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L.Caccetta and E.Mardaneh (2010) extend the work done by S.M.Gilbert (2000) to the
case that backorders are allowed in the model. By designing a search tree structure, the
authors find the optimal price and production plan of multiple products over a multi-period
horizon for a manufacturing system with deterministic demand/price relationship.

S.Kachani and G.Perakis (2002) study a pricing and inventory problem with multiple
products sharing production resources, and they apply fluid methodology to make their
pricing, production, and inventory decisions. In their case, they consider the sojourn or
delay time of a product in inventory, where the delay is a deterministic function of initial
inventory and price (including competitor’s prices). For the continuous time formulation,
they establish when the general model has a solution, and for the discrete case they provide
an algorithm for computing pricing policies. Fluid dynamic models are used also by E.Adida
and G.Perakis (2007) to study a make-to-stock manufacturing system by deterministic de-
mand. In that problem, they introduce and study an algorithm that computes the optimal
production and pricing policy as a function of the time on a finite time horizon, and discuss
some insights. Their results illustrate the role of capacity and the effects of the dynamic
nature of demand in the model. S.Biller et al (2005) analyze a pricing and production prob-
lem where (in extensions), multiple products may share limited production capacity. When
the demand for products is independent and revenue curves are concave, the authors show
that an application of the greedy algorithm provides the optimal pricing and production
decisions.

Although numerous models have been developed to solve deterministic joint pricing and
production planning problems of multiple products, little work has been done on multi-
product systems over a multi-period horizon under uncertainty.

G.Gallego and G.Van Ryzin (1997) extend their previous work (1994), which considers a
firm producing a single product, to focus on a multi-market problem, with multiple products
sharing common resources. They model demand as a stochastic point process function of
time and the prices of all products: the vector of demand for n products, λ = (λ1, λ2, . . . , λn),
is determined by time and the vector of prices, p = (p1, p2, . . . , pn). Revenue is assumed to
be concave, and the null price condition (price is set to infinity when inventory is zero) as
applied. G.Gallego and G.Van Ryzin (1997) formulate a deterministic problem, which they
show gives a bound on the expected revenue. This problem also motivates the creation of
a make-to-stock (MTS) and a make-to-order (MTO) heuristic. The MTS heuristic requires
that all products be preassembled, and the price path is determined from the deterministic
solution. The MTO heuristic also uses the prices from the deterministic solution but pro-
duces and sells products as they are requested. An order is rejected if the components are
not available to assemble it. The authors show that each of these heuristics is asymptotically
optimal as the expected sales increases.

L.M.Chan et al (2006) consider a general stochastic demand function over multiple peri-
ods, where production capacity is limited but set-up costs are not incurred. Excess demand
is lost, and sales are discretionary, i.e., inventory may be set aside to satisfy future demand
even at the expense of lost sales in the current period. The authors develop a dynamic
programming model that solves the problem to optimality for discrete possibilities of fixed
prices and compares the results to a deterministic approach.

E.Adida and G.Perakis (2006) use robust optimization and fluid dynamic models to study
a make-to-stock manufacturing system with uncertain demand. They show that the robust
formulation is of the same order of complexity as the nominal (deterministic) problem and
demonstrate how to adapt the nominal solution algorithm to the robust problem.

Generally in the case of uncertainty, it has been assumed that the demand has some
known portion based on price (e.g., linear demand curve), with an additional stochastic ele-
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ment. However, in this paper we deal with problems in which the demand/price relationship
is uncertain with some known probabilities. In other words, we consider a discrete set of
scenarios for the relationship between the chosen price and induced market demand.

The application that motivated this research is manufacturing pricing, where the prod-
ucts are non-perishable assets and can be stored to fulfill the future demands. We assume
that the firm is not flexible to change the price list frequently and usually has long-term
contracts with Original Equipment Manufacturers (OEMs). Additionally, in some compa-
nies, the price announcement to market is done by publishing the price lists which cannot be
adjusted easily. Hence the price change will bring a considerable cost to them. In general,
choosing a constant price over a finite horizon facilitates the maintenance of a stable set of
loyal customers.

