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Lipschitz-continuous mapping by using the extragradient method introduced in Korpelevich
[5]. On the other hand, Tada and Takahashi [13, 14] and Takahashi and Takahashi [15]
obtained weak and strong convergence theorems for finding a common element of the set
EP (f) and the set F (S) in a Hilbert space. Very recently, Shinzato and Takahashi [12]
established a strong convergence theorem for finding a common element of the set EP (f),
the set V I(C,A) for an inverse-strongly monotone mapping and the set F (S) of a nonex-
pansive mapping in a Hilbert space by using the shrinking projection method introduced in
Takahashi, Takeuchi and Kubota [17]. We know also a strong convergence theorem [2] for
finding a common element of the set EP (f) and the set of fixed points of a finite family of
nonexpansive mappings in a Hilbert space.

In this paper, motivated by Shinzato and Takahashi [12] and Nadezhkina and Takahashi
[8], we prove a strong convergence theorem for finding a common element of the set EP (f),
the set V I(C,A) for a monotone, Lipschitz-continuous mapping and the set F (S) of a
nonspreading mapping in a Hilbert space by using the shrinking projection method and the
extragradient method.

2 Preliminaries

In this paper, we denote by N the set of positive integers and by R the set of real numbers.
Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥. xn → x implies that
{xn} converges strongly to x. xn ⇀ x means that {xn} converges weakly to x. In a real
Hilbert space H, we have

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2

for all x, y ∈ H and λ ∈ [0, 1]. For every point x ∈ H, there exists a unique nearest point
in C, denoted by PCx, such that ∥x − PCx∥ ≤ ∥x − y∥ for all y ∈ C. The mapping PC is
called the metric projection of H onto C. We know that PC is a nonexpansive mapping of
H onto C. It is also known that PC is characterized by the following properties: PCx ∈ C
and ⟨x− PCx, PCx− y⟩ ≥ 0,

∥x− y∥2 ≥ ∥x− PCx∥2 + ∥y − PCx∥2 (2.1)

for all x ∈ H and y ∈ C. Let A be a monotone mapping of C into H. In the context of the
variational inequality problem, this implies

u ∈ V I(C,A) ⇔ u = PC(u− λAu)

for all λ > 0. It is also known that H satisfies the Opial condition [10]. That is, for any
sequence {xn} with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

holds for every y ∈ H with y ̸= x. We also know that H has the Kadec-Klee property, that
is, xn ⇀ x and ∥xn∥ → ∥x∥ imply xn → x. In fact, from

∥xn − x∥2 = ∥xn∥2 − 2⟨xn, x⟩+ ∥x∥2,

we get that a Hilbert space has the Kadec-Klee property. An operator A : H → 2H is said
to be monotone if ⟨x1 − x2, y1 − y2⟩ ≥ 0 whenever y1 ∈ Ax1 and y2 ∈ Ax2. Let A be a
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monotone and k-Lipschitz-continuous mapping of C into H and let NCv be the normal cone
to C at v ∈ C, i.e., NCv = {w ∈ H : ⟨v − u,w⟩ ≥ 0, ∀u ∈ C}. Define

Tv =

{
Av +NCv, if v ∈ C,

∅, if v /∈ C.

Then, T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A); see [11]. For solving
the equilibrium problem for a bifunction f : C × C → R, let us assume that f satisfies the
following conditions:

(A1) f(x, x) = 0 for all x ∈ C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim
t↓0

f(tz + (1− t)x, y) ≤ f(x, y);

(A4) for each x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

We know the following lemmas.

Lemma 2.1. The following equality holds in a Hilbert space H: For all u, v ∈ H,

∥u− v∥2 = ∥u∥2 − ∥v∥2 − 2⟨u− v, v⟩.

Lemma 2.2 ([1]). Let C be a nonempty closed convex subset of H and let F be a bifunction
of C ×C into R satisfying (A1)–(A4). Let r > 0 and x ∈ H. Then, there exists z ∈ C such
that

f(z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0

for all y ∈ C.

