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Theorem” ([7]). It states the following. Given some maximal face F of ∂Π, there is, for
each k ∈ K an index set J (k) ⊆ I and a corresponding subsimplex ∆(k)

J(k) of ∆(k) such that

F =
K∑

k=1

∆(k)

J(k) (1.2)

holds true. Furthermore, there is a set of coefficients (unique up to a positive multiple
constant) c? = (c?

k)k∈K such that F has the same normal as the convex hull of the “adjusted”

subfaces c?
k∆(k)

J(k) . In this context we prefer to also use the term “maximum” for the convex
hull referring to the partial ordering induced by inclusion on convex sets; hence this convex
hull is denoted by ∨

k∈K

c?
k∆(k)

J(k) .

The sets J (k) are called the reference sets, the collection J =
(
J (k)

)
k∈K

is the reference

system of F . The reference system defines F uniquely, the adjustment coefficients c?
k

are determined uniquely up to a positive multiple. The set

L := {l ∈ I l appears in at least two of the sets J (k)}
is called the adjustment set . It serves to determine the normal of F as follows. We write
L(k) := L ∩ J (k) and

L :=
{

(k, l) l ∈ L, J (k) 3 l
}

=
{

(k, l) l ∈ L(k)
}

(1.3)

and obtain the linear adjustment system which is the homogeneous linear system of
equations in variables (ck, λl), ((k, l) ∈ L), given by

cka
(k)
l = λl ((k, l) ∈ L). (1.4)

As shown in [7], this system (for fixed F ) has a unique solution (up to a positive constant)
(c?
•, λ

?
•), the first ingredients of which yield the adjustment coefficients. Moreover, the normal

n? of F is obtained by computing

a?
i := max

k∈K
c?
ka

(k)
i (i ∈ I) (1.5)

and

n? =
(

1
a?
1

, . . . ,
1
a?

n

)
. (1.6)

Finally, note that the linear functional x 7→ n?x attains its maximum restricted to Π(k) =
Πa(k)

exactly on ∆(k)

J(k) . “Adjustment” means that the maximal value of this functional

relative to c?
kΠ(k) (which is attained exactly on c?

k∆(k)

J(k)) equals some common value t? for
all k ∈ K – which is why n? is indeed the normal to

∨

k∈K

c?
k∆(k)

J(k)

as well as to F .
Within this paper we start out by introducing a notion of duality of cephoids. Based on

this we exhibit the bijection between reference vectors and maximal faces. Then we continue
to explore the structure of faces as well the one of cephoidal surfaces.
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Remark 1.1. Within the framework of Game Theory a cephoid may be seen as a certain
type of bargaining problem (a lottery between bargaining opportunities about money in
various currency domains), see Maschler--Perles [10], Pallaschke--Rosenmüller, [6],
Rosenmüller [12].

In theoretical economics a three-dimensional cephoid implicitly appears in the context
of “Ricardian” production and free trade, see the paper of McKenzie [4].

From the viewpoint of Optimization there is another, rather obvious interpretation of
cephoids. Suppose a hiker wanting to ascend a mountain wishes to limit the weight of his
rucksack to a unit (of 20 kg, say). He intends to pack various foods i = 1, . . . , n. The weight
per unit of food i is given by 1

ai
. Now, the hiker wants to obtain maximal nourishment from

what he carries and it is known that the nutritive quality of a unit of food i is given by ni.
Consider any plan x = (x1, . . . xn) ∈ Rn

+ of the hiker, implying that he takes the quantity
xi of food i. Then the weight to be attached to this collection of foods is

n∑

i=1

xi

ai

and must not exceed 1. Therefore, the hiker has to solve the LP suggested by

max

{
n∑

i=1

nixi x ∈ Rn
+,

n∑

i=1

xi

ai
≤ 1

}
= max

{
n∑

i=1

nixi x ∈ Πa

}
.

This kind of a simple LP is generally called a “rucksack problem”.
Now it may happen that there is a small elevator available at the mountain area. This

device is very sturdy, so the weight to be carried is not a restriction, at least as far as foods
are concerned. However, the volume to be transported is limited; for convenience assume
that the device carries a unit in volume maximally.

If food i yields a volume of 1
bi

per unit, then any plan y ∈ Rn of transporting a volume
of yi (i ∈ I) by the elevator results in a total volume of

n∑

i=1

yi

bi
,

hence maximal nourishment is obtained by solving the LP suggested by

max

{
n∑

i=1

niyi y ∈ Rn
+,

n∑

i=1

yi

bi
≤ 1

}
= max

{
n∑

i=1

niyi y ∈ Πb

}
.

Finally, a hiker having available both, his rucksack and the elevator, is obviously looking for

max

{
n∑

i=1

nixi x ∈ Rn
+, x = x′ + x′′ , x′ ∈ Πa ,x′′ ∈ Πb

}

which is

max

{
n∑

i=1

nixi x ∈ Πa + Πb

}
.

Therefore, a family a• of positive vectors generating the cephoid Π = Πa• =
∑K

k=1 Π(k)

together with a a linear functional x 7→ nx is obviously interpreted such that each Π(k)
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is representing a production process called “plant k”. All plants produce the same good
(“nourishment”). A unit of raw material or production factor i put into activity at plant k
requires an amount of 1

a
(k)
i

of the capacity of plant k. The plants can be operated indepen-

dently and the results can be added. Thus, maximizing the linear functional defined above
amounts to determining

max

{
n∑

i=1

nixi x ∈ Πa•
}

.

Clearly, we are now motivated to provide a description of the “outward” faces of Π, in
particular, the maximal faces, that is, those of dimension n− 1.

Let F be a maximal face with normal n?. Let c? denote the adjustment coefficients
which can be computed by means of the linear adjustment system. Consider the “global”
rucksack problem suggested by

max

{
n?x x ∈

∨

k∈K

c?
kΠ(k)

}
.

It will turn out (Section 2) that the optimal solutions of this problem are the ones of the
original “many plants” problem (suggested by the cephoid). The de Gua simplex

Π̂ :=
∨

k∈K

c?
kΠ(k)

represents the new “global” plant which is obtained via

a?
i = max

k∈K
cka

(i)
k ,

i.e., Π̂ = Πa?

. Thus, the capacities of this plant are defined by
1
a?

i

=
1

maxk∈K cka
(i)
k

= min
k∈K

1

cka
(i)
k

.

That is, we adjust the capacities of the various plants appropriately (in order to admit
comparison of productivity) and then take the minimal capacity in order to obtain the
global production process.

The optimal solutions are of the form c?
ka(k)i(ι ∈ J (k)). Finally, we obtain

max

{
n?x x ∈

∨

k∈K

c?
kΠ(k)

}
= n?c?

ka(k)i

= t?

= n?
i a

(k)
i c?

k

= n?
i ā

(i)
k c?

k

= n?
i ā

(i)kc?

= t?

= max

{
yc? y ∈

∨

i∈I

n?
i Π̄

(i)

}

(1.7)

which is the “duality theorem of cephoidal programming”.

