Yokonama Publishers

STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT SPACES

S. Dhompongsa*, W. Takahashi ${ }^{\dagger}$ and H. Yingtaweesittikul ${ }^{\ddagger}$

Abstract

In this paper, we introduce an iterative sequence for finding a common element of the set of fixed points of a nonspreading mapping, the set of solutions of an equilibrium problem and the set of solutions of the variational inequality problem for a monotone and Lipschitz-continuous mapping in a Hilbert space. We show that the sequence converges strongly to a common element of the above three sets.

Key words: Hilbert space, equilibrium problem, fixed point, nonspreading mapping, hybrid method, monotone mapping

Mathematics Subject Classification: 47H05, 47H09, 47 HzO

1 Introduction

Let C be a closed convex subset of a real Hilbert space H. Let f be a bifunction of $C \times C$ into \mathbb{R}, where \mathbb{R} is the set of real numbers. The equilibrium problem for $f: C \times C \rightarrow \mathbb{R}$ is to find $x \in C$ such that

$$
\begin{equation*}
f(x, y) \geq 0 \tag{1.1}
\end{equation*}
$$

for all $y \in C$. The set of solution (1.1) is denoted by $E P(f)$. A mapping A of C into H is called monotone if $\langle A u-A v, u-v\rangle \geq 0$ for all $u, v \in C$. The variational inequality problem is to find $u \in C$ such that $\langle A u, v-u\rangle \geq 0$ for all $v \in C$. The set of solutions of the variational inequality problem is denoted by $\operatorname{VI}(C, A)$. A mapping A of C into H is called α-inverse-strongly monotone if there exists a positive real number α such that $\langle A u-A v, u-v\rangle \geq \alpha\|A u-A v\|^{2}$ for all $u, v \in C$. It is obvious that any α-inverse-strongly monotone mapping A is monotone and Lipschitz continuous; see, for example, [18]. A mapping S of C into itself is called nonexpansive if $\|S u-S v\| \leq\|u-v\|$ for all $u, v \in C$. A mapping S of C into itself is called nonspreading [6, 7] if

$$
2\|S u-S v\|^{2} \leq\|S u-v\|^{2}+\|S v-u\|^{2}
$$

for all $u, v \in C$. We denote by $F(S)$ the set of fixed points of S. Recently, in the case when S is a nonexpansive mapping, Nadezhkina and Takahashi [8] introduced an iterative process for finding the common element of the set $F(S)$ and the set $V I(C, A)$ for a monotone and

[^0]Lipschitz-continuous mapping by using the extragradient method introduced in Korpelevich [5]. On the other hand, Tada and Takahashi [13, 14] and Takahashi and Takahashi [15] obtained weak and strong convergence theorems for finding a common element of the set $E P(f)$ and the set $F(S)$ in a Hilbert space. Very recently, Shinzato and Takahashi [12] established a strong convergence theorem for finding a common element of the set $E P(f)$, the set $\operatorname{VI}(C, A)$ for an inverse-strongly monotone mapping and the set $F(S)$ of a nonexpansive mapping in a Hilbert space by using the shrinking projection method introduced in Takahashi, Takeuchi and Kubota [17]. We know also a strong convergence theorem [2] for finding a common element of the set $E P(f)$ and the set of fixed points of a finite family of nonexpansive mappings in a Hilbert space.

In this paper, motivated by Shinzato and Takahashi [12] and Nadezhkina and Takahashi [8], we prove a strong convergence theorem for finding a common element of the set $E P(f)$, the set $V I(C, A)$ for a monotone, Lipschitz-continuous mapping and the set $F(S)$ of a nonspreading mapping in a Hilbert space by using the shrinking projection method and the extragradient method.

2 Preliminaries

In this paper, we denote by \mathbb{N} the set of positive integers and by \mathbb{R} the set of real numbers. Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\| . x_{n} \rightarrow x$ implies that $\left\{x_{n}\right\}$ converges strongly to x . $x_{n} \rightharpoonup x$ means that $\left\{x_{n}\right\}$ converges weakly to x . In a real Hilbert space H, we have

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_{C} x$, such that $\left\|x-P_{C} x\right\| \leq\|x-y\|$ for all $y \in C$. The mapping P_{C} is called the metric projection of H onto C. We know that P_{C} is a nonexpansive mapping of H onto C. It is also known that P_{C} is characterized by the following properties: $P_{C} x \in C$ and $\left\langle x-P_{C} x, P_{C} x-y\right\rangle \geq 0$,

$$
\begin{equation*}
\|x-y\|^{2} \geq\left\|x-P_{C} x\right\|^{2}+\left\|y-P_{C} x\right\|^{2} \tag{2.1}
\end{equation*}
$$

for all $x \in H$ and $y \in C$. Let A be a monotone mapping of C into H. In the context of the variational inequality problem, this implies