Lemma 2.3 ([3]). Assume that f : C ×C → R satisfies (A1)–(A4). For r > 0 and x ∈ H,
define a mapping Tr : H → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
T ⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}

for all x ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Trx− Try, x− y⟩;

(3) F (Tr) = EP (f);

(4) EP (f) is closed and convex.

We know also the following result.

Lemma 2.4. Let C be a nonempty closed convex subset of H. Let S be a nonspreading
mapping of C into itself with F (S) ̸= ∅. Then, F (S) is closed and convex.

Proof. A mapping S : C → C is nonspreading, i.e.,

2∥Su− Sv∥2 ≤ ∥Su− v∥2 + ∥Sv − u∥2

for all u, v ∈ C. If v = Sv, then we have 2∥Su − v∥2 ≤ ∥Su − v∥2 + ∥v − u∥2 and hence
∥Su− v∥2 ≤ ∥v− u∥2. This implies that S is quasi-nonexpansive. So, we have from [4] that
F (S) is closed and convex.
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3 Main Results

In this section, we prove two strong convergence theorems for monotone mappings and
nonspreading mappings with equilibrium problems in a Hilbert space. First, we prove a
strong convergence theorem by the shrinking projection method [17].

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C ×C to R satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous
mapping of C into H and let S be a nonspreading mapping of C into itself such that F (S)∩
V I(C,A)∩EP (f) ̸= ∅. Let {xn} be a sequence in C generated by x1 = x ∈ C, C1 = C and

f(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

wn = αnSxn + (1− αn)PC(un − λnAyn),

Cn+1 = {z ∈ Cn : ∥wn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, n ∈ N,

where 0 < a ≤ λn ≤ b <
1

k
, 0 < c ≤ αn ≤ d < 1 and 0 < r ≤ rn. Then {xn} converges

strongly to PF (S)∩V I(C,A)∩EP (f)x, where PF (S)∩V I(C,A)∩EP (f) is the metric projection of H
onto F (S) ∩ V I(C,A) ∩ EP (f).

Proof. Put vn = PC(un − λnAyn) for every n ∈ N and take

x∗ ∈ F (S) ∩ V I(C,A) ∩ EP (f).

Then, we have x∗ = PC(x
∗ − λnAx

∗) = Trnx
∗. We first show by induction that

F (S) ∩ V I(C,A) ∩ EP (f) ⊆ Cn

for all n ∈ N. It is obvious that F (S) ∩ V I(C,A) ∩ EP (f) ⊆ C1 = C. Suppose that

F (S) ∩ V I(C,A) ∩ EP (f) ⊆ Cn

for some n ∈ N and take x∗ ∈ F (S) ∩ V I(C,A) ∩ EP (f) ⊆ Cn. Then, we have from (2.1)
and Lemma 2.1 that

∥vn − x∗∥2 ≤ ∥un − λnAyn − x∗∥2 − ∥un − λnAyn − vn∥2

= ∥un − x∗∥2 − ∥λnAyn∥2 − 2⟨un − λnAyn − x∗, λnAyn⟩
− ∥un − vn∥2 + ∥λnAyn∥2 + 2⟨un − λnAyn − vn, λnAyn⟩

= ∥un − x∗∥2 − ∥un − vn∥2 + 2⟨x∗ − vn, λnAyn⟩
= ∥un − x∗∥2 − ∥un − vn∥2 + 2λn⟨Ayn, x

∗ − vn⟩
= ∥un − x∗∥2 − ∥un − vn∥2

+ 2λn(⟨Ayn −Ax∗, x∗ − yn⟩+ ⟨Ax∗, x∗ − yn⟩+ ⟨Ayn, yn − vn⟩)
≤ ∥un − x∗∥2 − ∥un − vn∥2 + 2λn⟨Ayn, yn − vn⟩
= ∥un − x∗∥2 − ∥un − yn∥2 − 2⟨un − yn, yn − vn⟩ − ∥yn − vn∥2

