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STRONG CONVERGENCE THEOREMS FOR EQUILIBRIUM
PROBLEMS WITH NONLINEAR OPERATORS IN HILBERT
SPACES
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Abstract: In this paper, we introduce an iterative sequence for finding a common element of the set of fixed
points of a nonspreading mapping, the set of solutions of an equilibrium problem and the set of solutions
of the variational inequality problem for a monotone and Lipschitz-continuous mapping in a Hilbert space.
We show that the sequence converges strongly to a common element of the above three sets.
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Introduction

Let C be a closed convex subset of a real Hilbert space H. Let f be a bifunction of C' x C
into R, where R is the set of real numbers. The equilibrium problem for f: C'x C' — R is
to find x € C such that

flz,y) =0 (1.1)

for all y € C. The set of solution (1.1) is denoted by EP(f). A mapping A of C into
H is called monotone if (Au — Av,u —v) > 0 for all u,v € C. The variational inequality
problem is to find v € C such that (Au,v — u) > 0 for all v € C. The set of solutions
of the variational inequality problem is denoted by VI(C, A). A mapping A of C into H
is called a-inverse-strongly monotone if there exists a positive real number « such that
(Au — Av,u — v) > af|Au — Av||? for all u,v € C. It is obvious that any a-inverse-strongly
monotone mapping A is monotone and Lipschitz continuous; see, for example, [18]. A
mapping S of C into itself is called nonexpansive if ||Su — Sv|| < ||lu —v| for all u,v € C.
A mapping S of C into itself is called nonspreading [6, 7] if

2)1Su — Sv|* < ||Su —v||* + ||Sv — ul?

for all u,v € C. We denote by F(S) the set of fixed points of S. Recently, in the case when
S is a nonexpansive mapping, Nadezhkina and Takahashi [8] introduced an iterative process
for finding the common element of the set F'(S) and the set VI(C, A) for a monotone and
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Lipschitz-continuous mapping by using the extragradient method introduced in Korpelevich
[5]. On the other hand, Tada and Takahashi [13, 14] and Takahashi and Takahashi [15]
obtained weak and strong convergence theorems for finding a common element of the set
EP(f) and the set F(S) in a Hilbert space. Very recently, Shinzato and Takahashi [12]
established a strong convergence theorem for finding a common element of the set EP(f),
the set VI(C, A) for an inverse-strongly monotone mapping and the set F(S) of a nonex-
pansive mapping in a Hilbert space by using the shrinking projection method introduced in
Takahashi, Takeuchi and Kubota [17]. We know also a strong convergence theorem [2] for
finding a common element of the set EP(f) and the set of fixed points of a finite family of
nonexpansive mappings in a Hilbert space.

In this paper, motivated by Shinzato and Takahashi [12] and Nadezhkina and Takahashi
[8], we prove a strong convergence theorem for finding a common element of the set EP(f),
the set VI(C,A) for a monotone, Lipschitz-continuous mapping and the set F(S) of a
nonspreading mapping in a Hilbert space by using the shrinking projection method and the
extragradient method.

Preliminaries

In this paper, we denote by N the set of positive integers and by R the set of real numbers.
Let H be a real Hilbert space with inner product (-,-) and norm || - ||. #, — x implies that
{zn} converges strongly to x. x, — z means that {z,} converges weakly to x. In a real
Hilbert space H, we have

Az + (1= Nyl = AMz]? + (1 = Dyl* = A1 =Nz - y]?
for all z,y € H and A € [0,1]. For every point « € H, there exists a unique nearest point
in C, denoted by Pcz, such that ||x — Poz|| < ||z — y|| for all y € C. The mapping Pc is
called the metric projection of H onto C. We know that P¢ is a nonexpansive mapping of

H onto C'. It is also known that Pg is characterized by the following properties: Pox € C
and (z — Pox, Pox — y) > 0,

lz = ylI* > |l = Peal® + |ly — Pex| (2.1)

for all x € H and y € C. Let A be a monotone mapping of C into H. In the context of the
variational inequality problem, this implies

u € VI(C,A) & u= Po(u— NAu)

for all A > 0. It is also known that H satisfies the Opial condition [10]. That is, for any
sequence {x,} with z,, — z, the inequality

liminf ||z, — 2| < liminf ||z, — y||
n— oo n—oo

holds for every y € H with y # x. We also know that H has the Kadec-Klee property, that
is, z, — z and ||z, || — ||z|| imply z,, — x. In fact, from

lzn = 21 = llznll* = 2@n, @) + |2,

we get that a Hilbert space has the Kadec-Klee property. An operator A : H — 27 is said
to be monotone if (z; — x9,y1 — y2) > 0 whenever y; € Azy and yo € Axs. Let A be a
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monotone and k-Lipschitz-continuous mapping of C' into H and let Nov be the normal cone
toCatveC, ie, Nov={we H: (v—u,w) > 0,Vu € C}. Define

Av+ Nov, if veC,
Tv =
0, if vé¢dC.