$$
u \in V I(C, A) \Leftrightarrow u=P_{C}(u-\lambda A u)
$$

for all $\lambda>0$. It is also known that H satisfies the Opial condition [10]. That is, for any sequence $\left\{x_{n}\right\}$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $y \neq x$. We also know that H has the Kadec-Klee property, that is, $x_{n} \rightharpoonup x$ and $\left\|x_{n}\right\| \rightarrow\|x\|$ imply $x_{n} \rightarrow x$. In fact, from

$$
\left\|x_{n}-x\right\|^{2}=\left\|x_{n}\right\|^{2}-2\left\langle x_{n}, x\right\rangle+\|x\|^{2},
$$

we get that a Hilbert space has the Kadec-Klee property. An operator $A: H \rightarrow 2^{H}$ is said to be monotone if $\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle \geq 0$ whenever $y_{1} \in A x_{1}$ and $y_{2} \in A x_{2}$. Let A be a
monotone and k-Lipschitz-continuous mapping of C into H and let $N_{C} v$ be the normal cone to C at $v \in C$, i.e., $N_{C} v=\{w \in H:\langle v-u, w\rangle \geq 0, \forall u \in C\}$. Define

$$
T v= \begin{cases}A v+N_{C} v, & \text { if } \quad v \in C, \\ \emptyset, & \text { if } \quad v \notin C\end{cases}
$$

Then, T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A)$; see [11]. For solving the equilibrium problem for a bifunction $f: C \times C \rightarrow \mathbb{R}$, let us assume that f satisfies the following conditions:
(A1) $f(x, x)=0$ for all $x \in C$;
(A2) f is monotone, i.e., $f(x, y)+f(y, x) \leq 0$ for all $x, y \in C$;
(A3) for each $x, y, z \in C, \lim _{t \downarrow 0} f(t z+(1-t) x, y) \leq f(x, y)$;
(A4) for each $x \in C, y \mapsto f(x, y)$ is convex and lower semicontinuous.
We know the following lemmas.
Lemma 2.1. The following equality holds in a Hilbert space H : For all $u, v \in H$,

$$
\|u-v\|^{2}=\|u\|^{2}-\|v\|^{2}-2\langle u-v, v\rangle .
$$

Lemma 2.2 ([1]). Let C be a nonempty closed convex subset of H and let F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1)-(A4). Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
f(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0
$$

for all $y \in C$.
Lemma 2.3 ([3]). Assume that $f: C \times C \rightarrow R$ satisfies (A1)-(A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow C$ as follows:

$$
T_{r}(x)=\left\{z \in C: f(z, y)+\frac{1}{r} T\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}
$$

for all $x \in H$. Then, the following hold:
(1) T_{r} is single-valued;
(2) T_{r} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle ;
$$

(3) $F\left(T_{r}\right)=E P(f)$;
(4) $E P(f)$ is closed and convex.

We know also the following result.
Lemma 2.4. Let C be a nonempty closed convex subset of H. Let S be a nonspreading mapping of C into itself with $F(S) \neq \emptyset$. Then, $F(S)$ is closed and convex.
Proof. A mapping $S: C \rightarrow C$ is nonspreading, i.e.,

$$
2\|S u-S v\|^{2} \leq\|S u-v\|^{2}+\|S v-u\|^{2}
$$

for all $u, v \in C$. If $v=S v$, then we have $2\|S u-v\|^{2} \leq\|S u-v\|^{2}+\|v-u\|^{2}$ and hence $\|S u-v\|^{2} \leq\|v-u\|^{2}$. This implies that S is quasi-nonexpansive. So, we have from [4] that $F(S)$ is closed and convex.

3 Main Results

In this section, we prove two strong convergence theorems for monotone mappings and nonspreading mappings with equilibrium problems in a Hilbert space. First, we prove a strong convergence theorem by the shrinking projection method [17].

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap$ $V I(C, A) \cap E P(f) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by $x_{1}=x \in C, C_{1}=C$ and

$$
\left\{\begin{array}{l}
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
w_{n}=\alpha_{n} S x_{n}+\left(1-\alpha_{n}\right) P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, n \in \mathbb{N}
\end{array}\right.
$$

where $0<a \leq \lambda_{n} \leq b<\frac{1}{k}, 0<c \leq \alpha_{n} \leq d<1$ and $0<r \leq r_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A) \cap E P(f)}$ x, where $P_{F(S) \cap V I(C, A) \cap E P(f)}$ is the metric projection of H onto $F(S) \cap V I(C, A) \cap E P(f)$.
Proof. Put $v_{n}=P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right)$ for every $n \in \mathbb{N}$ and take

$$
x^{*} \in F(S) \cap V I(C, A) \cap E P(f) .
$$

Then, we have $x^{*}=P_{C}\left(x^{*}-\lambda_{n} A x^{*}\right)=T_{r_{n}} x^{*}$. We first show by induction that

$$
F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}
$$

for all $n \in \mathbb{N}$. It is obvious that $F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{1}=C$. Suppose that

$$
F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}
$$

for some $n \in \mathbb{N}$ and take $x^{*} \in F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}$. Then, we have from (2.1) and Lemma 2.1 that