+ 2λn⟨Ayn, yn − vn⟩
= ∥un − x∗∥2 − ∥un − yn∥2 − ∥yn − vn∥2

+ 2⟨un − λnAyn − yn, vn − yn⟩.
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From yn = PC(un − λnAun), we have

⟨un − λnAyn − yn, vn − yn⟩
= ⟨un − λnAun − yn, vn − yn⟩+ ⟨λnAun − λnAyn, vn − yn⟩
≤ ⟨λnAun − λnAyn, vn − yn⟩
≤ λnk∥un − yn∥∥vn − yn∥.

Since a2 + b2 ≥ 2ab for all a, b ∈ R, we have that

∥vn − x∗∥2 ≤ ∥un − x∗∥2 − ∥un − yn∥2 − ∥yn − vn∥2

+ 2λnk∥un − yn∥∥vn − yn∥
≤ ∥un − x∗∥2 − ∥un − yn∥2 − ∥yn − vn∥2

+ λ2
nk

2∥un − yn∥2 + ∥vn − yn∥2

= ∥un − x∗∥2 + (λ2
nk

2 − 1)∥un − yn∥2.

So, we have from un = Trnxn, x∗ = Trnx
∗ and λ2

nk
2 < 1 that

∥wn − x∗∥2 = ∥αn(Sxn − x∗) + (1− αn)(vn − x∗)∥2

≤ αn∥Sxn − x∗∥2 + (1− αn)∥vn − x∗∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥un − x∗∥2

+ (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2 (3.1)

= αn∥xn − x∗∥2 + (1− αn)∥Trnxn − Trnx
∗∥2

+ (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥xn − x∗∥2

+ (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2

= ∥xn − x∗∥2 + (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2 (3.2)

≤ ∥xn − x∗∥2.

Then x∗ ∈ Cn+1. This implies that F (S)∩ V I(C,A)∩EP (f) ⊆ Cn for all n ∈ N. Next, we
show that Cn is closed and convex for all n ∈ N. It is obvious that C1 = C is closed and
convex. Suppose that Cn is closed and convex for some n ∈ N. For z ∈ Cn , we know from
Nakajo and Takahashi [9] that ∥wn − z∥ ≤ ∥xn − z∥ is equivalent to

∥wn − xn∥2 + 2⟨wn − xn, xn − z⟩ ≤ 0.

So, Cn+1 is closed and convex. Then for any n ∈ N, Cn is closed and convex. From xn =
PCnx, we have ⟨x−xn, xn−z⟩ ≥ 0 for all z ∈ Cn. Since x

∗ ∈ F (S)∩V I(C,A)∩EP (f) ⊆ Cn,
we also have ⟨x− xn, xn − x∗⟩ ≥ 0. So, we have

0 ≤ ⟨x− xn, xn − x∗⟩ = ⟨x− xn, xn − x+ x− x∗⟩
= −⟨x− xn, x− xn⟩+ ⟨x− xn, x− x∗⟩
≤ −∥x− xn∥2 + ∥x− xn∥∥x− x∗∥.

This implies that ∥x−xn∥ ≤ ∥x−x∗∥. From xn = PCnx and xn+1 = PCn+1x ∈ Cn+1 ⊂ Cn,
we also have

⟨x− xn, xn − xn+1⟩ ≥ 0. (3.3)
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From (3.3), we have that for n ∈ N,