Then, T is maximal monotone and 0 € T if and only if v € VI(C, A); see [11]. For solving
the equilibrium problem for a bifunction f : C' x C' — R, let us assume that f satisfies the
following conditions:

(A1) f(z,z) =0 for all z € C;
(A2) f is monotone, i.e., f(z,y)+ f(y,z) <0 for all z,y € C;
(A3) for each z,y,z € C, ltii(r)lf(tz + (1 =t)x,y) < f(z,y);

(A4) for each z € C,y — f(x,y) is convex and lower semicontinuous.
We know the following lemmas.
Lemma 2.1. The following equality holds in a Hilbert space H: For all u,v € H,
lu = vl* = [Jul® = [Jv]]* = 2(u — v, v).

Lemma 2.2 ([1]). Let C be a nonempty closed convex subset of H and let F' be a bifunction
of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists z € C such
that

1
fem) + =z 0 20
for ally € C.
Lemma 2.3 ([3]). Assume that f:C x C — R satisfies (A1)—-(A4). Forr >0 and x € H,
define a mapping T, : H — C as follows:
1
T.(z)={z€C: f(zy) + ;T(y—z,z—x) >0, VyeC}
for all x € H. Then, the following hold:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, i.e., for any x,y € H,
|Tr2 — Tv"y”2 < (Trx - Ty, x —y);
(3) F(T:) = EP(f);
(4) EP(f) is closed and convez.
We know also the following result.

Lemma 2.4. Let C' be a nonempty closed convex subset of H. Let S be a nonspreading
mapping of C into itself with F(S) # (. Then, F(S) is closed and convez.

Proof. A mapping S : C' — C is nonspreading, i.e.,
2[|Su — Sv||? < ||Su—v|? + ||Sv — ul?

for all u,v € C. If v = Sv, then we have 2||Su — v|? < [|Su — v||* + ||v — u||?> and hence
|Su—v||?> < ||v—u||?. This implies that S is quasi-nonexpansive. So, we have from [4] that
F(S) is closed and convex. O
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Main Results

In this section, we prove two strong convergence theorems for monotone mappings and
nonspreading mappings with equilibrium problems in a Hilbert space. First, we prove a
strong convergence theorem by the shrinking projection method [17].

Theorem 3.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C x C to R satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous
mapping of C into H and let S be a nonspreading mapping of C into itself such that F(S)N
VI(C,A)NEP(f) # 0. Let {zn} be a sequence in C generated by v1 =z € C, C; = C and

f(tn,y) + 2=y = tn,up — 20) 20, Wy eC,
Yn = Po(un — AnAuy),

Wy, = STy + (1 — an) Po(un — AnAyn),
Cnt1={z€Cn: |lwn — 2| < [lzn — 2|},
Tny1 = Po, o, n €N,

1
wher60<a§)\n§b<g,0<c§an§d<1(md0<r§rn. Then {x,} converges

strongly to Pp(s)nvi(c,Anep(f)T, where Ppisynvic,anep(f) 8 the metric projection of H
onto F(S)NVI(C,A)NEP(f).

Proof. Put v, = Po(u, — A\yAyy) for every n € N and take
¥ e F(S)NVI(C,A)NEP(f).

Then, we have ©* = Po(x* — A\, Ax*) = T, x*. We first show by induction that
F(S)NVI(C,A)NEP(f)CC,

for all n € N. It is obvious that F'(S)NVI(C,A)NEP(f) C C, = C. Suppose that
F(S)NVI(C,A)NEP(f) C Cy