The purpose of this paper is to develop a robust optimization (RO) model to determine
the optimal production planning and constant pricing of a manufacturing system with mul-
tiple products over a multiple period horizon to maximize the total profit which consists of
sales revenue, production and inventory holding costs under demand/price uncertainty. To
our knowledge, this is the first time that the robust optimization approach has been used
in the case of discrete time production planning and pricing.

Our paper is organized as follow: Section 2 briefly reviews the robust optimization
approach and its formulation in the case of a Linear Programming problem. Section 3
presents the deterministic model for the problem of joint pricing and production planning
and develops a robust optimization model for the uncertain case. Section 4 discusses solution
methods. Section 5 illustrates our model and its solution with two numerical examples.

2 Robust Optimization Approach

Our work is based on the robust optimization tools developed by J.M.Mulvey, R.J.Vanderbei
and S.A.Zenios (1995) which incorporates a goal programming structure with a set of sce-
narios involving stochastic inputs. Their optimization model has the following structure:

Minimize cTx+ dT y (2.1)

Subject to

Ax = b (2.2)

Bx+ Cy = e (2.3)

x ∈ Rn1 , y ∈ Rn2 and x, y ≥ 0 . (2.4)

Equation(2.2) denotes the structural constraints whose coefficients are fixed and free of noise.
Equation (2.3) denotes the control constraints. The coefficients of this constraint set are
subject to noise. Inequality (2.4) expresses the non-negativity restrictions.

To define the robust optimization problem, a discrete set of scenarios Ω = {1, 2, 3, . . . , S}
is introduced. With each scenario s ∈ Ω associate the set {ds, Bs, Cs, es} of realizations for

the coefficients of the control constraints, and the probability of the scenario Ps, (
S∑

s=1
Ps = 1)

. The optimal solution of the mathematical program (2.1)-(2.4) will be robust with respect
to optimality if it remains ”close” to optimal for any realization of the scenario s ∈ Ω. It
is then termed ”solution robust”. The solution is also robust with respect to feasibility if it
remains ”almost” feasible for any realization of s. It is then termed ”model robust”.

Because it is unlikely that any solution to problem (2.1)-(2.4) will remain both feasible
and optimal for all scenario indices S ∈ Ω, a model is needed that will allow us to measure
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the tradeoff between the solution and model robustness. The robust optimization model
proposed by J.M.Mulvey, R.J.Vanderbei and S.A.Zenios (1995) formalises a way to measure
this tradeoff.

Let {y1, y2, . . . , ys} be a set of control variables for each scenario s ∈ Ω and {z1, z2, . . . , zs}
a set of error vectors that measure the infeasibility allowed in the control constraints under
scenario s. Consider now the following formulation of the robust optimization model.

Minimize σ(x, y1, . . . , ys) + ωρ(z1, z2, . . . , zs) (2.5)

Subject to

Ax = b (2.6)

Bsx+ Csys + zs = es for all s ∈ Ω (2.7)

x ≥ 0, ys ≥ 0, for all s ∈ Ω . (2.8)

With multiple scenarios, the objective function ε = cTx + dT y becomes a random variable
taking the value εs = cTx + dTs ys, with probability Ps. Hence, there is no longer a single
choice for an aggregate objective. We could use the mean value

σ(.) =
∑
s∈Ω

Psεs (2.9)

which is the function used in stochastic linear programming formulations. In a worst-case
analysis the model minimizes the maximum value, and the objective function is defined by

σ(.) = max
s∈Ω

εs (2.10)

Both of these choices are special cases of Robust Optimization (RO).
The second term in the objective function ρ(z1, . . . , zs) is a feasibility penalty function.