0 ≤ ⟨x− xn, xn − xn+1⟩ = ⟨x− xn, xn − x+ x− xn+1⟩
= −⟨x− xn, x− xn⟩+ ⟨x− xn, x− xn+1⟩
≤ −∥x− xn∥2 + ∥x− xn∥∥x− xn+1∥

and hence ∥x−xn∥ ≤ ∥x−xn+1∥. Thus {∥xn−x∥} is bounded and monotone and increasing.
So, lim

n→∞
∥xn − x∥ exists. Next, we show that lim

n→∞
∥xn − xn+1∥ = 0. In fact, from (3.3) we

have

∥xn − xn+1∥2 = ∥xn − x+ x− xn+1∥2

= ∥xn − x∥2 + 2⟨xn − x, x− xn+1⟩+ ∥x− xn+1∥2

= −∥xn − x∥2 + 2⟨xn − x, xn − x+ x− xn+1⟩+ ∥x− xn+1∥2

= −∥xn − x∥2 + 2⟨xn − x, xn − xn+1⟩+ ∥x− xn+1∥2

≤ −∥xn − x∥2 + ∥x− xn+1∥2.

Since lim
n→∞

∥xn − x∥ exists, we have that lim
n→∞

∥xn − xn+1∥ = 0. From xn+1 ∈ Cn+1 ⊂ Cn,

we have
∥wn − xn∥ ≤ ∥wn − xn+1∥+ ∥xn+1 − xn∥ ≤ 2∥xn+1 − xn∥.

Then lim
n→∞

∥wn − xn∥ = 0. Further, from

0 ≤ ∥xn − x∗∥2 − ∥wn − x∗∥2

= (∥xn − x∗∥+ ∥wn − x∗∥)(∥xn − x∗∥ − ∥wn − x∗∥)
≤ (∥xn − x∗∥+ ∥wn − x∗∥)∥xn − wn∥ → 0,

we obtain
∥xn − x∗∥2 − ∥wn − x∗∥2 → 0.

From (3.2), we also obtain

∥un − yn∥2 ≤ 1

(1− αn)(1− λ2
nk

2)
(∥xn − x∗∥2 − ∥wn − x∗∥2)

and

∥yn − vn∥2 = ∥PC(un − λnAun)− PC(un − λnAyn)∥2

≤ ∥un − λnAun − (un − λnAyn)∥2

= ∥λnAyn − λnAun∥2

≤ λ2
nk

2∥yn − un∥2.

Then we have lim
n→∞

∥un − yn∥ = 0 and lim
n→∞

∥yn − vn∥ = 0. Consider

∥un − x∗∥2 = ∥Trnxn − Trnx
∗∥2

≤ ⟨Trnxn − Trnx
∗, xn − x∗⟩

= −⟨un − x∗, x∗ − xn⟩

=
1

2
(∥un − x∗∥2 + ∥xn − x∗∥2 − ∥xn − un∥2).
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Then

∥un − x∗∥2 ≤ ∥xn − x∗∥2 − ∥xn − un∥2 ≤ ∥xn − x∗∥2. (3.4)

From this equality and (3.1), we have

∥wn − x∗∥2 ≤ αn∥xn − x∗∥2 + (1− αn)∥un − x∗∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥xn − x∗∥2 − (1− αn)∥xn − un∥2.

So, we have

∥xn − un∥2 ≤ 1

1− αn
(∥xn − x∗∥2 − ∥wn − x∗∥2),

which implies that lim
n→∞

∥xn − un∥ = 0. Since αn(Sxn − xn) = wn − (1− αn)vn − αnxn, we

have

αn∥Sxn − xn∥ ≤ ∥wn − vn∥+ ∥vn − xn∥
≤ ∥wn − xn∥+ 2∥vn − xn∥
≤ ∥wn − xn∥+ 2(∥vn − yn∥+ ∥yn − un∥+ ∥un − xn∥).

So we obtain lim
n→∞

∥Sxn−xn∥ = 0. Since {xn} is bounded, there exists a subsequence {xni
}

of {xn} such that xni ⇀ p for some p ∈ C. From ∥xn−Sxn∥ → 0, we have Sxni ⇀ p. Next,
let us show p ∈ F (S). Since S is nonspreading, we have

2∥Sxni − Sp∥2 ≤ ∥Sxni − p∥2 + ∥xni − Sp∥2

= ∥Sxni − p∥2 + ∥xni − Sxni∥2 + 2⟨xni − Sxni , Sxni − Sp⟩
+ ∥Sxni − Sp∥2.