The last paragraphs of this remark will become more obvious in the light of the duality
theory which is the topic of the next section.
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2 Duality

A cephoid is provided by a family of positive vectors or, equivalently, by a positive matrix
the rows of which represent the various de Gua simplexes. The dual cephoid, is provided by
the transposed matrix. Thus we have

Definition 2.1. Let a• =
(
a(k)

)
k∈K

be a family of positive vectors and Π = Πa• =∑
k∈K Πa(k)

be the cephoid generated. Put ā
(i)
k := a

(k)
i (i ∈ I, k ∈ K). We call the family

(
ā(i)

)
i∈I

(2.1)

the dual family and the cephoid

Π̄ = Πā• =
∑

i∈I

Πā(i)
(2.2)

the dual cephoid .

More detailed,
(
Π, Π̄

)
constitutes a dual pair. Yet, it is convenient to speak of the

“primal” and “dual” cephoid despite the fact that each is “the dual” of the other one. If the
“primal” family a• is regarded as a matrix , then the “dual” family is represented by the
transposed matrix (ā(i)

k )i∈I,k∈K . Throughout this presentation we assume nondegeneracy
for the primal and dual cephoid simultaneously, see Pallaschke--Rosenmüller [7].

Definition 2.2. Let F be a maximal face of Π and let J =
(
J (k)

)
k∈K

be the reference

system. Define, for i ∈ I

J̄
(i) :=

{
k ∈ K i ∈ J (k)

}
. (2.3)

Then we call
J =

(
J̄

(i)
)

i∈I
(2.4)

the dual reference system .

Clearly we have, for any k ∈ K

J (k) =
{

i ∈ I k ∈ J̄
(i)

}
, (2.5)

so (J, J) again constitute a dual pair. In fact, we may introduce the set

J := {(k, i) i ∈ J (k)} = {(i, k) k ∈ J̄
(i)} (2.6)

which yields both families simultaneously as cuts in coordinate directions. As a consequence,
we have

n + K − 1 =
∑

k∈K

|J (k)| = |J| =
∑

i∈I

|J̄ (i)| . (2.7)

Definition 2.3.

L̄ :=
{

k ∈ K k is in at least two different J̄
(i)

}

=
{

k ∈ K J (k) contains at least two different indices i
}

=
{

k ∈ K |J (k)| ≥ 2
}

(2.8)
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is the dual adjustment set . The analogous property of the primal adjustment set reads
now

L :=
{

i ∈ I i is in at least two of the J (k)
}

=
{

i ∈ I |J̄ (i)| ≥ 2
}

.
(2.9)

Recalling the notation

L :=
{

(k, l) l ∈ L, J (k) 3 l
}

=
{

(k, l) l ∈ L(k)
}

, (2.10)

we obtain the dual version

L :=
{

(i, s) s ∈ L̄, J̄
(i) 3 s

}
=

{
(i, s) s ∈ L̄

(i)
}

=
{

(i, s) i ∈ J (s), J (s) ≥ 2
}

.
(2.11)

Now we are in the position to formulate

Theorem 2.4. Let a• and its dual be in general position. Let F be a maximal face of Π
with reference system J. Let

(c?,λ?) = (c?
k, λ?

l )(k,l)∈L

be a solution of the linear adjustment system corresponding to F . Then

F̄ :=
∑

i∈I

∆̄(i)

J̄(i) . (2.12)

is a maximal face of Π̄ with adjustment set L̄ and normal c?.

Proof. 1stSTEP : Let n? denote the normal of F ; then we know that the function x 7→ n?x
attains its maximal value – say tk – relative to the simplex ∆(k) exactly on the subsimplex
∆(k)

J(k) . Moreover, the joint maximal value t? is attained on every c?
k∆(k)

J(k) (with a suitable
choice of c?

k, say c?
k = t?

tk
).

Consequently, we have

n?c?
ka(k)i

{
= t? ((k, i) ∈ J)
< t? ((k, i) /∈ J)

which can as well be written

n?
i a

(k)
i c?

k

{
= t? ((k, i) ∈ J)
< t? ((k, i) /∈ J) . (2.13)

Equivalently we have

c?
ka

(i)
k n?

i

{
= t? ((k, i) ∈ J)
< t? ((k, i) /∈ J)

which is also

c?
kn?

i ā
(i)k

{
= t? (k ∈ J̄

(i))
< t? (k /∈ J̄

(i)) .
(2.14)
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Now, equation (2.14) shows that, for each i ∈ I, the function y 7→ c?y attains its maximal
value t? relative to n?

i ∆
(i)

exactly on n?
i ∆

(i)

J̄(i) . Thus, c? is normal to

∆̂ :=
∨

i∈I

n?
i ∆

(i)
. (2.15)

2ndSTEP : Since J (k) 6= ∅ for all k ∈ K, there is, for any k ∈ K, some i ∈ I such that
i ∈ J (k) holds true. Therefore

⋃

i∈I

J̄
(i) =

⋃

i∈I

{
k ∈ K i ∈ J (k)

}
= K

Now, as ∆̂ is spanned by n?
i ∆

(i)

J̄(i) , we conclude that the dimension is dim ∆̂ = K−1, that is,

the simplex ∆̂ has maximal dimension. Moreover, we have for the dimension of the spanning
subsimplices

∑

i∈I

dim∆
(i)

J̄(i) =
∑

i∈I

(|J̄ (i)| − 1) = (
∑

i∈I

r̄i)− n = (n + K − 1)− n = K − 1 , (2.16)

where the second equation follows from |I| = n and the third one from equations (2.7).
Also, we have introduced r̄i := |J̄ (i)|.

3rdSTEP : The function y 7→ c?y takes its maximal value relative to ∆
(i)

exactly on
∆

(i)

J̄(i) ; this value is t?

n?
i

for i ∈ I. Therefore it is seen that

F̄ =
∑

i∈I

∆̄(i)

J̄(i) . (2.17)

as specified in (2.12) is a face of Π̄ with normal c?.

We show that |J̄ (i) ∩ J̄
(j)| ≤ 1 for all i 6= j. Assume that, on the contrary, we have

r, s ∈ J̄
(1) ∩ J̄

(2) for some r 6= s. In view of (2.13) we obtain the following equations:

n?
ra

(1)
r c?

1 = n?
sa

(1)
s c?

1

n?
ra

(2)
r c?

2 = n?
sa

(2)
s .c?

2

Dividing both equations we obtain

a
(1)
r c?

1

a
(2)
r c?

2

=
a
(1)
s c?

1

a
(2)
s c?

