗
j , gj(x

∗, σ̄)) = µ∗
j + gj(x

∗, σ̄)−
√

(µ∗
j )

2 + (gj(x∗, σ̄))2,

we know that if the changes of µ∗
j or gj(x

∗, σ̄) (denote dµ∗
j or dgj) is not equal to zero, we

have
ϕj(x

∗ + dx, µ∗ + dµ, σ̄ + dσ)− ϕj(x
∗, µ∗, σ̄)

= φ(µ∗ + dµ, gj(x
∗ + dx, σ̄ + dσ))− φ(µ∗, gj(x

∗, σ̄))
= Vjxdx+ Vjadσ + Vjµdµ+ o(∥(dx, dσ, dµ)∥),

where Vjx = ∇xgj(x
∗, σ̄)(1− dgj√

(dgj)2+(dµj)2
), Vjσ = ∇σgj(x

∗, σ̄)(1− dgj√
(dgj)2+(dµj)2

), Vjµ =

1− dµj√
(dgj)2+(dµj)2

.

So in the case of regular degenerate solution, if dµ∗
j or dgj is not equal to zero and we

aim to perturb x∗, σ, λ∗, µ∗, z∗ in such a way that the KKT systems still hold, we have

(∇xf(x
∗, σ̄))T dx+ (∇σf(x

∗, σ̄))T dσ − dz = 0,

(∇xxf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xxhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xxgj(x

∗, σ̄))dx

+(∇xσf(x
∗, σ̄)−

∑l
k=1 λ

∗
k∇xσhk(x

∗, σ̄)−
∑m

j=1 µ
∗
j∇xσgj(x

∗, σ̄))dσ

−∇xh(x
∗, σ̄)dλ−∇xg(x

∗, σ̄)dµ = 0n,
(∇xh(x

∗, σ̄))T dx+ (∇σh(x
∗, σ̄))T dσ = 0l,

(∇xϕ(x
∗, µ∗, σ̄))T dx+ (∇µϕ(x

∗, µ∗, σ̄))T dµ+ (∇σϕ(x
∗, µ∗, σ̄))T dσ = 0,

(2.8)

where

∇xϕj(x
∗, µ∗, σ̄) =

 ∇xgj(x
∗, σ̄), j ∈ I+,

Vjx, j ∈ I0,
0, j ∈ N.

∇µϕj(x
∗, µ∗, σ̄) =

 0, j ∈ I+,
Vjµ, j ∈ I0,
1, j ∈ N.

∇σϕj(x
∗, µ∗, σ̄) =

 ∇σgj(x
∗, σ̄), j ∈ I+,

Vjσ, j ∈ I0,
0, j ∈ N.

Though (2.8) is not a system of linear equations, we can get the corresponding values of
Vjx, Vjσ, Vjµ according to the adjustment of the active inequality with (µ∗

j , gj(x
∗, σ)) = (0, 0).

We consider two cases as follows:

(i) If we want this inequality remain active, we take dgj = 0, dµj > 0, so we get Vjx =
∇xgj(x

∗, σ̄), Vjµ = 0, Vjσ = ∇σgj(x
∗, σ̄).

(ii) If we want this inequality become inactive, we can take dµj = 0, dgj > 0, and get
Vjx = 0, Vjµ = 1, Vjσ = 0.

In a regular degenerate case, there are two possible changes for the constraint gj(x
∗, σ),

we can decide gj(x
∗, σ) remain active or inactive according the need of an actual problem.

So we can also get a linear equations to calculate all the sensitivities for the case
of regular degenerate solution according to the adjustment of the active inequality with
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(µ∗
j , gj(x

∗, σ)) = (0, 0) as follows,
Fx Fσ 0 0 0 −1
Fxx Fxσ −HT

x −GT
I′x

0 0

Hx Hσ 0 0 0 0
GI′x GI′σ 0 0 0 0

0 0 0 0 I
′

N 0




dx
dσ
dλ
dµ
dz

 = 0, (2.9)

where GI′x and GI′σ represent the partial derivatives with respect to x and a of all the
active inequalities which include the corresponding inequalities with(µj , gj(x

∗, σ̄)) = (0, 0)

but are required to remain active. I
′

N is the unit matrix whose cardinality is equal to
the number of all inactive inequalities which include the corresponding inequalities with
(µj , gj(x

∗, σ̄)) = (0, 0) but are required to become inactive. Similarly to the proof of Theorem
2.1, we get the following conclusion.