It is used to penalize violations of the control constraints under some of the scenarios. The
above model takes a multi-criteria objective form. The first term measures optimality ro-
bustness, whereas the penalty term is a measure of model robustness. The goal programming
weight ω is used to derive a spectrum of values that tradeoff solution for model robustness.

The specific choice of the penalty function is problem dependent, and also has implica-
tions for the accompanying solution algorithm. There are two alternative penalty functions
considered
ρ(z1, . . . , zs) =

∑
s∈Ω

Psz
T
s zs. This quadratic penalty function is applicable to equality con-

strained problems.

ρ(z1, . . . , zs) =
∑
s∈Ω

Ps max{0, zs}. This exact penalty function applies to inequality control

constraints when only positive violations are of interest.

3 Joint Pricing and Production Planning of Multiple Products
Over a Multi-period Horizon

3.1 Notation and Model Variables

Decision variables
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pj : the price of product j, j = 1, 2, . . . , n

P : the price vector

Dj : the induced demand intensity for product j, which is a function of its price

xjt : the amount of product j produced in period t; j = 1, 2, . . . , n and t = 1, 2, . . . , T

yjt : the amount of product j held in inventory at the end of period t

X : the n× T production matrix

Y : the n× T inventory matrix

Parameters and constants

cj : the production cost of one unit of item j, j = 1, 2, . . . , n

hj : the holding cost of one unit of item j in inventory for one period

Kt : the total amount of available capacity in period t

βjt : he seasonality parameter of item j in period t

Functions

Dj(p) : the relationship between price and induced demand of j, for example: Dj(p) =
aj − bj · pj

3.2 Single Scenario Optimization Model(Deterministic Case)

The problem of jointly determining the price and production plan of multiple products over
a multi-period horizon can be modeled as follows.

3.2.1 Objective

The main components of the objective function in the problem of joint pricing and production
planning include sales revenue, production cost and holding inventory cost. So, to consider
the multi-product problem stated earlier as an aim of this paper, the objective function is
given as follows

max
P,X,Y≥0

{
π(P,X, Y ) =

n∑
j=1

T∑
t=1

pj ·Dj(p) · βjt︸ ︷︷ ︸
Revenue

−
n∑

j=1

T∑
t=1

cj · xjt︸ ︷︷ ︸
Production cost

−
n∑

j=1

T∑
t=1

hj · yjt︸ ︷︷ ︸
Inventory cost

}
. (3.1)

The first term in (3.1) is the sales revenue as a product of the chosen price and the induced
demand brought by the chosen price. The second and third terms are production and
inventory holding costs respectively.
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(3.1) can be written as

min
P,X,Y≥0

{
− π(P,X, Y ) = −

n∑
j=1

T∑
t=1

pj ·Dj(p) · βjt +
n∑

j=1

T∑
t=1

cj · xjt +
n∑

j=1

T∑
t=1

hj · yjt
}
. (3.2)

3.2.2 Constraints

n∑
j=1

T∑
t=1

βjt ·Dj(p) ≤
T∑

t=1

Kt (3.3)

xjt + yjt−1 − yjt = Dj(p) · βjt, for j = 1, . . . , n and t = 1, . . . , T (3.4)
n∑

j=1

xjt ≤ Kt, for t = 1, . . . , T (3.5)

xjt, yjt, pj ≥ 0, for j = 1, . . . , n and t = 1, . . . , T (3.6)

Constraint (3.3) ensures that only demand intensity vectors which result in a feasible
solution have been considered. Constraint (3.4) is a set of flow balance equations that ensure
that all of the induced demand is satisfied. Constraint (3.5) ensures that there is an adequate
amount of capacity in period t to produce all n items based on the plan. Inequality (3.6)
expresses the non-negativity restrictions. We have a mathematical programming problem
with a nonlinear objective and linear constraints.