for some n € N and take z* € F(S)NVI(C,A)NEP(f) C C,. Then, we have from (2.1)
and Lemma 2.1 that
||U7l - x*HQ S Hun - )\nAyn - J}*”Q _ ”un - A1’L‘4yn - Un||2
= Hun - x*||2 - ||>‘nAyn||2 = 2(up — M AYn — 2, A\ Ayn)
— [lun — Un||2 + ||/\nAyn||2 + 2(un — A AYn — U, AnAyn)
= |l — 21> = [|un — va||* 4+ 2(z* — vy AnAyy)
= |Ju, — :c*||2 — |Jun — vn||2 + 20\ (Ayp, & — vy)
= [lup — 2*)1* = Jlun — vn?
+ 2>‘n(<Ayn - Ax*,x* - yn> + <A1'*,£C* - yn> + <Ayn7yn - Un>)
< Hun - x*”Q - ||un - Un||2 + 2/\n<Ayn7yn - vn>
= Hu’ﬂ - ‘T*H2 - ||’U,n - y7l||2 - 2<u’ﬂ —YnsYn — Un> - Hyn - Un||2
+ 22 (AYn, Yn, — Un)
= lun — 21> = lun — yall® = llyn — vall?

+ 2<un - )\nAyn —Yn,Un — yn>
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From y,, = Po(u, — Ay Au,), we have

(Un = A AYn = Yns Un — Yn)

Since a? + b2 > 2ab for all a,b € R, we have that

lon = 2% < llun = 2*)1* = lun = yull* = llyn — vall?
+ 20nkl[un = ynllllon — yall
< lun = 2™ = llun = yall* = llyn — val®
+ ALK [un = ynll® + llvn — ya?
= llun — 2" [* + A0k = Dllun — yall*.

So, we have from w,, =T, z,, «* =1, z* and /\ka2 < 1 that

lwn —2*[* = [lan (Szy — 2*) + (1 = @) vy — 2|
< an|[Sap — 2*[1* + (1 — ag) vn — 2"
< apllzn = 2*|P + (1 - an)[Jup — 27|
+ (1= an) ALk = 1)lun — yal? (3.1)
= a2, — x*”Q + (1= a1y, 20 — Trnx*HZ
+ (1= an) ARk = 1)lun — ya?
< apllzn — x*”Q + (1 —an)llzn — x*HQ
+ (1= an) ARk = 1)lun — ya?
= Jlan — 2| + (1 = an) LA = 1)llun — ynl® (3.2)
< g — 2|
Then z* € C,4+1. This implies that F(S)NVI(C,A)NEP(f) C C, for all n € N. Next, we
show that C,, is closed and convex for all n € N. It is obvious that Cy = C is closed and

convex. Suppose that C), is closed and convex for some n € N. For z € C,, , we know from
Nakajo and Takahashi [9] that ||w, — 2| < ||z, — || is equivalent to

lwn — 2nl|? + 2(wy — T, 2n — 2) < 0.

So, Cy11 is closed and convex. Then for any n € N, C,, is closed and convex. From z, =
Pc, x, we have (x —x,, xp,—z) > 0 for all z € C,,. Since z* € F(S)NVI(C,A)NEP(f) C Cp,
we also have (z — z,, 2, — 2*) > 0. So, we have
0<(x—xp,xp — 2"y =(x —xp,zp —x+z—2%)
=—(x —Tp, T — Xp) + (& — Tp,x — ")
< —llz = zl® + |z = znlllz — 2.

This implies that |z — z,|| < ||z — z*||. From z,, = P¢, x and x,,+1 = P
we also have

i € Crpr C Ch,

(x — Tpy Ty, — Tpy1) > 0. (3.3)



148 S. DHOMPONGSA, W. TAKAHASHI AND H. YINGTAWEESITTIKUL

From (3.3), we have that for n € N,

0<(x—2n, Ty —Tpq1) = (T — Tp, Tpp =T+ T — Tyy1)

=—(x—zp,c—x)+ (T —Tp, T — Tpt1)

IN

—llz = znl* + ll# = @nllllz — zaga

and hence ||z —z,|| < ||z —xp+1]|. Thus {||z, —z||} is bounded and monotone and increasing.