$$
\begin{aligned}
\left\|v_{n}-x^{*}\right\|^{2} \leq & \left\|u_{n}-\lambda_{n} A y_{n}-x^{*}\right\|^{2}-\left\|u_{n}-\lambda_{n} A y_{n}-v_{n}\right\|^{2} \\
= & \left\|u_{n}-x^{*}\right\|^{2}-\left\|\lambda_{n} A y_{n}\right\|^{2}-2\left\langle u_{n}-\lambda_{n} A y_{n}-x^{*}, \lambda_{n} A y_{n}\right\rangle \\
& -\left\|u_{n}-v_{n}\right\|^{2}+\left\|\lambda_{n} A y_{n}\right\|^{2}+2\left\langle u_{n}-\lambda_{n} A y_{n}-v_{n}, \lambda_{n} A y_{n}\right\rangle \\
= & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2}+2\left\langle x^{*}-v_{n}, \lambda_{n} A y_{n}\right\rangle \\
= & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, x^{*}-v_{n}\right\rangle \\
= & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(\left\langle A y_{n}-A x^{*}, x^{*}-y_{n}\right\rangle+\left\langle A x^{*}, x^{*}-y_{n}\right\rangle+\left\langle A y_{n}, y_{n}-v_{n}\right\rangle\right) \\
\leq & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-v_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, y_{n}-v_{n}\right\rangle \\
= & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-2\left\langle u_{n}-y_{n}, y_{n}-v_{n}\right\rangle-\left\|y_{n}-v_{n}\right\|^{2} \\
& +2 \lambda_{n}\left\langle A y_{n}, y_{n}-v_{n}\right\rangle \\
= & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2} \\
& +2\left\langle u_{n}-\lambda_{n} A y_{n}-y_{n}, v_{n}-y_{n}\right\rangle .
\end{aligned}
$$

From $y_{n}=P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)$, we have

$$
\begin{aligned}
\left\langle u_{n}\right. & \left.-\lambda_{n} A y_{n}-y_{n}, v_{n}-y_{n}\right\rangle \\
& =\left\langle u_{n}-\lambda_{n} A u_{n}-y_{n}, v_{n}-y_{n}\right\rangle+\left\langle\lambda_{n} A u_{n}-\lambda_{n} A y_{n}, v_{n}-y_{n}\right\rangle \\
& \leq\left\langle\lambda_{n} A u_{n}-\lambda_{n} A y_{n}, v_{n}-y_{n}\right\rangle \\
& \leq \lambda_{n} k\left\|u_{n}-y_{n}\right\|\left\|v_{n}-y_{n}\right\| .
\end{aligned}
$$

Since $a^{2}+b^{2} \geq 2 a b$ for all $a, b \in \mathbb{R}$, we have that

$$
\begin{aligned}
\left\|v_{n}-x^{*}\right\|^{2} \leq & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2} \\
& +2 \lambda_{n} k\left\|u_{n}-y_{n}\right\|\left\|v_{n}-y_{n}\right\| \\
\leq & \left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-v_{n}\right\|^{2} \\
& +\lambda_{n}^{2} k^{2}\left\|u_{n}-y_{n}\right\|^{2}+\left\|v_{n}-y_{n}\right\|^{2} \\
= & \left\|u_{n}-x^{*}\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} .
\end{aligned}
$$

So, we have from $u_{n}=T_{r_{n}} x_{n}, x^{*}=T_{r_{n}} x^{*}$ and $\lambda_{n}^{2} k^{2}<1$ that

$$
\begin{align*}
\left\|w_{n}-x^{*}\right\|^{2}= & \left\|\alpha_{n}\left(S x_{n}-x^{*}\right)+\left(1-\alpha_{n}\right)\left(v_{n}-x^{*}\right)\right\|^{2} \\
\leq & \alpha_{n}\left\|S x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|v_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \tag{3.1}\\
= & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{r_{n}} x_{n}-T_{r_{n}} x^{*}\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
= & \left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \tag{3.2}\\
\leq & \left\|x_{n}-x^{*}\right\|^{2} .
\end{align*}
$$

Then $x^{*} \in C_{n+1}$. This implies that $F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}$ for all $n \in \mathbb{N}$. Next, we show that C_{n} is closed and convex for all $n \in \mathbb{N}$. It is obvious that $C_{1}=C$ is closed and convex. Suppose that C_{n} is closed and convex for some $n \in \mathbb{N}$. For $z \in C_{n}$, we know from Nakajo and Takahashi [9] that $\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|$ is equivalent to

$$
\left\|w_{n}-x_{n}\right\|^{2}+2\left\langle w_{n}-x_{n}, x_{n}-z\right\rangle \leq 0 .
$$