3.3 Robust Optimization Model for Multiple Scenarios

We assume that in the case of uncertainty, the price / induced demand function, Dj(p), is
not known in advance. Instead there is a discrete set of scenarios by which the relationship
between price and induced demand is defined with a known probability. To find out the
effect of uncertainty on the joint pricing and production planning, we need to redefine the
objective function and some constraints, which are subject to the uncertainty, of the above
single scenario model.

First, we redefine the objective function in (3.2) under each scenario, which consists of
revenue, production cost and inventory holding cost.

RV s(revenue) =
n∑

j=1

T∑
t=1

pj ·Ds
j (p) · βjt (3.7)

PC (production cost) =
n∑

j=1

T∑
t=1

cj · xjt, and (3.8)

ICs(inventory cost) =

n∑
j=1

T∑
t=1

hj · ysjt (3.9)

In the above Ds
j (p) is the price/induced demand function of product j and ysjt is the

inventory of product j at the end of period t under scenario s ∈ Ω = {1, 2, 3, . . . , S} which
happens with a probability of Pr(s). The objective function for the joint pricing and pro-
duction planning problem with noisy data comes to a random variable with the probability
of each scenario, which is formulated as follows
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min
P,X,Y s≥0

n∑
j=1

T∑
t=1

cj · xjt +

n∑
j=1

T∑
t=1

hj · ysjt −
n∑

j=1

T∑
t=1

pj ·Ds
j (p) · βjt. (3.10)

There may be an idea that the expected objective function can be considered to cover all
possible scenarios. But the optimal solution of the expected objective function is not likely
to be optimal for all scenarios.

min
P,X,Y s≥0

∑
s∈Ω

Pr(s) ·
( n∑

j=1

T∑
t=1

cj · xjt +

n∑
j=1

T∑
t=1

hj · ysjt −
n∑

j=1

T∑
t=1

pj ·Ds
j (p) · βjt

)
=

∑
s∈Ω

Pr(s) · (PC + ICs −RV s)

(3.11)
Hence, the idea of adding a weight of the variance of the expected solution to the objective

function causes choosing such solutions which are close to optimal for all scenarios. However,
if we put a zero weight for the variance of the expected solution in the objective function,
then we would have the general form of stochastic programming problem. On the other
hand, in the case of uncertainty the matter of feasibility should be taken into account as
well as the optimality. To find a solution which remains almost feasible under all scenarios,
we penalize the violation of feasibility of each constraint subject to uncertainty.

It is worthwhile to mention that mostly the robust optimization approach has been used
in linear programming problems as developed by J.M.Mulvey, R.J.Vanderbei and S.A.Zenios
(1995), but here, we develop a nonlinear programming model with the use of the RO ap-
proach. Now, the robust optimization model for our targeted problem can be formally
expressed as

min
P,X,Y s≥0

∑
s∈Ω

Pr(s) · (PC + ICs −RV s)

+ λ
∑
s∈Ω

Pr(s) ·
[
(PC + ICs −RV s)−

∑
s0∈Ω

Pr(s0) · (PC + ICs0 −RV s0)

]2
+ ω

∑
s∈Ω

Pr(s)

[
zs +

n∑
j=1

T∑
t=1

zsjt

]
(3.12)

Subject to

n∑
j=1

xjt ≤ Kt, for t = 1, . . . , T (3.13)

n∑
j=1

T∑
t=1

βjt ·Ds
j (p)− zs ≤

T∑
t=1

Kt, for all s ∈ Ω (3.14)

xjt + ysjt−1 − ysjt + zsjt = Ds
j (p) · βjt, j = 1, . . . , n; t = 1, . . . , T. s ∈ Ω (3.15)

xjt, ysjt, pj , zs, zsjt ≥ 0. j = 1, . . . , n; t = 1, . . . , T. s ∈ Ω (3.16)

Note that zsjt is the under-fulfillment of demand of product j in period t under scenario
s. Also zs is the total under-fulfillment of demand of all products over the total planning
horizon under scenario s.
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The first and second terms in the objective function (3.12) are mean and variance of the
objective function respectively, which measure the solution robustness. The third term in
(3.12) is set to measure the model’s robustness with respect to infeasibility associated with
control constraints (3.14) and (3.15) under scenario s.