Theorem 2.2. Let σ̄ be a given parameter, (x∗, λ∗, µ∗) be the corresponding local optimal
solution which is regular and degenerate, z∗ be the optimal objective function value, assume
that ∣∣∣∣∣∣

Fxx −HT
x −GT

I′x
Hx 0 0
GI′x 0 0

∣∣∣∣∣∣ ̸= 0,

then (2.9) has a unique solution

[∂x/∂σ, ∂λ/∂σ, ∂µ/∂σ, ∂z/∂σ]
T
= U−1

1 S1 (2.10)

under small perturbations in σ around σ̄, where

U1 =


Fx 0 0 0 −1
Fxx −HT

x −GT
I′x

0 0

Hx 0 0 0 0
GI′x 0 0 0 0

0 0 0 I
′

N 0

 , S1 = −


Fσ

Fxσ

Hσ

GI′σ

0

 .

3 Illustrative Examples

In this section, we illustrate the method developed in section 2 by its application to a regular
nondegenerate example and a regular degenerate example.

3.1 Regular Nondegenerate Example

Considering the following optimization problem:

min
a,b

z = (
a+ b

2
− ȳ)2 + (

1

12
(b− a)2 − σ2)2

s.t. g1(y, a) = a− ymin ≤ 0, (3.1)

g2(y, a) = ymax − b ≤ 0. (3.2)

where ȳ and σ2 are the sample mean and variance respectively. Then we take ymax =
yn, ymin = y1, n = 5, y1 = 0.2, y2 = 0.3, y3 = 0.4, y5 = 0.95 and get the local optimal
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solution µ∗
1 = 0, µ∗

2 = 0.0053, â = −0.00468, b̂ = 0.95, ymax = y5 = 0.95, ymin = y1 = 0.2.
So we can see that the inequality (3.1) is the inactive constraint, the inequality (3.2) is the
active constraint, this is a case of regular nondegenerate example. The KKT system of this
problem is 

( (a+b)
2 − ȳ)( (b−a)2

12 − σ2) (a−b)
3 + µ1 = 0,

( (a+b)
2 − ȳ)( (b−a)2

12 − σ2) (b−a)
3 − µ2 = 0,

ymin − a+ µ1 −
√
µ2
1 + (ymin − a)2 = 0,

b− ymax + µ2 −
√
µ2
2 + (b− ymax)2 = 0.

From equation (2.4), we have

0 = {(a+ b)/2− ȳ − [(b− a)2/12− σ2](b− a)/3}da
{(a+ b)/2− ȳ + [(b− a)2/12− σ2](b− a)/3}db

−(1/5)

5∑
i=1

{a+ b− 2ȳ − 4(yi − ȳ)[1/12(b− a)2/12− σ2]}dyi − dz,

0 = {1/2 + (b− a)2/18 + 1/3[(b− a)2/12− σ2]}da
{1/2− [(b− a)2/18]− 1/3[(b− a)2/12− σ2]}db

−(1/5)

5∑
i=1

[1− 2(b− a)(yi − ȳ)/3]dyi + dµ1,

0 = {1/2− (b− a)2/18− 1/3[(b− a)2/12− σ2]}da
{1/2 + [(b− a)2/18] + 1/3[(b− a)2/12− σ2]}db

−(1/5)

5∑
i=1

[1 + 2(b− a)(yi − ȳ)/3]dyi − dµ2,

0 = dµ1, 0 = −dy5 + db.

So we have

U =


0.0000 0.0053 0 0 −1
0.5534 0.4465 1 0 0
0.4465 0.5534 0 −1 0
0 0 1 0 0
0 1 0 0 0

 , S =


−0.0007 0.0000 0.0006 0.0013 0.0043
0.2344 0.2217 0.2090 0.1962 0.1390
0.1657 0.1784 0.1911 0.2039 0.2611
0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 −1.0000

 .

Since U is nonsingular, we can get all the partial derivatives
∂a/∂y1 . . . ∂a/∂y5
∂b/∂y1 . . . ∂b/∂y5
∂µ1/∂y1 . . . ∂µ1/∂y5
∂µ2/∂y1 . . . ∂µ2/∂y5
∂z/∂y1 . . . ∂z/∂y5

 = U−1S =


0.4235 0.4005 0.3775 0.3545 −0.5560
0.0000 0.0000 0.0000 0.0000 1.0000
0.0235 0.0005 −0.0225 −0.0455 0.0440
0.0000 0.0000 0.0000 0.0000 0.0000
0.0007 0.0001 −0.0006 −0.0013 0.0010

 .