So, lim |z, — x| exists. Next, we show that lim ||z, — zp+1] = 0. In fact, from (3.3) we
n—oo n— oo

have

ln = @i |* = llon — 2 + 2 — 2pia||?
= llen — 2l® + 2(en — 2,2 = 2p41) + [z — 2o |
=z — 2l + 2(n — 230 — T+ T — Tns) + 7 — T
=l — I + 200 — 2,20 — Tns1) + 12— T |
R P LI P )
Since nlgr;o lxn, — x| exists, we have that nh_)rr;o |xrn — Znt1]l = 0. From 2,41 € Cpy1 C Cp,

we have
[wn = Znll < lwn = Tog1 || + |Tnt1 — zull < 2[Tpg1 — 2]l

Then lim ||w, — 2,| = 0. Further, from
n—roo

0 < [l — 2*[|* = [Jwn — 27|
= ([lzn = 2"l + lwn = 2" (l2n — 27| = [wn — 27])
< ([len = 2% + [lwn = 2*[l2n = wa] =0,
we obtain
lzn — 2| = [lwn —2™]|* — 0.
From (3.2), we also obtain

1
(1= an)(1 — AZR?)

lun = ynll* < (lwn = 2" [I* = llwn — 2*[|*)

and
Hyn - Un||2 = HPC(un — AMAuy,) — PC(Un - /\nAyn)||2
S Hun - )\nAun - (un - )‘nAyn)Hz
= M Ay — A Auy, ||
< ALK |y — un®.
Then we have le |, — Ynll = 0 and le llyn, — vn]| = 0. Consider

l|wn — 1'*”2 =T, zn — Trn:c*||2
< <T7-".75n - Trnx*van - $*>

= —(up — 2", 2% — xy,)

1
= 5 (llun = |+ llon — 21 = llzn — unl®).
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Then

lun = 2*[* < llon = "1 = o — unl® < [lon —27]% (3-4)

From this equality and (3.1), we have
lwn = 2|1 < anllzn — 272 + (1 = o) llun — 27|

< apllen ="+ (1= an)lzn — 2" = (1 = an)llzn — unl®.

So, we have
1

Hxn_unHQ < (||xn—x*||2— ||wn_x*H2)7

n
which implies that lim ||z, — u,| = 0. Since o, (Sz, — 25) = Wy — (1 — @)y — Apy, we
n— o0

have

an||STn — 2 || < |lwn — vl + [[vn — T4l
< wn = @l + 2[lon — 24|

< lwn =zl + 2(lvn = yall + lyn — unll + lun = znl)).

So we obtain lim [|Sx, —z,| = 0. Since {z,,} is bounded, there exists a subsequence {x,, }
n—oo

of {x,} such that a,,, — p for some p € C. From ||z, — Sz,| — 0, we have Sz,, — p. Next,
let us show p € F(.S). Since S is nonspreading, we have

2(|Sxn, — Spl* < ||Szn, — p|| + [0, — Sp|?
= ||S'rnz _p||2 + ||xn1 - S'rnz”Q + 2<x'fh - anwsmni - Sp>
+ ”anl - SpHQ'

Then

HS:ET% - Sp||2 < ||S‘T’m - pH2 + ||‘T’m - S‘T’m ”2 + 2<$m - Smﬂl’sxm - Sp>
Suppose Sp # p. From Opial’s theorem [10] and lim [|Sz,, — z,| = 0, we obtain

n—oo
liminf|| Sz, — p||* < liminf ||Sz,, — Sp||*
71— 00 11— 00
< hmlnf(stm - p”2 + ||xm - S"Bm H2 + 2<xni - anw anz - Sp>)
11— 00

= liminf || Sz, — p|>.
11— 00

This is a contradiction. Hence Sp = p. Next, let us show p € VI(C, A). Let

Av+ Neov, if veC,
Tv =
0, if v¢C.
Then, from [11] T is maximal monotone and 0 € Tw if and only if v € VI(C,A). Let
(v,w) € G(T). Then, we have w € Tv = Av + Ngv and hence, w — Av € Ngv. So, we
have (v — u,w — Av) > 0 for all w € C. On the other hand, from v, = Po(un, — A\ Ayn)

”";“” + Ay,) > 0.

and v € C, we have (u, — A\ AYn, — Up, v, — v) > 0 and hence (v — vy,
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Therefore, from w — Av € Ncv and v,, € C, we have

(V= vp,;,w) > (v —vy,, Av)

> (v — vy, Av) — (U — Uy, Oni — Uiy Ayn,)
M,
= (U — Vp,, Av — Avy,,) + (v — vy, AVn, — Ayn,)
Uy — Un,
— (v — vy, T
> (0= vy, Avi, = Ayn,) = (v = vn,, 1),
n;
Since lim |jvp, — x,|| = 0, lim ||v, — u,|| = 0, lim ||y, — v,|| = 0 and A is Lipschitz
n—o0 n—o00 n—o00

continuous, we obtain (v — p,w) > 0. Since T is maximal monotone, we have p € T-10 and