4 Solution Methods

Given the capacity limitations and uncertainty in the problems parameters, the firm must
decide upon production quantities, inventory levels for each item as well as a constant price
at which it commits to sell the products over the total planning horizon.

As already been noted, corresponding to each specific λ and ω, which define the optimal-
ity and feasibility preferences, the problem (3.12)-(3.16) comes to an optimization problem
with nonlinear objective function and linear constraints. There is a vast literature on such
problems. The book by D.G.Luenberger (2003) presents different methods designed to solve
a Nonlinear Programming problem which has n variables and m constraints. Methods de-
vised for solving this problem that work in spaces of dimension n − m, n, m, or n + m
are Primal Methods, Penalty and Barrier Methods, Dual and Cutting Plane Methods and
Lagrange Methods, respectively.

Primal methods work on the original problem directly by searching through the feasible
region, which has dimension n −m, for the optimal solution. Each point in the process is
feasible and the value of the objective function constantly improves. Penalty and Barrier
methods approximate constrained optimization problems by unconstrained problems with
adding a term to the objective function. In the case of penalty methods the term prescribes
a high cost for violation of the constraints, and in the case of barrier methods the term favors
points interior to the feasible region over those near the boundary. Dual methods are based
on the viewpoint that it is the Lagrange multipliers which are the fundamental unknowns
associated with a constrained problem. Once these multipliers are known, the determination
of the solution point is simple. Dual methods do not attack the original constrained problem
directly but instead attack an alternate problem, the dual problem, whose unknowns are
the Lagrange multipliers of the first problem. Cutting plane algorithms develop a series of
ever-improving approximating linear programs, whose solutions converge to the solution of
the original problem. Lagrange methods directly solve the Lagrange first-order necessary
conditions. The set of necessary conditions is a system of n + m equations in the n + m
unknowns.

In the computation part of this research we have utilized the existing optimization pack-
ages with the capability of dealing with the nonlinear objective functions. We use the library
subroutine ’NLPSolve’ of Maple in which there is a method option to select the proper one for
solving the specific problem, such as Quadratic Interpolation, Branch-and Bound, Modified
Newton, Nonlinear Simplex, Preconditioned Conjugate Gradient and Sequential Quadratic
Programming (SQP). According to the described criteria for each method, we have selected
SQP to optimize each NLP problem.

Our strategy to find the optimal pricing and production planning under uncertainty is to
solve a sequence of the above nonlinear programming problems for a range of λ and ω. We
first choose a fixed small value (e.g. 0.01) of λ and a considerably vast range of ω (e.g. 0-
300, with suitable increments) and find the optimal solution of each specific problem within
the selected range. We draw three different plots of all specific problems as follows, the
expected profit, the solutions standard deviation (as a measurement of the optimality) and
the demand under fulfillment (as a measurement of the feasibility). Next, if the expected
profit doesn’t level out within the chosen range of λ, we extend the range to observe a
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leveled out expected profit. By increasing the value of λ, we solve the sequence of nonlinear
problems again within the same modified range of ω. Comparing the resulted plots of the
new λ and the previous one, and bearing in the mind the decision makers preferences, the
next value of λ may be selected to continue the computation. As would be expected, the
robust zone of any specific case of joint pricing and production planning is highly dependent
on the resulting plots to compare the expected profit with the optimality and feasibility
measures.

In the next section we illustrate this RO approach and our strategy to find the robust
solution for a detailed small example. We further demonstrate the ability to handle a large,
more realistic case.