From the numerical results, we can see that the sensitivities of µ1 with respect to all
the parameters are zero, this is because the corresponding inequality with respect to (3.1)
is inactive, the local changes in parameters can not influence it.
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3.2 Regular Degenerate Example

Considering the following nonlinear programming problem:

min
x1,x2

f(x) = a1x
2
1 + x2

2,

s.t. h(x) = x1x
2
2 − a2 = 0,

g(x) = −x1 + a3 ≤ 0.

Let λ and µ be the dual variables with respect to the equality constraint and the in-
equality constraints respectively. When a1 = a3 = 1, a2 = 2, the local optimal solution
is

x∗
1 = 1, x∗

2 =
√
2, λ∗ = −1, µ∗ = 0, z∗ = 3.

We can see that µ∗ = g(x∗, a) = −x∗
1 +a3 = 0, so it is a case of regular degenerate example.

If we want the inequality constraint remain active, from (2.10) we get

U1 =


2 2

√
2 0 0 −1

2 −2
√
2 2 −1 0

−2
√
2 0 2

√
2 0 0

2
√
2 0 0 0

1 0 0 0 0

 , S1 =


−1 0 0
−2 0 0
0 0 0
0 1 0
0 0 1

 ,

so we can get the corresponding sensitivities as follows:
∂x1/∂a1 ∂x1/∂a2 ∂x1/∂a3
∂x2/∂a1 ∂x2/∂a2 ∂x2/∂a3
∂λ/∂a1 ∂λ/∂a2 ∂λ/∂a3
∂µ/∂a1 ∂µ/∂a2 ∂µ/∂a3
∂z/∂a1 ∂z/∂a2 ∂z/∂a3

 = U−1S =


0 0 1.0000
0 0.3536 −0.7071
0 0 1.0000
2.0000 −1.0000 6.0000
1.0000 1.0000 0

 .

From the results, we can see that when the parameter a1 increases a unit, the variables
x1, x2, λ do not change, but the varibles µ, z will change 2.0000 and 1. When the parameter
a2 increases a unit, the variables x1, λ do not change, but the variables x2, µ, z will change
0.3536, 1,−1. When the parameter a3 increases a unit, the variables x1, x2, λ, µ will change
1,−0.7071, 1, 6, but the optimal value z will not change.

If we want the inequality constraint to become inactive, then

U1 =


2 2

√
2 0 0 −1

2 −2
√
2 2 −1 0

−2
√
2 0 2

√
2 0 0

2
√
2 0 0 0

0 0 0 1 0

 , S1 =


−1 0 0
−2 0 0
0 0 0
0 1 0
0 0 0

 ,

and we can get the corresponding sensitivities as follows.
∂x1/∂a1 ∂x1/∂a2 ∂x1/∂a3
∂x2/∂a1 ∂x2/∂a2 ∂x2/∂a3
∂λ/∂a1 ∂λ/∂a2 ∂λ/∂a3
∂µ/∂a1 ∂µ/∂a2 ∂µ/∂a3
∂z/∂a1 ∂z/∂a2 ∂z/∂a3

 = U−1
1 S1 =


−0.3333 0.1667 0
0.2357 0.2357 0
−0.3333 0.1667 0
0 0 0
1.0000 1.0000 0

 .

From the above results, we can see that when the parameter a1 increases a unit, the
variables x1, x2, λ, µ, z will change −0.3333, 0.2357,−0.3333, 0, 1; When the parameter a2
increases a unit, the variables x1, x2, λ, µ, z will change 0.1667, 0.2357, 0.1667, 0, 1; When the
parameter a3 increases a unit, the variables x1, x2, λ, µ, z do not change.
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4 Conclusion

Based on a semismooth NCP function, we transfer the KKT systems of a parametric opti-
mization problem which satisfies the linear independent constraint qualification(LICQ) into
a system of semismooth equation. Then we get a system of linear equation to calculate all
the sensitivities with respect to all the parameters simultaneously by using the semismooth
properties of the semismooth equations. Special attention is given to the case of regular
degenerate solution in which we can also get a linear equation to solve the local sensitivity
according the adjustment of the corresponding active inequalities. As a by-product of our
analysis, we obtain a sufficient condition for the existence of the sensitivity solution to the
problem we discussed. This new method is a development of the method presented in ref.[9].
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