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where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Despite of its heavy nonmonotonicity, the
(unmodified) BB method is proved to be R-superlinearly convergent for two-dimensional
quadratics [1] and R-linearly convergent for any dimensional quadratics [8]. In practical
computations, the BB method is much superior to the classical steepest descent method.

The BB method has been extended by Cruz and Raydan [6] for solving nonlinear equa-
tions (1.1). The new method is called by Spectral Algorithm for Nonlinear Equations
(SANE). SANE uses the residual ±F (xk) as a search direction in a systematic way. The
first trial point at each iteration is xk − αk F (xk), where αk is some spectral coefficient
similarly to (1.2), but with yk−1 replaced with F (xk)− F (xk−1). At each iteration, SANE
needs to calculate a directional derivative or have its good approximation is necessary since
it requires a descent direction of the squared norm of the residual.

To overcome the disadvantage of SANE, Cruz et al. [4] recently proposed a Derivative-
Free Spectral Algorithm for Nonlinear Equations (DF-SANE) for solving (1.1). The algo-
rithm makes use of the same search direction dk and the same choice for the initial stepsize
σk as SANE. Define f(x) = ||F (x)||2, where ∥·∥ means the two-norm. The algorithm wishes
to find a stepsize αk that satisfies

f(xk + αkdk) ≤ fmax + ηk − γα2
kf(xk), (1.3)

where

fmax = max
0≤j≤m(k)−1

f(xk−j), (1.4)

in which m(k) = min(k, M − 1), M is some fixed integer, ηk > 0 satisfies
∑

k ηk ≤ η < ∞
and γ is a small positive number. The above nonmonotone line search is a combination of
the traditional GLL line search [13] and the LF line search [12]. With its use, DF-SANE
can avoid the calculations or any approximations of directional derivatives.

However, the numerical performances of DF-SANE heavily depend on the choice of M
in the definition of fmax. We have observed the influence of M in solving several large-scale
test problems and founded that the performance of DF-SANE is sensitive to the choice of M
(see Section 2). This motivates us to incorporate the more efficient adaptive nonmonotone
line search in [9] in the spectral residual method. The numerical results in Section 4 indeed
demonstrated the superiority of the new algorithm for the same set of test problems in [4].

In [9], Dai and Zhang proposed an adaptive nonmonotone line search for large-scale un-
constrained optimization problem min

x∈Rn
f(x). Numerical results [9] showed that the DZ line

search is specially suitable for the BB method. The key point of the adaptive nonmonotone
line search is how to update the reference value fr. Suppose that a descent search direction
dk has been computed at the kth iteration. The DZ line search accepts the first trial stepsize

α
(1)
k provided it satisfies

f(xk + α
(1)
k dk) ≤ fr + γ α

(1)
k gTk dk. (1.5)

Otherwise, a new stepsize αnew is calculated to satisfy the following relatively restrict con-
dition,

f(xk + αnewdk) ≤ min{fmax, fr}+ γ αnew gTk dk, (1.6)
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and set αk = αnew. The reference value fr is updated as follows. Denote by fmin the current
best function value over all the previous iterations and by l the number of iterations since
the value of fmin was actually obtained. If l reaches a preset positive integer constant L,
they choose the new reference value fr as follows:

fr =

 fc, if fmax−fmin

fc−fmin
> γ1;

fmax, otherwise,
(1.7)

where fc is the maximal value of the objective function since the last best function value
was found and γ1 ≥ 1 is a constant. The reference value fr should also be adjusted if the
first trial stepsize is suddenly not accepted by the line search after many successful first trial

stepsizes. More exactly, assume that the first trial stepsize at the kth iteration is α
(1)
k and

that p is the largest integer such that {α(1)
k−i : i = 1, 2, ..., p} are accepted but α

(1)
k−p−1 not.

Let P be some integer and γ2 ≥ 1 some constant. If p > P , we set

fr =

 fmax, if fmax > fk and fr−fk
fmax−fk

≥ γ2;

fr, otherwise.
(1.8)

In this work, we will modify the DZ line search so that that they are suitable for the
spectral residual method. Then we combine the modified DZ line search and the LF line
search in [12] to solve nonlinear systems of equations. It turns out to a robust nonmonotone
line search strategy that has the advantages of both schemes.