So, C_{n+1} is closed and convex. Then for any $n \in \mathbb{N}, C_{n}$ is closed and convex. From $x_{n}=$ $P_{C_{n}} x$, we have $\left\langle x-x_{n}, x_{n}-z\right\rangle \geq 0$ for all $z \in C_{n}$. Since $x^{*} \in F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}$, we also have $\left\langle x-x_{n}, x_{n}-x^{*}\right\rangle \geq 0$. So, we have

$$
\begin{aligned}
0 \leq\left\langle x-x_{n}, x_{n}-x^{*}\right\rangle & =\left\langle x-x_{n}, x_{n}-x+x-x^{*}\right\rangle \\
& =-\left\langle x-x_{n}, x-x_{n}\right\rangle+\left\langle x-x_{n}, x-x^{*}\right\rangle \\
& \leq-\left\|x-x_{n}\right\|^{2}+\left\|x-x_{n}\right\|\left\|x-x^{*}\right\| .
\end{aligned}
$$

This implies that $\left\|x-x_{n}\right\| \leq\left\|x-x^{*}\right\|$. From $x_{n}=P_{C_{n}} x$ and $x_{n+1}=P_{C_{n+1}} x \in C_{n+1} \subset C_{n}$, we also have

$$
\begin{equation*}
\left\langle x-x_{n}, x_{n}-x_{n+1}\right\rangle \geq 0 \tag{3.3}
\end{equation*}
$$

From (3.3), we have that for $n \in \mathbb{N}$,

$$
\begin{aligned}
0 \leq\left\langle x-x_{n}, x_{n}-x_{n+1}\right\rangle & =\left\langle x-x_{n}, x_{n}-x+x-x_{n+1}\right\rangle \\
& =-\left\langle x-x_{n}, x-x_{n}\right\rangle+\left\langle x-x_{n}, x-x_{n+1}\right\rangle \\
& \leq-\left\|x-x_{n}\right\|^{2}+\left\|x-x_{n}\right\|\left\|x-x_{n+1}\right\|
\end{aligned}
$$

and hence $\left\|x-x_{n}\right\| \leq\left\|x-x_{n+1}\right\|$. Thus $\left\{\left\|x_{n}-x\right\|\right\}$ is bounded and monotone and increasing. So, $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists. Next, we show that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$. In fact, from (3.3) we have

$$
\begin{aligned}
\left\|x_{n}-x_{n+1}\right\|^{2} & =\left\|x_{n}-x+x-x_{n+1}\right\|^{2} \\
& =\left\|x_{n}-x\right\|^{2}+2\left\langle x_{n}-x, x-x_{n+1}\right\rangle+\left\|x-x_{n+1}\right\|^{2} \\
& =-\left\|x_{n}-x\right\|^{2}+2\left\langle x_{n}-x, x_{n}-x+x-x_{n+1}\right\rangle+\left\|x-x_{n+1}\right\|^{2} \\
& =-\left\|x_{n}-x\right\|^{2}+2\left\langle x_{n}-x, x_{n}-x_{n+1}\right\rangle+\left\|x-x_{n+1}\right\|^{2} \\
& \leq-\left\|x_{n}-x\right\|^{2}+\left\|x-x_{n+1}\right\|^{2} .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists, we have that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$. From $x_{n+1} \in C_{n+1} \subset C_{n}$, we have

$$
\left\|w_{n}-x_{n}\right\| \leq\left\|w_{n}-x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \leq 2\left\|x_{n+1}-x_{n}\right\| .
$$

Then $\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0$. Further, from

$$
\begin{aligned}
0 & \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|w_{n}-x^{*}\right\|^{2} \\
& =\left(\left\|x_{n}-x^{*}\right\|+\left\|w_{n}-x^{*}\right\|\right)\left(\left\|x_{n}-x^{*}\right\|-\left\|w_{n}-x^{*}\right\|\right) \\
& \leq\left(\left\|x_{n}-x^{*}\right\|+\left\|w_{n}-x^{*}\right\|\right)\left\|x_{n}-w_{n}\right\| \rightarrow 0
\end{aligned}
$$

we obtain

$$
\left\|x_{n}-x^{*}\right\|^{2}-\left\|w_{n}-x^{*}\right\|^{2} \rightarrow 0
$$

From (3.2), we also obtain

$$
\left\|u_{n}-y_{n}\right\|^{2} \leq \frac{1}{\left(1-\alpha_{n}\right)\left(1-\lambda_{n}^{2} k^{2}\right)}\left(\left\|x_{n}-x^{*}\right\|^{2}-\left\|w_{n}-x^{*}\right\|^{2}\right)
$$

and

$$
\begin{aligned}
\left\|y_{n}-v_{n}\right\|^{2} & =\left\|P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)-P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right)\right\|^{2} \\
& \leq\left\|u_{n}-\lambda_{n} A u_{n}-\left(u_{n}-\lambda_{n} A y_{n}\right)\right\|^{2} \\
& =\left\|\lambda_{n} A y_{n}-\lambda_{n} A u_{n}\right\|^{2} \\
& \leq \lambda_{n}^{2} k^{2}\left\|y_{n}-u_{n}\right\|^{2} .
\end{aligned}
$$