5 Numerical Example

In order to make the model more clear, two different cases are presented in this section.
First, we start modeling and solving a smaller example with n = 2 products, T = 6 periods
and Ω = {1, 2}. The second example consists of n = 10 products, T = 12 periods and
Ω = {1, 2, 3}.

5.1 Two Products, Six Periods and Two Scenarios

The parameters for the example are as shown in Table 1.

Table 1: Parameters of the example

We assume a fixed production capacity, Kt = I40, for all periods in the planning horizon.

Here we bring the problem formulation based on the proposed RO approach as follow

RV 1 = 6p1(150− 5p1) + 6p2(150− 5p2) = 900p1 + 900p2 − 30p21 − 30p22
RV 2 = 6p1(150− 4p1) + 6p2(150− 4p2) = 900p1 + 900p2 − 24p21 − 24p22
PC = 16(x11 + x12 + x13 + x14 + x15 + x16) + 11(x21 + x22 + x23 + x24 + x25 + x26)
IC1 = 6(y111 + y112 + y113 + y114 + y115) + 2.5(y121 + y122 + y123 + y124 + y125)
IC2 = 6(y211 + y212 + y213 + y214 + y215) + 2.5(y221 + y222 + y223 + y224 + y225)

min PC + 0.8(IC1 −RV 1) + 0.2(IC2 −RV 2)
+0.8λ[0.2(IC1 −RV 1)− 0.2(IC2 −RV 2)]2

+0.2λ[0.8(IC12 −RV 2)− 0.8(IC1 −RV 1)]2

+0.8ω[z1 + z111 + z112 + z113 + z114 + z115 + z116 + z121 + z122 + z123 + z124 + z125 + z126]
+0.2ω[z2 + z211 + z212 + z213 + z214 + z215 + z216 + z221 + z222 + z223 + z224 + z225 + z226]

Subject to
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x1t + x2t ≤ 140 for t = 1, . . . , 6

6(150− 5p1) + 6(150− 5p2)− z1 ≤ 840

6(150− 4p1) + 6(150− 4p2)− z2 ≤ 840

xjt + ysjt−1 − ysjt + zsjt = Ds
j (p) · βjt, for j = 1, 2; t = 1, . . . , 6 and all s ∈ {1, 2}

xjt, y
s
jt, pj , z

s, zsjt ≥ 0, for j = 1, 2; t = 1, . . . , 6 and all s ∈ {1, 2}.

The Nonlinear Programming problem has been solved for a range of λ and ω. The optimized
value of the decision variables can be obtained for each specific problem with a particular λ
and ω.

Based on the decision maker’s preferences the violation of the optimality and feasibility
can be penalized by choosing the appropriate value for λ and ω respectively. The higher
value of results in a solution with less standard deviation from the expected one and a
big ω brings more feasibility to all control constraints under each scenario. Hence, a single
decision cannot be made instantly for this type of problem with uncertainty; instead there
should be a reasonable discussion revealing the importance of the optimality and feasibility
for each case.

Now we bring the result of the specific problem for a chosen range of ω(0 − 200) and
some fixed value of λ(0.01, 0.1, 1).

Figure 1: The expected total profit

As can be seen, the expected profit drops dramatically when the value of ω increases by 20.
Since then, by increasing the value of ω, the change of expected profit is not considerable.
When the value of λ rises from 0.1 to 1, we can say that the total profit remains very
similar. As a result, choosing the preferred λ depends on the other aspects of the decision
making, which are optimality and infeasibility measurements illustrated in the following
figures. Figure 2. illustrates the solution’s standard deviation as a percentage of the expected
total profit, which is actually an indicator of the optimality. Figure 3. shows the total
demand under-fulfillment as a percentage of the total expected demand, which measures the
feasibility.

Figure 2: The solution’s standard deviation
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As should be expected, we are interested in the smaller values on this figure, because
they give a better solution regarding the optimality. Like the previous figure, by increasing
the value of λ from 0.1 to 1, the solution’s standard deviation does not change significantly.
So, to choose the preferred λ we need the result of the feasibility measurement to be able to
summarize the robust decision making.