This paper is organized as follows. In Section 2, we describe the framework of the
Adaptive Nonmonotone Spectral Residual Method (ANSRM). In Section 3, we present some
convergence analysis. Numerical results with ANSRM are reported in Section 4 and some
remarks are made in the last section.

2 Adaptive Nonmonotone Spectral Residual Method

As explained in the previous section, the DF-SANE algorithm makes use of the GLL non-
monotone line search to find a suitable stepsize. This line search avoids the calculations
or approximations of directional derivatives and guarantees the global convergence of the
algorithm. For quite many problems, however, its numerical efficiency heavily depends on
the choice of the parameter M in the line search. We have tested the DF-SANE algo-
rithm with different values of M for solving the problems listed in [5] and observed this
phenomenon. Figure 2.1 shows how the number of function evaluations of the DF-SANE
algorithm changes with the parameter M for Problem 5 and Problem 43 in [5]. The results
for Problem 5 suggest the use of a small value of M , whereas the results for Problem 43
show that a large value of M is preferable. This explains to some extent why M = 10 is
used for a balance in many numerical algorithms using the GLL line search.
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Figure 2.1 Testing DF-SANE with different values of M

(left: Results for Problem 5; right: Results for Problem 43)

2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90

100

2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

For a better replacement, we consider the use of the adaptive nonmonotone line search
proposed by Dai and Zhang [9] for unconstrained optimization. By introducing the merit
function f(x) = ||F (x)||2, one can directly use the DZ line search for solving (1.1) once
a descent direction dk, namely, dTk∇f(xk) < 0, is found. In this case, the DZ line search
condition is satisfied provided that the stepsize αk sufficiently close to zero. However, it is
possible that dTk∇f(xk) = 0, in which case the existence of αk satisfying the DZ line search
condition is not guaranteed. In general, if the Jacobian J(xk) is not calculated, there is
some difficulty in finding a search direction dk satisfying dTk∇f(xk) < 0.

In order to overcome this difficulty, we recall the LF line search [12]. The LF line search
consists in computing a stepsize αk such that

∥F (xk + αkdk)∥ ≤ (1 + ηk)∥F (xk)∥ − γα2
k∥dk∥2, (2.1)

where {ηk} is a positive sequence and γ is a positive parameter. This line search condition
does not require the computation of J(xk). Moreover, it can be satisfied provided that αk is
sufficiently small, independently of the choice of dk. However, since ηk is usually very small
when k is large, the LF line search generally imposes an almost monotone behavior of the
merit function when xk is close to some solution.

To combine the advantages of the DZ line search (1.5) and (1.6) and the LF line search
(2.1), we propose the following adaptive nonmonotone line search for solving (1.1).

Suppose that the initial parameters L, M , P , γ, γ1, γ2, 0 < τmin < τmax < 1 are given.

The first stepsize α
(1)
k is computed at the kth iteration such that |α(1)

k | ∈ [αmin, αmax]. We
describe our adaptive nonmonotone line search as follows.

Algorithm 2.1 (Adaptive nonmonotone line search).

Step 1. (Possibly reset the reference value).
(i) If l = L, update fr by (1.7) and set l := 0;
(ii) If p > P , compute fr by (1.8).

Step 2. (Test the first trial stepsize α
(1)
k ).

Set d = −α
(1)
k F (xk), α+ = 1, and α− = 1. If

f(xk + α+d) ≤ fr + ηk − γα2
+f(xk), (2.2)
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let dk = d, αk = α+, p := p+ 1 and go to Step 4; else if

f(xk − α−d) ≤ fr + ηk − γα2
−f(xk), (2.3)

let dk = −d, αk = α−, p := p+ 1 and go to Step 4; else, p := 0.

Step 3. (Test other trial stepsize till some stepsize is satisfactory).
(i) αold+ = α+, αold− = α−;
(ii) Compute αnew+ ∈ [τminαold+, τmaxαold+] and αnew− ∈ [τminαold−, τmaxαold−]. If

f(xk + αnew+d) ≤ min{fmax, fr}+ ηk − γα2
new+f(xk), (2.4)

let αk = αnew+, dk = d and go to Step 4; else if

f(xk − αnew−d) ≤ min{fmax, fr}+ ηk − γα2
new−f(xk), (2.5)

let αk = αnew−, dk = −d and go to Step 4; else, αold+ = αnew+ and αold− = αnew−,
repeat (ii).