Then we have $\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|y_{n}-v_{n}\right\|=0$. Consider

$$
\begin{aligned}
\left\|u_{n}-x^{*}\right\|^{2} & =\left\|T_{r_{n}} x_{n}-T_{r_{n}} x^{*}\right\|^{2} \\
& \leq\left\langle T_{r_{n}} x_{n}-T_{r_{n}} x^{*}, x_{n}-x^{*}\right\rangle \\
& =-\left\langle u_{n}-x^{*}, x^{*}-x_{n}\right\rangle \\
& =\frac{1}{2}\left(\left\|u_{n}-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2} \tag{3.4}
\end{equation*}
$$

From this equality and (3.1), we have

$$
\begin{aligned}
\left\|w_{n}-x^{*}\right\|^{2} & \leq \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
& \leq \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}-\left(1-\alpha_{n}\right)\left\|x_{n}-u_{n}\right\|^{2} .
\end{aligned}
$$

So, we have

$$
\left\|x_{n}-u_{n}\right\|^{2} \leq \frac{1}{1-\alpha_{n}}\left(\left\|x_{n}-x^{*}\right\|^{2}-\left\|w_{n}-x^{*}\right\|^{2}\right)
$$

which implies that $\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0$. Since $\alpha_{n}\left(S x_{n}-x_{n}\right)=w_{n}-\left(1-\alpha_{n}\right) v_{n}-\alpha_{n} x_{n}$, we have

$$
\begin{aligned}
\alpha_{n}\left\|S x_{n}-x_{n}\right\| & \leq\left\|w_{n}-v_{n}\right\|+\left\|v_{n}-x_{n}\right\| \\
& \leq\left\|w_{n}-x_{n}\right\|+2\left\|v_{n}-x_{n}\right\| \\
& \leq\left\|w_{n}-x_{n}\right\|+2\left(\left\|v_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\|\right) .
\end{aligned}
$$

So we obtain $\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=0$. Since $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup p$ for some $p \in C$. From $\left\|x_{n}-S x_{n}\right\| \rightarrow 0$, we have $S x_{n_{i}} \rightharpoonup p$. Next, let us show $p \in F(S)$. Since S is nonspreading, we have

$$
\begin{aligned}
2\left\|S x_{n_{i}}-S p\right\|^{2} \leq & \left\|S x_{n_{i}}-p\right\|^{2}+\left\|x_{n_{i}}-S p\right\|^{2} \\
& =\left\|S x_{n_{i}}-p\right\|^{2}+\left\|x_{n_{i}}-S x_{n_{i}}\right\|^{2}+2\left\langle x_{n_{i}}-S x_{n_{i}}, S x_{n_{i}}-S p\right\rangle \\
& +\left\|S x_{n_{i}}-S p\right\|^{2} .
\end{aligned}
$$

Then

$$
\left\|S x_{n_{i}}-S p\right\|^{2} \leq\left\|S x_{n_{i}}-p\right\|^{2}+\left\|x_{n_{i}}-S x_{n_{i}}\right\|^{2}+2\left\langle x_{n_{i}}-S x_{n_{i}}, S x_{n_{i}}-S p\right\rangle .
$$

Suppose $S p \neq p$. From Opial's theorem [10] and $\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=0$, we obtain

$$
\begin{aligned}
& \liminf _{i \rightarrow \infty}\left\|S x_{n_{i}}-p\right\|^{2}<\liminf _{i \rightarrow \infty}\left\|S x_{n_{i}}-S p\right\|^{2} \\
& \quad \leq \liminf _{i \rightarrow \infty}\left(\left\|S x_{n_{i}}-p\right\|^{2}+\left\|x_{n_{i}}-S x_{n_{i}}\right\|^{2}+2\left\langle x_{n_{i}}-S x_{n_{i}}, S x_{n_{i}}-S p\right\rangle\right) \\
& \quad=\liminf _{i \rightarrow \infty}\left\|S x_{n_{i}}-p\right\|^{2}
\end{aligned}
$$

This is a contradiction. Hence $S p=p$. Next, let us show $p \in V I(C, A)$. Let

$$
T v= \begin{cases}A v+N_{C} v, & \text { if } \quad v \in C, \\ \emptyset, & \text { if } \quad v \notin C\end{cases}
$$

Then, from [11] T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A)$. Let $(v, w) \in G(T)$. Then, we have $w \in T v=A v+N_{C} v$ and hence, $w-A v \in N_{C} v$. So, we have $\langle v-u, w-A v\rangle \geq 0$ for all $u \in C$. On the other hand, from $v_{n}=P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right)$ and $v \in C$, we have $\left\langle u_{n}-\lambda_{n} A y_{n}-v_{n}, v_{n}-v\right\rangle \geq 0$ and hence $\left\langle v-v_{n}, \frac{v_{n}-u_{n}}{\lambda_{n}}+A y_{n}\right\rangle \geq 0$.