2

,

that is,
a
(1)
r

a
(2)
r

=
a
(1)
s

a
(2)
s

,

contradicting nondegeneracy.
Consequently, all subsimplices ∆

i

J̄(i) are located in pairwise orthogonal subspaces. This
implies

dim

(∑

i∈I

∆
(i)

J̄(i)

)
=

∑

i∈I

dim∆
(i)

J̄(i) = K − 1 , (2.18)

meaning that F̄ is indeed maximal.
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Remark 2.5. The set L̄ is the adjustment set for F̄ . We write L̄ := |L̄|. That is, whenever

s ∈ L̄, say s ∈ J̄
(i
′
) ∩ J̄

(i
′′

) for suitable i
′
, i
′′ ∈ I, then the vertex

n?
i′ ā

(i
′
)s = n?

i′′ ā
(i
′′

)s (2.19)

is common to the (“de Gua”) subsimplices n?
i′ Π̄

ā(i
′
)

J̄(i
′ ) and n?

i′′ Π̄
ā(i

′′
)

J̄(i
′′ ) . Now recall that, for

i ∈ I \ L, the set J̄
(i) consists of just one element. Therefore, using (2.7) and writing

r̄i := |J̄ (i)|, we obtain
∑

i∈L

r̄i =
∑

i∈I

r̄i −
∑

i∈I\L
r̄i =

∑

i∈I

r̄i −
∑

i∈I,r̄i=1

r̄i

= (n + K − 1)− (n− L) = K + L− 1
(2.20)

or ∑

i∈L

|J̄ (i)| = K + L− 1 =
∑

k∈K

|L(k)|, (2.21)

the last equation is derived from [7], Section 3, (3.11).
The analogue equation connecting the primal reference sets with the dual adjustment

sets in size is based in the definition L̄
(i) := L̄ ∩ J̄

(i) (i ∈ I) and reads
∑

k∈L̄

|J (k)| = n + L̄− 1 =
∑

i∈I

|L̄(i)|. (2.22)

Remark 2.6. Recall that the linear adjustment system with respect to the face F is given
by

cka
(k)
l = λl ((k, l) ∈ L). (2.23)

Clearly, the dual linear adjustment system is the linear system of equations in variables
(n•, µ•)

a(i)
s ni = µs ((i, s) ∈ L). (2.24)

As in the primal case, every solution n? induces the normal of the dual face. Indeed, define

a?
k := max

i∈I
n?ā(i)k = max

i∈I
n?

ka
(i)
k , (2.25)

then the vector ā? defines the simplex ∆̂ , i.e., ∆̂ = ∆ā?

and hence

c?
k =

1
a?

k

(k ∈ K) (2.26)

defines the normal c? to the dual face F̄ . This way we see that the adjustment coefficients
of the primal face constitute the normal of the dual face and vice versa. In particular, the
system (2.24) directly serves to compute the normal of the face. Using only primal terms,
we write this system

a
(s)
i ni = µs

(
(i, s) ∈ I ×K, i ∈ J (s), J (s) ≥ 2

)
(2.27)

Corollary 2.7. Let (Π, Π̄) be a dual pair. Let F and F̃ be adjacent maximal faces of Π.
Then the dual faces F̄ and ¯̃

F are adjacent.
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Proof. Let J =
(
J (k)

)
k∈K

and J̃ =
(
J (k)

)
k∈K

be the reference systems to F and F̃

respectively. By the Neighborhood Theorem (Theorem 3.3. of [7]) there are indices k0, l0 ∈
K as well as p, q ∈ I such that p /∈ J (k0), q ∈ J̃

(k0)

J̃
(k0)

= J (k0) ∪ {p} , J̃
(l0)

= J (l0) \ {q} (2.28)

while for all indices k ∈ K, k 6= k0, l0 the reference sets J (k) and J̃
(k)

coincide. Inspection
of Definition 2.2 shows that

˜̄J
(p)

= J̄
(p) ∪ {k0} , ˜̄J

(q)
= J̄

(q) \ {l0} (2.29)

while for all i 6= p, q the reference sets J̄
(i) and ¯̃

J
(i)

coincide. From this it follows that F̄

and ¯̃
F are adjacent.

Note, however, that the partial ordering of all faces of ∂Π is not preserved during the
transition to the dual. The following example enlightens vividly the relevant aspects.

Example 2.8. Consider in particular the case that K = 2, i.e., K = {1, 2}, thus we have
Π = Πa +Πb. It is known (Theorem 4.1. of [7]) that the cephoidal surface ∂Π is completely
described by a permutation or ordering ≺ such that all maximal faces are of the shape

F≺i0 = ∆a
{i|i¹i0} + ∆b

{i|i0¹i}.

The reference system for F≺i0 is thus
{

J (1),J (2)
}

= {{i|i ¹ i0}, {i|i0 ¹ i}} .

Consequently, we find for the corresponding dual reference system

J̄
(i) = {k ∈ K i ∈ J (k)} (2.30)

the following: whenever i ≺ i0, then obviously

J̄
(i) = {1}, (2.31)

and whenever i0 ≺ i, then
J̄

(i) = {2} (2.32)

holds true. For i = i0 we obtain
J̄

(i) = {1, 2} (2.33)

so that the dual face to F≺i0 is

F̄
≺i0 =

∑

i≺i0

ā(1)i + ∆(i0)
{1,2} +

∑

i0≺i

ā(2)i . (2.34)

Thus, the Pareto or cephoidal surface of Π̄ is a linear curve with line segments being the
translates of the various ∆(i0)

{1,2}. If i0 is the first w.r.t. ≺, then the face

F̄
≺i0 = ∆(i0)

{1,2} +
∑

i 6=i0

ā(2)i .
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Figure 1: The sum of two de Gua simplexes for n = 4

is the “uppermost” line segment, i.e., the first in the ordering induced by the slope when we
begin with the smallest slope (in absolute value). Thus, it is seen that ≺ represents as well
the ordering of the line segments within the cephoidal surface of the dual cephoid.

In particular, consider Example 4.4. of [7] which treats a case with n = 4. A sketch of
the canonical representation is provided by Figure 1. Assuming that the translate of ∆a

occupies the first vertex of the sum (i.e., 2e1), and the translate of ∆b the second one, the
left hand version of Figure 1 corresponds to the ordering ≺ = (2341). The 3-dimensional
faces are given by

F≺2 = ∆a
2 + ∆b

2341

F≺3 = ∆a
23 + ∆b

341

F≺4 = ∆a
234 + ∆b

41

F≺1 = ∆a
2341 + ∆b

1 .

(2.35)

The ordering ≺ represents the neighborhood structure of the four faces simultaneously
indicating the unique extremal vector ci = ai + bi assigned to a face. If we start with F≺2

containing c2, then the unique neighbor is F≺3 containing c3 etc.. Thus, while running
through the extremals ci according to ≺ one also passes from one face to its neighbor.

The same situation occurs with respect to the dual cephoid Π̄. The dual face to F≺2

i.e., generated by the reference system J = {{2}, {2341}} is F̄
≺2 which is given by

J = {{2}, {12}, {2}, {2}}
i.e.,

F̄
≺2 = ∆(1)

{2} + ∆(2)
{12}+ ∆(3)

{2} + ∆(4)
{2}

this is a translate of ∆̄(2)
{12} by means of a(1)2 + a(3)2 + a(4)2. Similarly,

F̄
≺3 = ∆(1)

{2} + ∆(2)
{1} + ∆(3)

{12} + ∆(4)
{2}

is a translate of +∆(3)
{12}. The further two dual faces are.