Then

∥Sxni − Sp∥2 ≤ ∥Sxni − p∥2 + ∥xni − Sxni∥2 + 2⟨xni − Sxni , Sxni − Sp⟩.

Suppose Sp ̸= p. From Opial’s theorem [10] and lim
n→∞

∥Sxn − xn∥ = 0, we obtain

lim inf
i→∞

∥Sxni − p∥2 < lim inf
i→∞

∥Sxni − Sp∥2

≤ lim inf
i→∞

(∥Sxni − p∥2 + ∥xni − Sxni∥2 + 2⟨xni − Sxni , Sxni − Sp⟩)

= lim inf
i→∞

∥Sxni
− p∥2.

This is a contradiction. Hence Sp = p. Next, let us show p ∈ V I(C,A). Let

Tv =

{
Av +NCv, if v ∈ C,

∅, if v /∈ C.

Then, from [11] T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A). Let
(v, w) ∈ G(T ). Then, we have w ∈ Tv = Av + NCv and hence, w − Av ∈ NCv. So, we
have ⟨v − u,w − Av⟩ ≥ 0 for all u ∈ C. On the other hand, from vn = PC(un − λnAyn)

and v ∈ C, we have ⟨un − λnAyn − vn, vn − v⟩ ≥ 0 and hence ⟨v − vn,
vn − un

λn
+Ayn⟩ ≥ 0.
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Therefore, from w −Av ∈ NCv and vn ∈ C, we have

⟨v − vni , w⟩ ≥ ⟨v − vni , Av⟩

≥ ⟨v − vni , Av⟩ − ⟨v − vni ,
vni − uni

λni

+Ayni⟩

= ⟨v − vni , Av −Avni⟩+ ⟨v − vni , Avni −Ayni⟩

− ⟨v − vni
,
vni

− uni

λni

⟩

≥ ⟨v − vni , Avni −Ayni⟩ − ⟨v − vni ,
vni − uni

λni

⟩.

Since lim
n→∞

∥vn − xn∥ = 0, lim
n→∞

∥vn − un∥ = 0, lim
n→∞

∥yn − vn∥ = 0 and A is Lipschitz

continuous, we obtain ⟨v− p, w⟩ ≥ 0. Since T is maximal monotone, we have p ∈ T−10 and

hence p ∈ V I(C,A). Let us show p ∈ EP (f). Since f(uni , y) +
1

rni

⟨y − uni , uni − xni⟩ ≥ 0

for all y ∈ C. From (A2), we also have

1

rni

⟨y − uni , uni − xni⟩ ≥ f(y, uni)

and hence

⟨y − uni
,
uni − xni

rni

⟩ ≥ f(y, uni
).

From lim
n→∞

∥un − xn∥ = 0, we get uni ⇀ p. Since
uni − xni

rni

→ 0, it follows by (A4) that

0 ≥ f(y, p) for all y ∈ C. For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)p. From
y, p ∈ C, we have yt ∈ C and hence f(yt, p) ≤ 0. So, from (A1) and (A4) we have

0 = f(yt, yt) ≤ tf(yt, y) + (1− t)f(yt, p) ≤ tf(yt, y)

and hence 0 ≤ f(yt, y). From (A3), we have 0 ≤ f(p, y) for all y ∈ C and hence p ∈ EP (f).
Thus p ∈ F (S) ∩ V I(C,A) ∩ EP (f). Let

p∗ = PF (S)∩V I(C,A)∩EP (f)x ⊆ Cn+1.

From xn+1 = PCn+1x, we have ∥x− xn+1∥ ≤ ∥x− p∗∥. Hence, we have

∥x− p∗∥ ≤ ∥x− p∥ ≤ lim inf
i→∞

∥x− xni∥ ≤ lim sup
i→∞

∥x− xni∥ ≤ ∥x− p∗∥.