Therefore, from $w-A v \in N_{C} v$ and $v_{n} \in C$, we have

$$
\begin{aligned}
\left\langle v-v_{n_{i}}, w\right\rangle \geq & \left\langle v-v_{n_{i}}, A v\right\rangle \\
\geq & \left\langle v-v_{n_{i}}, A v\right\rangle-\left\langle v-v_{n_{i}}, \frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}+A y_{n_{i}}\right\rangle \\
= & \left\langle v-v_{n_{i}}, A v-A v_{n_{i}}\right\rangle+\left\langle v-v_{n_{i}}, A v_{n_{i}}-A y_{n_{i}}\right\rangle \\
& -\left\langle v-v_{n_{i}}, \frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle \\
\geq \geq & \left\langle v-v_{n_{i}}, A v_{n_{i}}-A y_{n_{i}}\right\rangle-\left\langle v-v_{n_{i}}, \frac{v_{n_{i}}-u_{n_{i}}}{\lambda_{n_{i}}}\right\rangle .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|v_{n}-x_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|v_{n}-u_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|y_{n}-v_{n}\right\|=0$ and A is Lipschitz continuous, we obtain $\langle v-p, w\rangle \geq 0$. Since T is maximal monotone, we have $p \in T^{-1} 0$ and hence $p \in V I(C, A)$. Let us show $p \in E P(f)$. Since $f\left(u_{n_{i}}, y\right)+\frac{1}{r_{n_{i}}}\left\langle y-u_{n_{i}}, u_{n_{i}}-x_{n_{i}}\right\rangle \geq 0$ for all $y \in C$. From (A2), we also have

$$
\frac{1}{r_{n_{i}}}\left\langle y-u_{n_{i}}, u_{n_{i}}-x_{n_{i}}\right\rangle \geq f\left(y, u_{n_{i}}\right)
$$

and hence

$$
\left\langle y-u_{n_{i}}, \frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}}\right\rangle \geq f\left(y, u_{n_{i}}\right)
$$

From $\lim _{n \rightarrow \infty}\left\|u_{n}-x_{n}\right\|=0$, we get $u_{n_{i}} \rightharpoonup p$. Since $\frac{u_{n_{i}}-x_{n_{i}}}{r_{n_{i}}} \rightarrow 0$, it follows by (A4) that $0 \geq f(y, p)$ for all $y \in C$. For t with $0<t \leq 1$ and $y \in C$, let $y_{t}=t y+(1-t) p$. From $y, p \in C$, we have $y_{t} \in C$ and hence $f\left(y_{t}, p\right) \leq 0$. So, from (A1) and (A4) we have

$$
0=f\left(y_{t}, y_{t}\right) \leq t f\left(y_{t}, y\right)+(1-t) f\left(y_{t}, p\right) \leq t f\left(y_{t}, y\right)
$$

and hence $0 \leq f\left(y_{t}, y\right)$. From (A3), we have $0 \leq f(p, y)$ for all $y \in C$ and hence $p \in E P(f)$. Thus $p \in F(S) \cap V I(C, A) \cap E P(f)$. Let

$$
p^{*}=P_{F(S) \cap V I(C, A) \cap E P(f)} x \subseteq C_{n+1}
$$

From $x_{n+1}=P_{C_{n+1}} x$, we have $\left\|x-x_{n+1}\right\| \leq\left\|x-p^{*}\right\|$. Hence, we have

$$
\left\|x-p^{*}\right\| \leq\|x-p\| \leq \liminf _{i \rightarrow \infty}\left\|x-x_{n_{i}}\right\| \leq \limsup _{i \rightarrow \infty}\left\|x-x_{n_{i}}\right\| \leq\left\|x-p^{*}\right\| .
$$

So, we obtain $\lim _{i \rightarrow \infty}\left\|x-x_{n_{i}}\right\|=\|x-p\|=\left\|x-p^{*}\right\|$ and $p=p^{*}$. We can conclude that $x_{n} \rightarrow p^{*}=P_{F(S) \cap V I(C, A) \cap E P(f)} x$. This completes the proof.

Next, we prove another strong convergence theorem which is different from Theorem 3.1.
Theorem 3.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap$ $V I(C, A) \cap E P(f) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by $x_{1}=x \in C, C_{1}=C$ and

$$
\left\{\begin{array}{l}
f\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}=P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
w_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, n \in \mathbb{N}
\end{array}\right.
$$

where $0<a \leq \lambda_{n} \leq b<\frac{1}{k}, 0<c \leq \alpha_{n} \leq d<1$ and $0<r \leq r_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A) \cap E P(f)} x$.
Proof. Put $v_{n}=P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right)$ for every $n \in \mathbb{N}$ and take

$$
x^{*} \in F(S) \cap V I(C, A) \cap E P(f) .
$$

Then, we have $x^{*}=P_{C}\left(x^{*}-\lambda_{n} A x^{*}\right)=T_{r_{n}} x^{*}$. We first show by induction that

$$
F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}
$$

for all $n \in \mathbb{N}$. It is obvious that $F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{1}=C$. Suppose that

$$
F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}
$$

for some $n \in \mathbb{N}$. Let $x^{*} \in F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}$. Following the proof of Theorem 3.1, we have

$$
\left\|v_{n}-x^{*}\right\|^{2} \leq\left\|u_{n}-x^{*}\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} .
$$