1
hence p € VI(C, A). Let us show p € EP(f). Since f(un,,y) + r—(y — Up,, Un; — Tp,;) >0

for all y € C. From (A2), we also have

1
—(y — Un;y Un; — x”7> > f(yaum)

Tr;
and hence
Up, — Tn,
<y = Un;, u> > f(yvunl)
nq
From lim |lu, — x,|| = 0, we get u,, — p. Since O — One 0, it follows by (A4) that
n—roo

T,
0> f(y,p) forally € C. For t with 0 <t < 1landy € C, let y; = ty + (1 — ¢)p. From
y,p € C, we have y; € C and hence f(y;,p) < 0. So, from (Al) and (A4) we have

0= f(yeye) <tf(ye,y) + (1 =) f(ye, p) < tf (ye,y)
and hence 0 < f(yt,y). From (A3), we have 0 < f(p,y) for all y € C and hence p € EP(f).
Thus p € F(S)NVI(C,A)NEP(f). Let
" = Ppsynvric,anep(f)T S Cny1-

From z,+1 = Pc, , ,x, we have || — 2,41 <[]z — p*||. Hence, we have

n41

[z —p*[| < [z — pl| < liminf ||z — @y, || <limsup ||z — @y, || < [z - p*[|.
1—00 i—00

So, we obtain lim ||z — z,,|| = ||z — p|| = ||z — p*|| and p = p*. We can conclude that
71— 00
Tn — p* = Pp(s)nvic,anep(f)2- This completes the proof. O

Next, we prove another strong convergence theorem which is different from Theorem 3.1.

Theorem 3.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C x C to R satisfying (A1)-(A4) and let A be a monotone and k-Lipschitz continuous
mapping of C into H and let S be a nonspreading mapping of C into itself such that F(S)N
VI(C,A)NEP(f) # 0. Let {xn} be a sequence in C generated by v1 =z € C, C; = C and

f(un,y) + %@ = Un,Up — Tp) >0, Vyel,
Yn = Po(un — AnAuy),

Wy, = any + (1 — ay)SPe(un — M Ayn),
Cry1 ={2 € Cn : [wy — 2[| < |lzn — 2|1},

Tni1 = Po, @, n €N,
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1
where 0 < a < X\, <b< E,O<c§an§d<1 and 0 < r < r,. Then {x,} converges
strongly to Pr(synvi(c,A)nEP(f)T-

Proof. Put v, = Po(u, — A Ay,) for every n € N and take
z* e F(S)NVI(C,A)NEP(f).
Then, we have ©* = Po(a* — A\, Ax*) = T, x*. We first show by induction that
FS)NVI(C,A)NEP(f) C Cy,
for all n € N. Tt is obvious that F'(S)NVI(C,A)NEP(f) C C; = C. Suppose that
F(S)NVI(C,A)NEP(f) C C,
for some n € N. Let * € F(S)NVI(C,A)NEP(f) C C,. Following the proof of Theorem
3.1, we have
[on = 2 )|* < [lun — 2| + (AA? = Dlug — ya .
Hence
[wn — 2| = lam (@ — %) + (1 = ap)(Sv, — 2*) |
< apl|zn — 33*”2 + (1 = an)[[Svn — x*”Q
< apllen — 2| + (1= an)llvn — 2|12
< ap|lzn - 33*”2 + (1= ap)|lun — x*”Q
+(1— an)(Aik2 = Dfun — yn||2
< apllen — a2 |? + (1= ap)llzn — 2™
+ (1= an) (ALK = D)llun — ynl®
= flzn — [P+ (1= an) ARK* = Dllun — ynl® (3.5)
< g — 2|2

Then z* € C,+1. This implies that F(S)NVI(C, A)NEP(f) C C, for all n € N. Next, we
can follow the proof of Theorem 3.1 to show

1. C, is closed and convex for all n € N.

2. {||zn — ||} is bounded, monotone and increasing and lim ||lx, — z|| exists.
n—o0
3. nl;rrgo |xn — nt1] = 0.
4. lim |Jw, — 2, = 0.
n—oo
5. lim |lup, —ynl =0, lim ||y, —vy|| =0and lim |z, —u,|| =0.
n— oo n—oo n—00

Since (1 — ay,)(Svy, — vp) = Wy, — apzy — (1 — ay)vy,, we have
(1 = an)|Svn — vl < lJwn — vl + |lvn — 24|
< ||wn - InH + 2||Un - xn”