F̄
≺4 = ∆(1)

{2} + ∆(2)
{1} + ∆(3)

{1} + ∆(4)
{12}
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and

F̄
≺1 = ∆(1)

{12} + ∆(2)
{1} + ∆(3)

{1} + ∆(4)
{1} .

The cephoidal surface ∂Π̄ is sketched together with its canonical representation in Figure 2.
When we start in the uppermost face and run through the faces according to ≺, then we

Figure 2: The dual surface and its canonical representation

pass all faces in downwards direction.

Example 2.9. Next we discuss an example with n = 4,K = 3 named “The Marriage of a
Windmill and a Circle”. The canonical representation is given by Figure 3. We use a, b, c
for the primal family assuming that ∆(a) corresponds to “blue”, ∆(b) corresponds to “red”,
and ∆(c) corresponds to “green”.

The maximal faces as indicated are defined by the following reference sets:

Figure 3: The Marriage of a windmill and a circle
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Name J (a) J (b) J (c)

∆(a) {1234} {2} {1}
Γ(a)(c) {234} {2} {12}
Γ(a)(b) {134} {23} {1}

∆(b) {4} {1234} {1}
Γ(b)(c) {4} {234} {14}
Γ(b)(a) {14} {123} {1}

∆(c) {3} {3} {1234}
Γ(c)(b) {3} {23} {124}
Γ(c)(a) {34} {2} {124}

B(a)(b)(c) {34} {23} {14}

(2.36)

The dual cephoid is the sum of 4 de Gua simplexes in 3 dimensions, we denote the dual
family by ā(1). The canonical representation is given by the following sketch.

Figure 4: The Dual Marriage

The maximal faces are listed in the same order as its primal counterparts and indicated
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accordingly. We obtain the following list.

Name J
(1)

J
(2)

J
(3)

J
(4)

∆̄(a) {13} {12} {1} {1}
Γ̄(a)(c) {3} {123} {1} {1}
Γ̄(a)(b) {13} {2} {12} {1}

∆̄(b) {23} {2} {2} {12}
Γ̄(b)(c) {3} {2} {2} {123}
Γ̄(b)(a) {123} {2} {2} {1}

∆̄(c) {3} {3} {123} {3}
Γ̄(c)(b) {3} {23} {12} {3}
Γ̄(c)(a) {3} {23} {1} {13}

B̄(a)(b)(c) {3} {2} {12} {13}

(2.37)

3 The Reference Vector

Given a maximal face

F =
K∑

k=1

∆(k)

J(k)

of a cephoid Π, we write rk := |J (k)| (k ∈ K) and call r = (r1, . . . , rK) the reference
vector of F . We are going to show that the reference vector uniquely defines the face. To
this end, we list the main properties of such a vector.

Definition 3.1. Let n,K ∈ N. A vector of positive integers r = (r1, . . . , rK) ∈ NK
0 is said

to be a (K, n)–reference code if

rk ≤ n (k ∈ K) (3.1)

and
K∑

κ=1

rk ≤ K + n− 1 . (3.2)

A reference code r is maximal if an equation holds true in (3.2).

Clearly, a reference vector of a maximal face is a maximal reference code.

Theorem 3.2. Let a• =
{
a(k)

}
k∈K

be a nondegenerate family of positive vectors in Rn.
Then, for every maximal (K, n)–reference code r there exists a unique maximal face F of
Π =

∑
k∈K Π(k) with reference system

{
J (k)

}
k∈K

(3.3)
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with
|J (k)| = rk (k ∈ K) , (3.4)

i.e., r is the reference vector of F .

Proof. 1stSTEP : For n = 2 the Theorem is obvious. For K = 2 the Theorem follows from
Theorem 4.1 of [7]. Of course, the case K = 2 follows as well by duality as explained in the
previous section.

Now we proceed by induction.
2ndSTEP : Within this step we show that any two maximal faces necessarily have

different reference vectors.
First of all assume K ≤ n− 1. Let F be a maximal face and let

F =
K∑

k=1

∆(k)

J(k)

be the representation via the reference system. Also, let L be the set of adjustment indices.
As |L| = L ≤ K − 1 ≤ n− 2 (Theorem 3.1, (ii),(a) of [7]) there are at least two indices, say
1 and n, that do not belong to L. As a consequence F |RI−1 and F |RI−n

are maximal faces
of the families a•|RI−1 and a•|RI−n

respectively. The reference vectors of these faces are
reference codes of the form (r1, . . . , rκ− 1, . . . , rK) and (r1, . . . , rl− 1, . . . , rK) with suitable
κ, l ∈ K. By induction, these reference codes uniquely determine the reference systems

{
J (k) \ {1}

}
k∈K

,
{

J (k) \ {n}
}

k∈K

of two faces of the restrictions of Π to RI−1 and RI−n respectively. Hence the reference
system {

J (k)
}

k∈K

of F is uniquely determined by r. This shows, that there is at most one face corresponding
to a reference code, provided K ≤ n− 1 holds true.

But for K ≥ n we know that every maximal face is the sum of at most n− 1 subfaces of
the ∆(k) plus a number of vertices from the remaining ones. In other words, every face is
r–full for some r ≤ n − 1 (see [7]) By the above argument, with respect to the n − 1 faces
that yield reference sets of size at least 2, these reference sets are uniquely defined. The
remaining vertices, however, are uniquely defined as well.

Thus, a reference code defines a face uniquely, if at all.
3rdSTEP :
On the other hand, given a family a• and the cephoid Π generated, let F(K, n) be the set

of maximal faces of Π. Let Π|−n be the cephoid generated by the family a|RI−n
of vectors

projected onto RI−n and let F(K, n− 1) denote the family of its maximal faces.
Similarly, let Π(−K) =

∑K−1
k=1 Π(k) be the sum of the first K − 1 de Gua simplexes and

let F(K−1, n) denote the system of maximal faces of this cephoid. The induction hypothesis
applies to both cephoids constructed.

Now, let F ∈ F(K, n) and let r be its reference vector. First of all, assume that rK = 1
is the case, that is, F consists of a face F (−K) of Π(−K) plus a vertex of ∆(K). By induction,
the face F (−K) is uniquely defined by (r1, . . . , rK−1) By nondegeneracy the remaining vertex
of ∆(K) is uniquely defined as well. On the other hand, every face Π(−K) together with a
suitable and unique vertex of ∆(K) yields a face in F(K − 1, n). Thus, F(K − 1, n) and the
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set
{

F ∈ F(K, n) rK = |J (K)| = 1
}

are bijectively mapped into each other in a canonical
way.

4thSTEP :
Next, let F ∈ F(K, n) be such that rK = |J (K)| ≥ 2 is true. By induction, there is

a unique maximal face, say F ? ∈ F(K, n − 1) of Π|RI−n that corresponds to the reference
vector (r1, . . . , rK−1). By the first step, we conclude that

{
F(K, n) |J (K)| ≥ 2

}
≤ |F(K, n− 1)| (3.5)

holds true. But by Proposition 6.10 of [7] we know that

F(K, n) = F(K − 1, n) + F(K, n− 1).

Then, necessarily, equation prevails in formula (3.5) and hence there is indeed for every
maximal code r a maximal face that has r as its reference vector.