Step 4. (Possibly update the best value found and the candidate value).
(i) Let f(xk+1) = f(xk + αkdk);
(ii) If f(xk+1) < fmin, set fc = fmin = f(xk+1) and l := 0; otherwise, l := l + 1;
(iii) If f(xk+1) > fc, set fc = f(xk+1);
(iv) Compute fmax by (1.4) with k replaced by k + 1.

As in [9], we suggest that the parameters P , M and L in the above algorithm are so
chosen that L ≤ 5 and P ≥ 4M ≥ 8L and the parameters γ1 and γ2 in (1.7) and (1.8) are
set to M/L and P/M .

Combined the spectral residual method and the above adaptive nonmonotone line search
algorithm, we obtain a new algorithm for large-scale nonlinear system of equations. A full
description of our adaptive nonmonotone spectral residual method (ANSRM) is given as
follows.

Algorithm 2.2 (ANSRM).

Step 1. (Give the starting point and initialize the parameters).
(i) Given 0 < αmin < αmax < ∞, 0 < σ1 < σ2 < 1 and ε ≥ 0; set k := 1;
(ii) Given positive integers P > M > L and constants γ1 ≥ 1, γ2 ≥ 1;

(iii) Pick up x1 ∈ Rn, α
(1)
1 ∈ [αmin, αmax] and compute F (x1);

(iv) Set l := 0, p := 0 and fmin = fr = fc := f(x1).

Step 2. (Test if the stopping condition holds). If f(xk) ≤ ε, stop.

Step 3. Determine the search direction dk, compute a stepsize αk and update fr and fmin

etc. by algorithm 2.1.

Step 4. (Update the estimation and compute the residual).
Compute xk+1 = xk + αkdk and F (xk+1).

Step 5. (Compute the first trial stepsize α
(1)
k+1).

sk = xk+1 − xk, yk = F (xk+1)− F (xk) and α
(1)
k+1 = max

{
αmin,min

{
sTk sk
sTk yk

, αmax

}}
.

Step 6. k := k + 1 and go to Step 2.
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3 Convergence Analysis

In this section, we present a convergence analysis for ANSRM. The following theorem shows
that the spectral residual method with the adaptive nonmonotone line search is globally
convergent in real computations.

Theorem 3.1. Suppose that the merit function f(x) = ∥F (x)∥2 is twice-continuously differ-

entiable and its level set L = {x ∈ Rn : f(x) ≤ f(x0)+η} is bounded, where
∞∑
k=0

ηk ≤ η < ∞.

Then for any small constant c > 0, Algorithm 2.2 either terminates at a finite iteration j
such that F (xj) = 0 or F (xj)

TJ(xj)F (xj) ≤ c ∥F (xj)∥2, or generates a sequence {xk} such
that

lim inf
k→∞

∥F (xk)∥ = 0. (3.1)

Proof. At first, we denote fr, fmax, fc, l at the kth iteration by fk
r , f

k
max, f

k
c , l

k. Algorithm
2.2 implies that

fk ≤ fk
c ≤ fk

max for all k. (3.2)

From the algorithm, we also know that the whole iteration {xk} remains in the level set L
since f(xk) ≤ f(x0) + η for all k, where η is the upper bound of the sum

∞∑
k=0

ηk. Thus,

using the fact that α
(1)
k ∈ [αmin, αmax] and the technique of choosing αk and (3.2), we can

conclude that a stepsize αk satisfying the line search conditions of Algorithm 2.1 can be
found after finite number of trials. Hence there must exist a positive constant c1 such that
αk ≥ c1 for all k (for example, one can see the proof of Theorem 2.1 in [10] for details). It
follows from αk ≥ c1 and the conditions of Algorithm 2.1 that

f(xk+1) ≤ fk
r + ηk − γ α2

k fk. (3.3)

Assuming that Algorithm 2.2 does not stop after finite iterations, we consider the fol-
lowing two cases.