So, we obtain lim
i→∞

∥x − xni∥ = ∥x − p∥ = ∥x − p∗∥ and p = p∗. We can conclude that

xn → p∗ = PF (S)∩V I(C,A)∩EP (f)x. This completes the proof.

Next, we prove another strong convergence theorem which is different from Theorem 3.1.

Theorem 3.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C ×C to R satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous
mapping of C into H and let S be a nonspreading mapping of C into itself such that F (S)∩
V I(C,A)∩EP (f) ̸= ∅. Let {xn} be a sequence in C generated by x1 = x ∈ C, C1 = C and

f(un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

wn = αnxn + (1− αn)SPC(un − λnAyn),

Cn+1 = {z ∈ Cn : ∥wn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, n ∈ N,
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where 0 < a ≤ λn ≤ b <
1

k
, 0 < c ≤ αn ≤ d < 1 and 0 < r ≤ rn. Then {xn} converges

strongly to PF (S)∩V I(C,A)∩EP (f)x.

Proof. Put vn = PC(un − λnAyn) for every n ∈ N and take

x∗ ∈ F (S) ∩ V I(C,A) ∩ EP (f).

Then, we have x∗ = PC(x
∗ − λnAx

∗) = Trnx
∗. We first show by induction that

F (S) ∩ V I(C,A) ∩ EP (f) ⊆ Cn

for all n ∈ N. It is obvious that F (S) ∩ V I(C,A) ∩ EP (f) ⊆ C1 = C. Suppose that

F (S) ∩ V I(C,A) ∩ EP (f) ⊆ Cn

for some n ∈ N. Let x∗ ∈ F (S) ∩ V I(C,A) ∩EP (f) ⊆ Cn. Following the proof of Theorem
3.1, we have

∥vn − x∗∥2 ≤ ∥un − x∗∥2 + (λ2
nk

2 − 1)∥un − yn∥2.

Hence

∥wn − x∗∥2 = ∥αn(xn − x∗) + (1− αn)(Svn − x∗)∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥Svn − x∗∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥vn − x∗∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥un − x∗∥2

+ (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2

≤ αn∥xn − x∗∥2 + (1− αn)∥xn − x∗∥2

+ (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2

= ∥xn − x∗∥2 + (1− αn)(λ
2
nk

2 − 1)∥un − yn∥2 (3.5)

≤ ∥xn − x∗∥2.

Then x∗ ∈ Cn+1. This implies that F (S)∩ V I(C,A)∩EP (f) ⊆ Cn for all n ∈ N. Next, we
can follow the proof of Theorem 3.1 to show

1. Cn is closed and convex for all n ∈ N.

2. {∥xn − x∥} is bounded, monotone and increasing and lim
n→∞

∥xn − x∥ exists.

3. lim
n→∞

∥xn − xn+1∥ = 0.

4. lim
n→∞

∥wn − xn∥ = 0.

5. lim
n→∞

∥un − yn∥ = 0, lim
n→∞

∥yn − vn∥ = 0 and lim
n→∞

∥xn − un∥ = 0.

Since (1− αn)(Svn − vn) = wn − αnxn − (1− αn)vn, we have

(1− αn)∥Svn − vn∥ ≤ ∥wn − vn∥+ ∥vn − xn∥
≤ ∥wn − xn∥+ 2∥vn − xn∥
≤ ∥wn − xn∥+ 2(∥vn − yn∥+ ∥yn − un∥+ ∥un − xn∥).



152 S. DHOMPONGSA, W. TAKAHASHI AND H. YINGTAWEESITTIKUL

Therefore, we also obtain lim
n→∞

∥Svn − vn∥ = 0. As {vn} is bounded, there exists a subse-

quence {vni} of {vn} such that vni ⇀ p for some p ∈ C. From lim
n→∞

∥Svn − vn∥ = 0, we

obtain Svni ⇀ p. Next, let us show p ∈ F (S).