Hence

$$
\begin{align*}
\left\|w_{n}-x^{*}\right\|^{2}= & \left\|\alpha_{n}\left(x_{n}-x^{*}\right)+\left(1-\alpha_{n}\right)\left(S v_{n}-x^{*}\right)\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|S v_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|v_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
= & \left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n}\right)\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \tag{3.5}\\
\leq & \left\|x_{n}-x^{*}\right\|^{2} .
\end{align*}
$$

Then $x^{*} \in C_{n+1}$. This implies that $F(S) \cap V I(C, A) \cap E P(f) \subseteq C_{n}$ for all $n \in \mathbb{N}$. Next, we can follow the proof of Theorem 3.1 to show

1. C_{n} is closed and convex for all $n \in \mathbb{N}$.
2. $\left\{\left\|x_{n}-x\right\|\right\}$ is bounded, monotone and increasing and $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists.
3. $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$.
4. $\lim _{n \rightarrow \infty}\left\|w_{n}-x_{n}\right\|=0$.
5. $\lim _{n \rightarrow \infty}\left\|u_{n}-y_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|y_{n}-v_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-u_{n}\right\|=0$.

Since $\left(1-\alpha_{n}\right)\left(S v_{n}-v_{n}\right)=w_{n}-\alpha_{n} x_{n}-\left(1-\alpha_{n}\right) v_{n}$, we have

$$
\begin{aligned}
\left(1-\alpha_{n}\right)\left\|S v_{n}-v_{n}\right\| & \leq\left\|w_{n}-v_{n}\right\|+\left\|v_{n}-x_{n}\right\| \\
& \leq\left\|w_{n}-x_{n}\right\|+2\left\|v_{n}-x_{n}\right\| \\
& \leq\left\|w_{n}-x_{n}\right\|+2\left(\left\|v_{n}-y_{n}\right\|+\left\|y_{n}-u_{n}\right\|+\left\|u_{n}-x_{n}\right\|\right)
\end{aligned}
$$

Therefore, we also obtain $\lim _{n \rightarrow \infty}\left\|S v_{n}-v_{n}\right\|=0$. As $\left\{v_{n}\right\}$ is bounded, there exists a subsequence $\left\{v_{n_{i}}\right\}$ of $\left\{v_{n}\right\}$ such that $v_{n_{i}} \rightharpoonup p$ for some $p \in C$. From $\lim _{n \rightarrow \infty}\left\|S v_{n}-v_{n}\right\|=0$, we obtain $S v_{n_{i}} \rightharpoonup p$. Next, let us show $p \in F(S)$.

$$
\begin{aligned}
2\left\|S v_{n_{i}}-S p\right\|^{2} \leq & \left\|S v_{n_{i}}-p\right\|^{2}+\left\|v_{n_{i}}-S p\right\|^{2} \\
= & \left\|S v_{n_{i}}-p\right\|^{2}+\left\|v_{n_{i}}-S v_{n_{i}}\right\|^{2}+2\left\langle v_{n_{i}}-S v_{n_{i}}, S v_{n_{i}}-S p\right\rangle \\
& +\left\|S v_{n_{i}}-S p\right\|^{2} .
\end{aligned}
$$

Then we have

$$
\left\|S v_{n_{i}}-S p\right\|^{2} \leq\left\|S v_{n_{i}}-p\right\|^{2}+\left\|v_{n_{i}}-S v_{n_{i}}\right\|^{2}+2\left\langle v_{n_{i}}-S v_{n_{i}}, S v_{n_{i}}-S p\right\rangle .
$$

Suppose $S p \neq p$, From Opial's theorem [10] and $\lim _{n \rightarrow \infty}\left\|S v_{n}-v_{n}\right\|=0$, we obtain

$$
\begin{aligned}
& \liminf _{i \rightarrow \infty}\left\|S v_{n_{i}}-p\right\|^{2}<\liminf _{i \rightarrow \infty}\left\|S v_{n_{i}}-S p\right\|^{2} \\
& \quad \leq \liminf _{i \rightarrow \infty}\left(\left\|S v_{n_{i}}-p\right\|^{2}+\left\|v_{n_{i}}-S v_{n_{i}}\right\|^{2}+2\left\langle v_{n_{i}}-S v_{n_{i}}, S v_{n_{i}}-S p\right\rangle\right) \\
& \quad=\liminf _{i \rightarrow \infty}\left\|S v_{n_{i}}-p\right\|^{2}
\end{aligned}
$$

This is a contradiction. Hence $S p=p$, i.e., $p \in F(S)$. Following the proof of Theorem 3.1, we get $p \in V I(C, A), p \in E P(f)$ and $x_{n} \rightarrow p^{*}=P_{F(S) \cap V I(C, A) \cap E P(f)} x$.