Corollary 3.3. Let a• =
{
a(k)

}
k∈K

be a nondegenerate family of positive vectors in Rn.
Then, for every k ∈ K and every i ∈ I there is a bijection P(i) which maps

{
F ∈ F(K, n) |J (k)| = 2

}

on
F(−i)(K,n− 1) :=

{
F F is a maximal face of a•|RI\{−i}

}

This bijection is obtained by associating with any maximal face F with reference code r, rk ≥
2, the maximal face on ∂Π(−i) := ∂Π RI\{i} defined via r − ek.

Corollary 3.4. Let Π =
∑

k∈K Π(k) be a nondegenerate cephoid. There is a bijection of
F := {F |F is a maximal face of Π} onto the set of maximal (K, n)–reference codes.

4 The Reference Graph

Within the previous sections we discussed necessary conditions for a maximal face, i.e.,
properties of the reference system, the adjustment set, and the normal determined by the
corresponding linear adjustment system.

Now we want to consider sufficient conditions. Let

Π = Πa• =

K∑

k=1

Π(k)

be a cephoid generated by a family a• =
(
a(k)

)
k∈K

. We use ∆(k) = ∆a(k)
, Π(k) = Πa(k)

etc.
(k ∈ K). Given a family of subsets of I, say

J =
(
J (k)

)
k∈K

,

we may assign to every index set J (k) the simplex

∆(k)

J(k) = conv
({

a(k),l
}

l∈J(k)

)
⊆ ∆(k).
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We will exhibit conditions for J such

F =
∑

k∈K

∆(k)

J(k) (4.1)

is a maximal face of Π. To this end we will discuss some obvious requirements a system of
index sets J has to satisfy in order to be a candidate for a reference system to a maximal
face.

Definition 4.1. Let
J =

(
J (k)

)
k∈K

be a family of subsets of I. J is called an admissible system if the following conditions
are satisfied:

1.
⋃

k∈K

J (k) = I

2.
∑

k∈K

|J (k)| =
∑

k∈K

jk = K + n− 1 .

3. For any two different indices k, l ∈ K the sets J (k) and J (l) contain at most one
common index.

4. For every index k ∈ K there exists an index k′ ∈ K with k 6= k′ and
(
J (k) ∩ J (k′)

)
=

1.

Thus, the reference system of a face of a cephoid is clearly admissible.
For every admissible system J we denote by L ⊆ I the set of indices that appear in

at least two of the members J (k) of the family. L is called the set of critical indices
(corresponding to J). Accordingly,

Lk := L ∩ J (k) (4.2)

defines the critical system

L =
(
L(k)

)
k∈K

. (4.3)

The critical system obviously inherits the defining properties from its parental admissible
system, i.e., we have:

1.
⋃

k∈K

L(k) = L

2. For any two different indices k, k′ ∈ K the sets L(k) and L(k′) contain at most one
common index.

3. For every index k ∈ K there exists an index k′ ∈ K with k 6= k′ and
(
L(k) ∩L(k′)

)
=

1.

We use this as a motivation for the following
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Definition 4.2. Let L ⊆ I and let

L =
(
L(k)

)
k∈K

.

be a system of subsets of L. We say that L is L–admissible if the conditions 1., 2., and 3.
are satisfied.

Thus, the critical system of an admissible set is L–admissible with respect to the set L
of critical indices.

We wish to associate a graph to an admissible L–system as follows.

Definition 4.3. The (undirected) associated graph generated by an admissible L–system
L is the pair

(L,E) (4.4)

given as follows. The nodes of the graph are the elements of the family L. An edge or arc
of the graph is a pair E = (Lk,Lk′) such that Lk ∩Lk′ 6= ∅ holds true. Colloquially we say
that Lk and Lk′ are connected if E = (Lk,Lk′) is an edge.

As graph as defined above may have cycles, i.e., in our case a sequence of nodes L(k1),
L(k2), . . ., L(kT ) such that , for any t ∈ {1, . . . , T − 1} the nodes L(kt) and L(kt+1) are
connected and L(k1) = L(kT ) is the case. We call a cycle proper if the same index l ∈ L is
involved in each edge, i.e., if

L(kt) ∩L(kt+1) = {l} (4.5)

holds true for some l ∈ L and all t ∈ {1, . . . , T − 1}. Otherwise we call the cycle improper .

Definition 4.4. An L–admissible family of index sets

L =
(
L(k)

)
k∈K

is called a pre–adjustment system if the following conditions are satisfied:

1. L := |L| ≤ K − 1 holds true.

2.
∑

k∈K

|L(k)| =:
∑

k∈K

Lk = K + L− 1 .

3. There are at least two indices k∗, k◦ such that |Lk∗ | = |Lk◦ | = 1 holds true. That is,
the associated graph has at least two boundary nodes.

4. The associated graph (L,E) is connected.

5. The associated graph (L,E) has no improper cycles.

An admissible family of index sets

J =
(
J (k)

)
k∈K

is called a pre–reference system if the critical set L induces a critical system L that is a
pre–adjustment system. The corresponding linear pre–adjustment system is the linear
system of equations formed in analogy to (1.4) of section 1.
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A reference system resulting from a maximal face has the properties listed above. Indeed,
a reference system induces a set L of adjustment indices as well as an adjustment system
which is L–admissible. The associated graph is called the adjustment graph . Now we
have

Lemma 4.5. Let F be a maximal face of a cephoid Π = Πa• . Then the adjustment graph
has no improper cycles.

Proof. If the graph has an improper cycle, then the linear adjustment system admits of the
trivial solution only. More precisely, let (w.l.o.g)

L(1),L(2), . . .L(κ),L(1)

constitute an improper cycle. Then we find indices l1, l2, . . . , lκ such that

l1 ∈ L(1) ∩L(2), l2 ∈ L(2) ∩L(3), . . . , lκ ∈ L(κ) ∩L(1)

holds true. Consider the following subsystem of the linear adjustment system, given by

c1a
(1)
l1

= λl1

c2a
(2)
l1

= λl1

c2a
(2)
l2

= λl2

. . . . . . . . .

cκa
(κ)
lκ−1

= λlκ−1

cκa
(κ)
lκ

= λlκ

cκa
(1)
lκ

= λlκ .

(4.6)

This is a system with 2κ variables and 2κ equations. If we write aik := a
(k)
li

just for the
moment, the coefficient matrix is

1 κ κ + 1 2κ


a11 : 1
a21 : 1
a22 : 1

a23 : 1
. . . : . . .
. . . : . . .

aκκ−1 : 1
aκκ : 1

a1κ : 1




.
(4.7)

We claim that the matrix (4.7) has full rank. To see this, subtract an a1κ–multiple of the
last column from the first column and, thereafter, omit the last column and the last row.
Next, add an a1κ

aκκ
–multiple of column κ to column 1. Then, the last row contains the entry
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aκκ only. Hence (4.7) has full rank if and only if the following matrix (4.8)

1 κ− 1 κ 2(κ− 1)


a11 : 1
a21 : 1
a22 : 1

a23 : 1
. . . : . . .
. . . : . . .

aκ−1κ−2 : 1
aκ−1κ−1 : 1

a1κaκκ−1
aκκ

: 1




(4.8)

has full rank. By induction, we see that (4.7) has full rank indeed.