< wn = 2all + 2(lvn = ynll + llyn = wnll + lun = znl]).
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Therefore, we also obtain lim | Sv, — v,| = 0. As {v,} is bounded, there exists a subse-
n— oo
quence {vy,} of {v,} such that v,, — p for some p € C. From lim |Sv, — v,| = 0, we
n—oo

obtain Sv,, — p. Next, let us show p € F(S5).
20, pl” < 0, — pl* + 1o, — S
= ”Svm 7p||2 + ||’Un7 - Svm”2 + 2<Un7: - Svni’svni - Sp>
+[|Svn, — SplI*.
Then we have

||Svm - Sp||2 < ”Svm _pH2 + ||Um - Svni 2 + 2<vni - Svnwsvni - Sp>

Suppose Sp # p, From Opial’s theorem [10] and lim ||Sv,, —v,|| = 0, we obtain
n—oo

liminf||Sv,, — p||* < liminf||Sv,, — Sp||?
11— 00 1— 00

? + 2<vni - S’Uﬂwsvm - Sp>)

<l inf([|Svn, = pl? + [[vn, — Svn,
1— 00

= liminf || Sv,, — p||*.
71— 00

This is a contradiction. Hence Sp = p, i.e., p € F(S). Following the proof of Theorem 3.1,
we get p € VI(C, A), p € EP(f) and x,, — p* = Pp(s)nvI(c,A)nEP(f)T- O

Applications

Using Theorems 3.1 and 3.2, we prove four theorems in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C x C to R satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself
such that F(S)NEP(f) # 0. Let {x,} be a sequence in C generated by x1 =z € C, C; =C
and

Wy, = an Sty + (1 — apn) Ty, Tn,

Cry1={2 € Cn : lwn — 2| < [lzn — 2[[},

Tn+l = PCn+1x7 ne Na

1
where 0 < a <Ay <b< 1, 0<c<ay <d<land0<r<r,. Then {z,} converges
strongly to Pr(synEP(5)®-

Proof. Putting A =0 in Theorem 3.1, we obtain the desired result. O

Theorem 4.2. Let C be a closed convex subset of a Hilbert space H. Let f be a bifunction
from C x C to R satisfying (A1)-(A4) and let S be a nonspreading mapping of C into itself
such that F(S)NEP(f) # 0. Let {z,} be a sequence in C generated by x1 =z € C, C; =C
and

Wy = QpTp + (1 - an)STrnxna

Cnpr={z€ Cn: lwn — 2| < [lan — 2]},

Tny1 = Po, o, n €N,

1
whereO<a§)\n§b<E,0<c§an§d<1and0<r§7’n, Then {x,} converges

strongly to Pr(synEp(5)®-
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Proof. Putting A =0 in Theorem 3.2, we obtain the desired result. O

Theorem 4.3. Let C be a closed convex subset of a Hilbert space H. Let A be a monotone
and k-Lipschitz continuous mapping of C into H and let S be a nonspreading mapping of
C into itself such that F(S)NVI(C,A) # 0. Let {x,} be a sequence in C generated by
rn=x€C, C,=C and

Yn = Po(xn, — A\pAxy,),
Wy, = ST, + (1 - an)PC'(xn - )‘nAyn)7
Crn1 ={z € Oy |wy, — 2[| < [lzn — 21},
Tny1 = Pc, .z, n €N,

1
where 0 < a < X\, < b< E,O<c§ozn§d<1 and 0 < r < r,. Then {x,} converges
strongly to Pr(s)nvi(c,a)T-
Proof. Putting f(z,y) = 0 for all z,y € C in Theorem 3.1, we obtain the desired result. [
Theorem 4.4. Let C be a closed convexr subset of a Hilbert space H. Let A be a monotone
and k-Lipschitz continuous mapping of C' into H and let S be a nonspreading mapping of
C' into itself such that F(S)NVI(C,A) # 0. Let {z,} be a sequence in C generated by
r1=x€C, Cy =C and
Yn = PC(xn - A1’L14xn)7
Wy, = QpZy + (1 — ap)SPo(x, — A\ Ayn),
Cry1 ={z € Cp: flun — 2| < [lon — 2|},
Tny1 = Po,,, @, n €N,
1
where 0 < a < X\, <b< E,O<c§an§d<1 and 0 < r < r,. Then {x,} converges
strongly to Prs)nvi(c,a)T-

Proof. Putting f(x,y) =0 for all x,y € C in Theorem 3.2, we obtain the desired result. [
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