Case 1. lk < L for all large k. In this case, we know from the algorithm that there exists
an infinite subsequence {xki} such that

f(xki+1) < f(xki) + ηki , ki+1 ≤ ki + L. (3.4)

It is known that in real computations,

a < b means a ≤ b− ϵ,

where ϵ > 0 is the machine precision. Hence (3.4) means f(xki+1) ≤ f(xki) + ηki − ϵ. This
contradicts the fact that f(x) is bounded below on the level set L. So case 1 can not happen
in real computations.

Case 2. lk = L for infinite times. In this case, we define the infinite index set A =
{ki : lki = L, ki < ki+1}. Then for all ki < j < ki+1, f

j
r is determined by the formula (1.8).

Since γ2 ≥ 1, we can then get

f j
r ≤ f j−1

r , ki < j < ki+1. (3.5)

From (3.2), (3.5) and the definition of set A, we know that

f j
r ≤ fki

r ≤ fki
max, ki < j < ki+1. (3.6)
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Now assuming the theorem is not true, that is fk ≥ c2 for all k and some constant c2 > 0,
we can obtain by (3.3) that

f(xk+1) ≤ fk
r + ηk − ϵ1 (3.7)

for all k and ϵ1 = δc1c
2
2. Combining (3.6) and (3.7), we get that

fj ≤ fki
max − ϵ1, ki < j ≤ ki+1. (3.8)

Further, by the definition of fmax and A, we know from (3.6) and (3.8) that

fki+1
r ≤ fki+1

max ≤ fki
max + ηk, (3.9)

which implies that {fki
max : ki ∈ A} is an approximately nonincreasing sequence. It follows

from (3.8), (3.9) and the approximately nonincreasing property of {fki
max : ki ∈ A} that

f
ki1
max ≤ f

ki2
max + ηki2

− ϵ1, if ki1 − ki2 > M. (3.10)

So there exists a subsequence of {fki
max : ki ∈ A}, still denoted by {fki

max}, such that

fki+1
max ≤ fki

max + ηki − ϵ1. (3.11)

Since A is an infinite set and since
∑

k≥1 ηk < +∞, we know that the above relation
contradicts the lower boundedness of f(x). Therefore the theorem is true.

4 Numerical Results

We have tested ANSRM and compared it with DF-SANE by using Matlab v7.6 on Core(TM)2
PC with Windows-XP. The initial parameters for ANSRM are αmin = 10−10, αmax = 1010,

σ1 = 1, τmin = 0.1, τmax = 0.5, γ = 10−4, M = 10, ηk = ∥F (x1)∥
(1+k)2 for all k ∈ N. The

spectral stepsize was computed by the formula α
(1)
k =

sTk sk
sTk yk

, where sk = xk+1 − xk and

yk = F (xk+1) − F (xk). However, if |αk| /∈ [αmin, αmax], we replace the spectral coefficient
by

α
(1)
k =

 1, if ||F (xk)|| > 1;
||F (xk)||−1, if 10−5 ≤ ||F (xk)|| ≤ 1;

105, if ||F (xk)|| < 10−5.
(4.1)

We also set L, M and P to be 3, 8 and 40, respectively. In addition, in Step 3 of Algorithm
2.1, the new trial stepsize αnew+ and αnew− are obtained by the same rule as the one in [4].
Given α+ > 0, we take αnew+ > 0 as

α+new =

 τminα+, ifαt < τminα+;
τmaxα+, ifαt > τmaxα+;

αt, otherwise,
(4.2)

where

αt =
α2
+f(xk)

f(xk + α+d) + (2α+ − 1)f(xk)
.

We use similar formula for choosing αnew− as a function of α−, f(xk) and f(xk−α−d). For
both DF-SANE and ANSRM, we stop the process when

||F (xk)||√
n

≤ ea + er
||F (x0)||√

n
, (4.3)
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where ea = 10−5 and er = 10−4.

We ran ANSRM using the same set of large-scale test problems as in [4]. There are
44 test problems, which are fully described in [5]. The first set of 22 problems arises from
the discretization of boundary value problems. They have positive definite Jacobians. The
second set of 22 problems does not have special characteristics from the point of view of
positive definiteness or conditioning. Some of these problems have many solutions.