Lemma 4.6. Let F be a maximal face of a cephoid Π = Πa• . Then the adjustment graph
is connected.

Proof. The proof runs quite analogously to the one of the previous Lemma 4.5. If the
adjustment graph can be decomposed into two disjoint graphs, the each part admits of an
independent solution of the linear adjustment system. Hence the solutions span a linear
space of dimension at least two – in which case the normal is not uniquely defined up to a
constant. A precise version is found in Theorem 2.4. of [5].

Lemma 4.7. Let F be a maximal face of a cephoid Π = Πa• . Then the adjustment graph
has at least two boundary nodes.

The proof is obvious because the adjustment graph has no improper cycles.

Corollary 4.8. Let a• be a family of positive vectors. Let F be a maximal face of the
corresponding cephoid Π. Then the reference system defining F is a pre–reference system.
The adjustment system is a pre–adjustment system.

Clearly, to any pre–adjustment system that arises from a pre–reference system we may
associate the polyhedron

F L :=
∑

k∈K

∆(k)

L(k) . (4.9)

Now we have

Theorem 4.9. Let JF =
(
J (k)

)
k∈K

be a family of subsets of I. Then

F =
∑

k∈K

∆(k)

J(k) (4.10)

is a maximal face of Π if and only if the following holds true.

1. J is a pre–adjustment system.

2. The solution (c?, λ?) to the linear pre–adjustment system of equations satisfies

c?
ka

(k)
l = λ?

l ((k, l) ∈ L)

≥ c?
k′a

(k′)
l ((k, l) /∈ L).

(4.11)
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Proof. The inequalities in item 2 ensure that the vector n? =
(

1
a?
1
, . . . , 1

a?
n

)
constructed

via
a?

i := max
k∈K

c?
ka

(k)
i (i ∈ I) (4.12)

constitutes a linear function that achieves its maximum relative to ∆(k) exactly on ∆(k)

J(k) ,
thus is a normal to Π and, clearly, the normal to F . Because of item 2 of Definition 4.1,
the dimension of F is at most n− 1. Because of items 4 and 5 of Definition 4.4 the normal
to F is uniquely defined, hence F has exactly dimension n− 1.

On the other hand, if F is a maximal face, then the representation by (4.10) is unique
and J is the reference system of F . Then J is a fortiory a pre–adjustment system and the
inequalities in item 2 result from (1.4) and (1.5).

5 Adjacent Faces: The Normal Cone

The Neighborhood Theorem (Theorem 3.3. of [7]) describes the shape of the (n − 2)–
dimensional subface that is the intersection of two adjacent faces. Based on the duality
theory we formulate a generalization. Thereafter we discuss some properties of the normal
cone of the (n− 2)–dimensional intersection of two adjacent maximal faces.

Theorem 5.1. Let Π be a cephoid and let F , F̃ be adjacent maximal faces (i.e., with (n−2)–
dimensional intersection) with reference systems J and J̃. Then there exist indices p, q ∈ K,
p 6= q, and i0, i1 ∈ I, i0 6= i1, with i0 ∈ L, i1 ∈ L̃, such that the following holds:

J (k) = J̃
(k)

(k 6= p, q)

J (p) = J̃
(p) ∪ {i0}

J̃
(q)

= J (q) ∪ {i1}

(5.1)

Proof. 1stSTEP : As F and F̃ are neighbors, the intersection is a face

F ∩ F̃ =
∑

k∈K

∆(k)

J(k)∩eJ(k) (5.2)

with dimension n− 2, hence
∑

k∈K

J (k) ∩ J̃
(k)

= n− 2 + K .

As the corresponding sums for the two faces yield n − 1 + K we must necessarily find p, q
such that

J (p) =
(

J (p) ∩ J̃
(p)

)
∪ {i0} = J̃

(p) ∪ {i0}

J̃
(q)

=
(

J (q) ∩ J̃
(q)

)
∪ {i1} = J (q) ∪ {i1}

(5.3)

say,

J (p) J̃
(q)

1 2 . . . t i0 s . . . r
1 2 . . . t s . . . r i1.

(5.4)
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2ndSTEP : Now p = q is not possible as we would have |J (p)| = |J̃ (p)|. This would
imply equal reference vectors for both faces, hence they would coincide. So we know p 6= q.

3rdSTEP : Now assume that i0 /∈ L and i1 /∈ L̃ is the case. Then we have L = L̃. As
the system L determines F uniquely, it would follow that F = F̃ holds true. On the other
hand, assume e.g. i0 ∈ L, i1 /∈ L̃. Then we have L̃ ⊆ L. Now the linear adjustment system
of equations is again uniquely attached to L. It follows that all equations corresponding to
L̃ appear in the system attached to L as well. But both system must have maximal rank,
i.e., generate a solution space of dimension 1. Evidently, the two systems have the same
solution space, in which case the normals coincide. Hence again we would find F = F̃ ,
which cannot happen. Hence i0 ∈ L, i1 ∈ L̃ is true indeed.

Finally we check i0 6= i1. Consider the reference system of the dual faces, i.e.,

J̄
(i) = {k ∈ K|i ∈ J (k)} .

Clearly we have

J̄
(i) = J̃

(i)

(i 6= i0, i1)

J̄
(i0) = J̃

(i1) ∪ {p}

J̃
(i1)

= J
(i0) ∪ {q}.

(5.5)

Therefore we may repeat the argument of the 2ndSTEP : if i0 = ι̃0, then the reference vector
of the dual faces F and F̃ would coincide, which is not possible.

Obviously formula (5.5) is similar (and in some sense “dual”) to formula (5.1). For
completeness it is useful to state the consequences.

Theorem 5.2. Let Π be a cephoid and let F , F̃ be adjacent maximal faces with reference
systems J and J̃. Then the dual faces are adjacent as well. With the notation in Theorem
5.1, the reference system of the dual faces is given by (5.5).

Corollary 5.3. Let Π be a cephoid and let F , F̃ be adjacent maximal faces (i.e., with
(n−2)–dimensional intersection) with reference systems J and J̃. Let i0, i1 and p, q be given
by Theorem 5.1. Let L̄ = {(i, s) ∈ I ×K, i ∈ Ks, |Ks| ≥ 2}. Then the normal cone to the
intersection

F ? = F ∩ F̃

spans the two–dimensional subspace of Rn obtained by the projection of the solutions of

ā(i)
s ni = µs ((i, s) ∈ L̄, (i, s) 6= (i0, p)) if |J (p)| ≥ 3, (5.6)

or
ā(i)

s ni = µs ((i, s) ∈ L̄ , (i, s) 6= (i0, p), (i5, p)) if |J (p)| = {i0, i5}. (5.7)

The proof is obvious in view of Remark 2.6. Note that with respect to the equations
(2.24), for |J (p)| = 2 one has to cancel two equations and the variable µp, while otherwise
one has just to cancel one equation.