Figure 3: The total demand under-fulfillment

By increasing the value of ω from zero to 10, the percentage of demand under-fulfillment
drops sharply. Also by raising λ, the amount of unsatisfied demand will be increased too.
But, because at any nonzero rate of ω the under-fulfillment is less than five percent, we do
not have too much concern about choosing larger values for λ which brings more optimality.
In other words, for finding the robust answer to this specific example, we just consider first
and second figures as the mean and standard deviation of the solution respectively.

By finding the optimal solution for λ = 10 over the same range of ω and comparison to
the above plots, it can be seen that almost all the results remain similar. As a result, λ = 1
and ω = 20 to 30 provides a reasonable zone to find the robust solution of the problem. As
an example we present the output within the robust zone for λ = 1 and ω = 20.

The total expected profit: 4971.1

The standard deviation: 0.0084%

The total under-fulfillment: 0

x11 = 23.0844 x12 = 19.2370 x13 = 7.6948 x14 = 7.6948 x15 = 57.7110 x16 = 63.6037

x21 = x22 = x23 = x24 = x25 = x26 = 51.7045

p1 = 22.3051 p2 = 19.6590

5.2 Ten Products, Twelve Periods and Three Scenarios

We now discuss a realistic size problem in manufacturing pricing, where the firm is not
flexible to change the price list frequently and usually has long-term contracts with Original
Equipment Manufacturers (OEMs). It is reasonable to expect that in a real situation the
number of product classes, which do not have cross price dependency in their demand func-
tion is not too large. So the assumption of n = 10 can cover a large number of applications.
Besides, by considering T = 12 we are catering for a whole year of planning on a monthly
basis, which is logical for constant pricing. Our three scenarios present good, moderate and
weak market situations. For such a realistic size example, Maple is efficient.

The parameters for this example are as shown in Table 2.

We assume a fixed production capacity, Kt = 100, for all periods in the planning horizon.
Similar to the previous example, the results for this specific problem include the expected
profit, the standard deviation of the solution and the total demand under-fulfillment shown
as follow
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Table 2: Parameters of the example

Scenario Dj(pj)
Pr(s=1)=0.7 150− 5pj
Pr(s=2)=0.2 150− 4.5pj
Pr(s=3)=0.1 150− 4pj

Figure 4: The expected total profit

Figure 5: The solution’s standard deviation as a percentage
of the expected total profit

Figure 6: The total demand under-fulfillment as a percentage
of the expected total demand

As can be seen, the expected profit in the case of λ = 0.1 and λ = 1 remains very similar.
We need to consider the optimality and infeasibility measurements simultaneously to choose



ROBUST PRICING AND PRODUCTION PLANNING UNDER UNCERTAINTY 133

the robust zone preferred by the decision maker. If it is desired to have the demand satisfied
as much as possible, we might choose λ = 0.01 and ω = 80 to 90 which results in the smallest
possible standard deviation and the biggest possible expected profit within the chosen range
of λ and ω.On the other hand, if the decision maker is concerned more about the profit
regardless of the unsatisfied demand, we might select a bigger value of λ (like 1) and a range
of ω(like 20 − 30) after which the expected profit and infeasibility amount remain much
similar. Thus, our methodology presents tools which assist the decision maker explore the
range of possibilities.

6 Conclusion

In this paper we have presented a mathematical programming model for determining the
optimal production and constant pricing policy for a finite time horizon multiproduct pro-
duction system with capacity constraints and demand uncertainty. The production set up
cost is negligible, and demand for each product is dependent on its price, but the price /
demand function is uncertain. Our methodology makes use of Robust Optimization ideas
and our model can be effectively implemented utilizing existing computational packages (we
use Maple). We illustrate with detailed numerical examples.
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