4 Applications

Using Theorems 3.1 and 3.2, we prove four theorems in a real Hilbert space.
Theorem 4.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself such that $F(S) \cap E P(f) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by $x_{1}=x \in C, C_{1}=C$ and

$$
\left\{\begin{array}{l}
w_{n}=\alpha_{n} S x_{n}+\left(1-\alpha_{n}\right) T_{r_{n}} x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, n \in \mathbb{N}
\end{array}\right.
$$

where $0<a \leq \lambda_{n} \leq b<\frac{1}{k}, 0<c \leq \alpha_{n} \leq d<1$ and $0<r \leq r_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap E P(f)} x$.
Proof. Putting $A=0$ in Theorem 3.1, we obtain the desired result.
Theorem 4.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself such that $F(S) \cap E P(f) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by $x_{1}=x \in C, C_{1}=C$ and

$$
\left\{\begin{array}{l}
w_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S T_{r_{n}} x_{n} \\
C_{n+1}=\left\{z \in C_{n}:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, n \in \mathbb{N}
\end{array}\right.
$$

where $0<a \leq \lambda_{n} \leq b<\frac{1}{k}, 0<c \leq \alpha_{n} \leq d<1$ and $0<r \leq r_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap E P(f)} x$.

Proof. Putting $A=0$ in Theorem 3.2, we obtain the desired result.
Theorem 4.3. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by $x_{1}=x \in C, C_{1}=C$ and

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
w_{n}=\alpha_{n} S x_{n}+\left(1-\alpha_{n}\right) P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, n \in \mathbb{N}
\end{array}\right.
$$

where $0<a \leq \lambda_{n} \leq b<\frac{1}{k}, 0<c \leq \alpha_{n} \leq d<1$ and $0<r \leq r_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A)} x$.
Proof. Putting $f(x, y)=0$ for all $x, y \in C$ in Theorem 3.1, we obtain the desired result.
Theorem 4.4. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of C into itself such that $F(S) \cap V I(C, A) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C generated by $x_{1}=x \in C, C_{1}=C$ and

$$
\left\{\begin{array}{l}
y_{n}=P_{C}\left(x_{n}-\lambda_{n} A x_{n}\right) \\
w_{n}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) S P_{C}\left(x_{n}-\lambda_{n} A y_{n}\right) \\
C_{n+1}=\left\{z \in C_{n}:\left\|w_{n}-z\right\| \leq\left\|x_{n}-z\right\|\right\} \\
x_{n+1}=P_{C_{n+1}} x, n \in \mathbb{N}
\end{array}\right.
$$

where $0<a \leq \lambda_{n} \leq b<\frac{1}{k}, 0<c \leq \alpha_{n} \leq d<1$ and $0<r \leq r_{n}$. Then $\left\{x_{n}\right\}$ converges strongly to $P_{F(S) \cap V I(C, A)} x$.
Proof. Putting $f(x, y)=0$ for all $x, y \in C$ in Theorem 3.2, we obtain the desired result.

References

[1] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994) 123-145.
[2] V. Colao, G. Marino and H.-K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl. 344 (2008) 340-352.
[3] P.L. Combettes and A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005) 117-136.
[4] S. Itoh and W. Takahashi, The common fixed point theory of singlevalued mappings and multivalued mappings, Pacific J. Math. 79 (1978) 493-508.
[5] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, Matecon, 12 (1976) 747-756.
[6] F. Kosaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM. J. Optim. 19 (2008) 824-835.
[7] F. Kosaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008) 166-177.
[8] N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 128 (2006) 191-201.
[9] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372-379.
[10] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
[11] R.T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970) 75-88.
[12] R. Shinzato and W. Takahashi, A strong convergence theorem by a new hybrid method for an equilibrium problem with nonlinear mappings in a Hilbert space, Cubo 10 (2008) 15-26.
[13] A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in Nonlinear analysis and Convex Analysis, W. Takahashi and T. Tanaka (eds.) Yokohama Publishers, Yokohama, 2007, pp. 609-617.
[14] A. Tada and W. Takahashi, Weak and strong convergence theorems for a nonexpansive mapping and equilibrium problem, J. Optim. Theory Appl. 133 (2007) 359-370.
[15] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007) 506515.
[16] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[17] W. Takahashi, Y. Takeuchi and R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 341 (2008) 276-286.
[18] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory. Appl. 118 (2003) 417-428.

S. Dhompongsa

Department of Mathematics, Faculty of Science, Chiang Mai University
Chiang Mai, 50200, Thailand
E-mail address: sompongd@chiangmai.ac.th

W. Takahashi

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology
Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan
E-mail address: wataru@is.titech.ac.jp
H. Yingtaweesittikul

Department of Mathematics, Faculty of Science, Chiang Mai University
Chiang Mai, 50200, Thailand
E-mail address: $\mathrm{g} 4825119 @ \mathrm{~cm}$. edu

[^0]: * \ddagger The authors would like to thank the Thailand Research Fund (grant BRG5080016) and the Development and Promotion of Science and Technology Talent Project (DPST) for their support.
 ${ }^{\dagger}$ The author is partially supported by Grant-in-Aid for Scientific Research No. 23540188 from Japan Society for the Promotion of Science.