Table 1: Comparing ANSRM and DF-SANE

Prob(n) DF-SANE ANSRM Prob(n) DF-SANE ANSRM

It Fe Bk It Fe Bk It Fe Bk It Fe Bk

4(99) 99 289 66 12 13 0 30(99) 11 16 2 12 14 0
4(999) 101 325 71 12 13 0 30(9999) 11 16 2 10 12 0

5(9) 42 68 12 15 17 0 33(1000) 37 50 3 6 12 1
5(49) 732 2958 660 20 22 0 33(5000) 4 16 2 3 13 1

7(100) 23 29 2 6 13 0 34(1000) 78 155 26 14 15 0
7(10000) 23 29 2 5 10 0 34(5000) 12 18 1 5 12 1

11(99) 17 49 7 15 16 0 35(1000) 21 27 2 18 25 2
11(399) 17 49 7 16 17 0 35(5000) 38 48 3 43 52 2

12(1000) 30 62 12 7 10 1 36(1000) 28 34 2 27 32 1
12(10000) 23 59 11 7 10 1 36(5000) 26 36 4 18 23 1

16(500) 14 16 1 5 6 0 37(1000) 26 38 5 18 19 0
16(2000) 16 16 0 5 6 0 37(5000) 26 38 5 14 15 0

17(100) 9 11 1 32 38 0 38(1000) 25 30 2 19 20 0
17(1000) 7 9 1 41 42 0 38(5000) 25 30 2 19 20 0

18(50) 19 21 1 5 6 0 39(1000) 14 20 1 15 16 0
18(100) * * * 5 6 0 39(5000) 14 20 1 15 16 0

20(100) 40 42 1 1 4 1 41(500) 7 9 1 12 13 0
20(1000) 44 62 5 1 4 1 41(1000) 3 3 0 6 7 0

24(500) 54 109 18 47 55 2 42(1000) 173 412 85 80 98 5
24(1000) 17 25 3 50 60 3 42(5000) 173 412 85 80 98 5

27(50) 10 10 0 15 16 0 43(100) 86 108 9 32 35 1
27(100) 10 11 0 17 18 0 43(500) 586 1162 193 163 184 8

Figure 4.1. Performance Profiles of ANSRM and DF-SANE
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The numerical results are listed in Table 1. It is worth noting that only those problems
are listed for which the two algorithms provide different numerical results. In the table, we
report the problem number and its dimension (Prob(n)), the number of iterations (It), the
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number of function evaluations (Fe) and the number of backtrackings (Bk). Figure 4.1 gives
the performance profiles for the number of function evaluation of the two algorithms (see
[11] for more details about the performances).

From Table 4.1 and Figure 4.1, we can see that ANSRM performs much better than
the DF-SANE algorithm and hence the SANE algorithm (see [4] for comparisons between
DF-SANE and SANE). Pariticularly, for Problems 4, 5, 20, 34, 42 and 43, the ANSRM
algorithm has considerable savings in both the number of line searches and the number of
function evaluations.

We should say that we have also tested ANSRM for different choices of L over [4, 10]
and found that its numerical performance is all the same as those with L = 3 for all of the
test problems.

5 Conclusions and Discussion

In this paper, we have proposed an adaptive nonmonotone spectral residual method (AN-
SRM) for solving nonlinear system of equations. The important features of ANSRM are
that, the reference iteration is chosen adaptively and there is no necessity to calculate the
Jacobian of the nonlinear system at each iteration. Our numerical results have demonstrated
that it is a better strategy than the traditional GLL nonmonotone line search.

For the choice of initial stepsize α
(1)
k+1 in Step 5 of Algorithm 2.2, we have tested the

following three cases

sTk sk
sTk yk

,
sTk yk
yTk yk

, sign(sTk yk)

√
sTk sk

yTk yk
. (5.1)

The first two choices are due to [1] and the third one can be found in for example [7, 18]. Our
numerical results show that the first choice is the most efficient one. In addition, although
the third choice is not as good as the other two, it gives the best performance for several
problems. It still remains under investigation how to choose the initial stepsize efficiently
for the gradient method, including ANSRM, in real computations.
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