Corollary 5.4. If |J (p)| = 2, and J (p) = {i0, i9}, then either i9 ∈ L or i9 = i1.
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For, i9 has to appear in some J̃
(s)

with |J̃ (s)| ≥ 2.
Let Π(−i0) denote the intersection of Π with the subspace RI\{i0} of Rn. Also, write

∂Π(−i) = ∂Π RI\{i} . Now Π(−i0) is not a maximal face in the outer surface of Π but –
viewed in Rn – it can be seen as a maximal face of Π. Thus, the following corollary can be
seen as the appropriate version of Corollary 5.3 for faces F that are adjacent to Π(−i0).

Corollary 5.5. Let F be a maximal face of a cephoid Π with reference system J and normal
n. For some p ∈ K, let |J (p)| ≥ 2 and let i0 ∈ J (p), i0 /∈ L. Define

F ? :=
∑

k∈K−p

∆(k)

J(k) + ∆(p)

J(p)\{i0}. (5.8)

Then F ? = F ∩Π(−i0) ⊆ ∂Π(−i0) is an (n− 2) dimensional subface of ∂Π and the second
extremal to the normal cone of F ? is n? = n− ni0e

i0 .

Proof. The dimension of F is obviously (n− 1) and vectors on F have zeros at coordinate
i0. F ? ⊆ F is also obvious. Thus we have to specify the normal cone. However, the normal
cone of Π(−i0) (viewed in Rn) is spanned by ei0 hence the one of F ? is spanned by n and
ei0 or equivalently by n and n?.

Note that n? obeys the equations of Corollary 5.3 suitably modified for F ? if one is
willing to see Π(−i0) as a face adjacent to F and ∂Π(−i0) as the intersection of both faces.

Theorem 5.6. Let F be a maximal face of a cephoid Π with reference system J. For some
p ∈ K, let |J (p)| ≥ 2 and let i0 ∈ J (p) ∩L. Let

F ? :=
∑

k∈K−p

∆(k)

J(k) + ∆(p)

J(p)\{i0}. (5.9)

Then there is some maximal face F̃ of Π such that

F ? = F ∩ F̃ .

Proof. The normal cone to F ? is described by Corollary 5.3. Let ñ be a further extremal
of this cone. By the nondegeneracy assumption, this extremal can either have exactly one
zero coordinate ñi (in which case F ? is located in the corresponding ∂Π(−i)), or else it is
positive. In the latter case of positvity the theorem is verified.

Now let us assume that one of the components of ñ is zero. In this case, whenever s 6= p
and |J (s)| ≥ 2, then µ̃s > 0, for otherwise the equation

ā(i)
s ñi = µ̃s (i ∈ J (s)) , (5.10)

would result in two zero coordinates of ñ at least. If |J (p)| ≥ 3, then the same argument
holds true for p: we would have at least two equations of the type (5.10), namely for

i ∈ J̃
(p)

= {i ∈ J (p), i 6= i0}. Therefore, it remains to study the case suggested by
equations (5.7), where i5 is the second index in J (p). Now, if for the first index we have
ñi0 = 0, then F ? would be located in ∂Π(−i0), contradicting the fact that i0 ∈ L and
nondegeneracy. If, on the other hand ñi5 = 0 holds true, then it is seen at once that ñ
satisfies the equations of Corollary 5.3 with respect to

F ?? :=
∑

k∈K−p

∆(k)

J(k) + ∆(p)

J(p)\{i5},
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which again contradicts nondegeneracy. This implies that ñ is indeed positive and hence
the normal of an adjacent maximal face F̃ . Since J (p) ∩L 6= ∅ and ñ belongs to the normal
cone to F ? this implies that F ? = F ∩ F̃ , which completes the proof.

Theorem 5.7. Let r be a reference vector and let F be the unique corresponding face. Then,
for every k ∈ K with rk ≥ 2, there exists uniquely some k̃ ∈ K, k̃ 6= k, such that the face
F̃ corresponding to r̃ := r + e

ek − ek is adjacent to F .

Proof. We know that J (k) ∩ L 6= ∅ for every k ∈ K. Hence, whenever |J (k)| ≥ 2, we can
pick some i0 ∈ J (k) that satisfies the conditions of Theorem 5.6. Applying Theorem 5.6 we
find at once that the reference vector of the adjacent face F̃ has the required property.

6 Generalized Tentacles

Within this section we describe the generalized version of the tentacle system (see Corollary
4.5 of [7]). The tentacle system exhibited in [7] refers to the de Gua simplexes involved in
the construction of a cephoid. For each such de Gua simplex a translate of its outer face
appears on the Pareto surface ∂Π. This translate is the center of a system of “arms” or
“tentacles” connecting it with each boundary ∂Π(−i) = ∂Π RI\{i} via a system of cylinders.
This structure gave rise to the name “Cephoid” as explained in the introductory remarks of
it Section 1 of [7].

Now we shall show that every maximal face F generates a tentacle system. By this we
mean a well defined system of maximal faces connected by the adjacency relation. Again
we observe that each of the (n− 1) subfaces of F gives rise to a “tentacle”, i.e., a sequence
of faces connecting F to a well defined boundary ∂Π(−i).

We fix some maximal face F identified by its reference vector r. Also, we fix some
element of K := {1, . . . , K}, which, w.o.l.g. is the final element K ∈ K and assume that
rK ≥ 2. Accordingly we fix the corresponding member of the family a•, say a(K). Of course
any other element of K could play the role of K.

Definition 6.1. Let a• be a nondegenerate family of positive vectors, let F be a maximal
face of Π and r the corresponding reference vector. Let rK ≥ 2.

1. The reference vectors
r − eK + ek (k ∈ K) (6.1)

are called the tentacle–codes or T–codes of F .

2. The corresponding maximal faces F−K,+k are called the (tentacle–faces or) T–faces
of F .

3. The n − 2 dimensional face of ∂Π(−i) := ∂Π RI\{i} corresponding to the reference
vector r − eK is denoted by Pi(F ).

4. An n− 2–dimensional subface F 0 of a T –face with reference vector r− eK is called a
cylinder basis.

Our aim is to show that the family of T–faces constitute a simple connected graph
without circles, that is a tree .The root is F . The terminal nodes of this tree are located
exactly on the (n− 2)–dimensional boundary faces of ∂Π.
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Lemma 6.2. There are K different T–faces including F = F−K,+K . For any i ∈ I, ∂Π(−i)

is the outer surface of the cephoid generated by a• I−i and there exists a T–face F̂ of Π
such that F̂ ∩ R(I\{i}) ⊆ ∂Π(−i) is a cylinderbasis.

Proof. The first statement is obvious by Theorem 3.2. The second one follows from the
Coincidence Theorem (Theorem 3.1. of [7]), item 2 (d) and by Corollary 3.3 as Pi(F ) is the
desired cylinderbasis on the boundary ∂Π(−i).