2∥Svni − Sp∥2 ≤ ∥Svni − p∥2 + ∥vni − Sp∥2

= ∥Svni − p∥2 + ∥vni − Svni∥2 + 2⟨vni − Svni , Svni − Sp⟩
+ ∥Svni − Sp∥2.

Then we have

∥Svni − Sp∥2 ≤ ∥Svni − p∥2 + ∥vni − Svni∥2 + 2⟨vni − Svni , Svni − Sp⟩.

Suppose Sp ̸= p, From Opial’s theorem [10] and lim
n→∞

∥Svn − vn∥ = 0, we obtain

lim inf
i→∞

∥Svni − p∥2 < lim inf
i→∞

∥Svni − Sp∥2

≤ lim inf
i→∞

(∥Svni
− p∥2 + ∥vni − Svni∥2 + 2⟨vni − Svni , Svni − Sp⟩)

= lim inf
i→∞

∥Svni − p∥2.

This is a contradiction. Hence Sp = p, i.e., p ∈ F (S). Following the proof of Theorem 3.1,
we get p ∈ V I(C,A), p ∈ EP (f) and xn → p∗ = PF (S)∩V I(C,A)∩EP (f)x.

4 Applications

Using Theorems 3.1 and 3.2, we prove four theorems in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C ×C to R satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself
such that F (S)∩EP (f) ̸= ∅. Let {xn} be a sequence in C generated by x1 = x ∈ C, C1 = C
and 

wn = αnSxn + (1− αn)Trnxn,

Cn+1 = {z ∈ Cn : ∥wn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, n ∈ N,

where 0 < a ≤ λn ≤ b <
1

k
, 0 < c ≤ αn ≤ d < 1 and 0 < r ≤ rn. Then {xn} converges

strongly to PF (S)∩EP (f)x.

Proof. Putting A = 0 in Theorem 3.1, we obtain the desired result.

Theorem 4.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C ×C to R satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself
such that F (S)∩EP (f) ̸= ∅. Let {xn} be a sequence in C generated by x1 = x ∈ C, C1 = C
and 

wn = αnxn + (1− αn)STrnxn,

Cn+1 = {z ∈ Cn : ∥wn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, n ∈ N,

where 0 < a ≤ λn ≤ b <
1

k
, 0 < c ≤ αn ≤ d < 1 and 0 < r ≤ rn. Then {xn} converges

strongly to PF (S)∩EP (f)x.



CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS 153

Proof. Putting A = 0 in Theorem 3.2, we obtain the desired result.

Theorem 4.3. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone
and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of
C into itself such that F (S) ∩ V I(C,A) ̸= ∅. Let {xn} be a sequence in C generated by
x1 = x ∈ C, C1 = C and

yn = PC(xn − λnAxn),

wn = αnSxn + (1− αn)PC(xn − λnAyn),

Cn+1 = {z ∈ Cn : ∥wn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, n ∈ N,

where 0 < a ≤ λn ≤ b <
1

k
, 0 < c ≤ αn ≤ d < 1 and 0 < r ≤ rn. Then {xn} converges

strongly to PF (S)∩V I(C,A)x.

Proof. Putting f(x, y) = 0 for all x, y ∈ C in Theorem 3.1, we obtain the desired result.

Theorem 4.4. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone
and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of
C into itself such that F (S) ∩ V I(C,A) ̸= ∅. Let {xn} be a sequence in C generated by
x1 = x ∈ C, C1 = C and

yn = PC(xn − λnAxn),

wn = αnxn + (1− αn)SPC(xn − λnAyn),

Cn+1 = {z ∈ Cn : ∥wn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, n ∈ N,

where 0 < a ≤ λn ≤ b <
1

k
, 0 < c ≤ αn ≤ d < 1 and 0 < r ≤ rn. Then {xn} converges

strongly to PF (S)∩V I(C,A)x.

Proof. Putting f(x, y) = 0 for all x, y ∈ C in Theorem 3.2, we obtain the desired result.
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