Lemma 6.3. Let F−K,+l be a T–face. Then the number of (n−2)–dimensional subfaces of
F−K,+l that are cylinder bases is at least 2. More precisely, the number of such subfaces is

rK ≥ 2 , for l = K, i.e., for F = F−K,+K

rl + 1 ≥ 2 , for l 6= K
(6.2)

Proof. Consider the case l 6= K. Let
{

Ĵ
(k)

}

k∈K

denote the reference system of F−K,+l.

Then |Ĵ (l)| = rl + 1 ≥ 2 holds true. For every i0 ∈ Ĵ
(l)

the system
{

Ĵ
(k)

}

k∈K−l

, Ĵ
(l) − i0 (6.3)

constitutes a reference system defining an (n − 2)–dimensional subface of F−K,+l which
obviously is a cylinder basis.

Lemma 6.4. Let F−K,+l be a T–face and let F̂
0

be an (n− 2)–dimensional subface that is
a cylinder basis. If ι0 ∈ I is not an adjustment index in the reference system of F−K,+l and
ι0 does not appear in the reference system of F̂

0
(cf. formula (6.3)), then F̂

0 ⊆ ∂Π(−i0),

i.e., F̂
0

= Pi0(F ) is the image of F in ∂Π(−i0) under the bijective mapping established in
Corollary 3.3.

Proof. If an index i0 does not appear in the reference system of an (n − 2)–dimensional
subface, then there is no summand of any Π(k) contributing to the i0–coordinate, hence this
coordinate vanishes for all elements of F̂ .

Lemma 6.5. Let F̄ = F−K,+k and F̂ = F−K,+l be different T–faces. Let J̄
(K)

, Ĵ
(K)

denote the reference system corresponding to Π(K). If |J̄ (K) \ Ĵ
(K)| ≥ 2 or |Ĵ (K) \ J̄

(K)| ≥ 2
holds true, the F̄ and F̂ are not neighbors.

Proof. Obvious by the Neighborhood Theorem (Theorem 3.3 of [7]).

Definition 6.6. The T–graph of F (with respect to K) is the graph
T = (V,E) with nodes V = {T–faces} and edges E = {cylinder bases common to two
T–faces}.

Note that two nodes are connected by an edge if the cylinder basis is a joint (n − 2)–
dimensional subface of both faces. A T–face is called terminal if, for some i ∈ I, the
intersection F ∩ ∂Π(−i) is a cylinder basis. F ∩ ∂Π(−i) is called the i − th boundary
cylinderbasis.
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Theorem 6.7. The T–graph T of F (w.r.t. K) is a tree. For every i0 ∈ I there is a unique
path from F to a terminal node which contains the boundary cylinder basis Pi0(F ).

Proof. 1stSTEP :
Let

F =
K∑

k=1

∆(k)

J(k)

with rk = |J (k)| (k ∈ K) and rK ≥ 2. First of all we consider the case that i0 ∈ J (K) holds
true. Then the (n− 1)–dimensional subface

◦
F i0 =

K−1∑

k=1

∆(k)

J(k) + ∆(K)

J(K)−i0

is a cylinder basis. This basis is a boundary cylinder basis if i0 /∈ L. If so, we are done.
2ndSTEP :
If

◦
F i0 is not a boundary cylinder basis, then i0 ∈ L. According to Theorem 5.6 and

Theorem 5.7, there is an adjacent face, say F̃ = F−K,+κ. The reference system at position
K consists of the index set J (K) \ {i0} and at position κ of, say, J (κ) ∪ {i1}. In view of the
Neighborhood Theorem, we have i1 ∈ L.

3rdSTEP :
If it so happens that i0 ∈ J (κ), then we proceed as in the first step. We remove i0 from

J (κ) an add a suitable index to some J (γ). We have again reached a T–face F̂ with the
number of appearances of i0 reduced by 1.

4thSTEP :
Suppose that i0 ∈ J (κ) does not hold. Then we focus on i1 ∈ J (κ) ∩ L as specified in

the 3rdSTEP . We can remove i1 (and possibly further indices) from J (κ) and add another
index to some J (λ) and so on. If there are more indices feasible besides i1, then two or more
paths will branch off at the node reflected by F̃ .

The path can never return to F because any other path leaving F is characterized by a
missing index i9 6= i0 instead of i0. No face with missing index i9 is a neighbor to a face with
missing index i0 by Lemma 6.5. By a similar argument, the path cannot return to another
face met during the construction. Of course, when our path splits into several branches,
then we can trace all these branches.

As there are only finitely many T–vectors, we must eventually reach some face ˜̂
F with

a reference vector ˜̂r that is a T–code and yields ˜̂rν = rν + 1 at some coordinate ν with
i0 ∈ Jν . Then we can again reduce the number of appearances of i0 by one.

5thSTEP :
Obviously we can proceed in this way, reducing the appearances of i0 step by step until

i0 /∈ L is the case. Then we have found a face with cylinder basis Pi0 . The path constructed
in the T–graph connects F and Pi0 .

6thSTEP :
On the other hand, we may consider some Pi(F ) which corresponds to a unique face of

ΠRn
I\{i} . This face can be uniquely extended to a face

◦
F i of Π (the set L is the same for

both and characterizes both faces). Starting the procedure explained above, we can connect
Pi(F ) with every Pi′(F ) for i′ ∈ I, i′ 6= i. Thus the T–graph has boundary nodes at each
∂Π(−i), all of them being connected without loops and circles.
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Example 6.8. The cephoid “FourFour” is a sum of four de Gua simplexes in four dimen-
sions. It is given by the matrix

A =




701 502 303 104
205 116 1007 128
139 110 611 512
67 230 444 777


 (6.4)

Figure 5 shows the canonical representation within the simplex 4∆e.

Figure 5: The canonical representation of FourFour

In the following we describe maximal faces by their reference systems. Consider the
block without yellow edges

By :
blue red green yellow
12 13 24 2 , (6.5)

the reference vector of which is (2, 2, 2, 1). We choose the cylinder bases suggested by the
reference vector (2, 1, 2, 1). The block By has the square P3 as the cylinder basis at ∂Π(−3)

(the left front side of the tetrahedron). The adjacent face is the cylinder that consists of a
green triangle and a blue line segment; it is given by

Zgr,b :
blue red green yellow
12 3 234 2 . (6.6)

Note that the intersection By ∩Zgr,b has the correct reference code (2, 1, 2, 1).
At Zgr,b the path has two branches, the boundary cylinder basis P4 at the lower sub-

simplex is part of the cylinder. If we follow the second path, we reach a block without red.
This one is difficult to recognize, it consists of three line segments of blue, green, and yellow
color and is described by

Br :
blue red green yellow
12 3 34 24 . (6.7)
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The final face is the cylinder consisting of a blue triangle and a green line segment. It is
described by

Zb,gr :
blue red green yellow
123 3 34 4 . (6.8)

This cylinder has subfaces P1 (at the right front side) and P2 (at the rear side of the
tetrahedron), thus we have found all Pi, i ∈ K.

Figure 6 shows the “tentacle” described by the above sequence. The four maximal faces
have been isolated from Figure 5. The basis in each face consists of a square with blue and
green parallel sides.

Figure 6: The Tentacle of Example 6.8
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