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A way to deal with periodic variables is to explicitly add the bound constraints ℓi ≤
xi ≤ ui for i ≤ n. In the smooth case, these constraints can be handled by the extreme
barrier approach, consisting in rejecting infeasible trial points, while making sure that the
local exploration directions conform to the boundary of the bound constraints [23]. Another
approach is based on an augmented Lagrangian [24]. In the nonsmooth case, the extreme
barrier can be used if enough directions are considered [2, 10]. Alternatively, these con-
straints can be handled by a filter [9], a progressive barrier [11] or a progressive-to-extreme
barrier [12]. Penalty methods are also used in [25, 26]. However, all these approaches intro-
duce artificial bounds on the periodic variables, and consequently, may generate trial points
converging to an artificial local solution.

Another way to deal with periodic variables consists in treating them as being unbounded.
However, this approach may not be possible in the cases where the blackbox expects values
inside the interval [ℓi, ui]. Furthermore, omitting these bounds poses difficulties in the
algorithmic parameters that are automatically chosen, such scales associated to individual
variables.

As suggested in [3] for scaling purposes in the design of space trajectories, a periodic
variable xi can be treated by adding or subtracting an integer multiple of the period ui − ℓi
so that the resulting value lies in the interval [ℓi, ui[. This ensures that a local descent that
moves xi to one of its bound will not get stuck at that bound, but instead, would move the
value of xi towards the opposite bound. This strategy was also proposed in [17, Section
7.4.1.3], and is appropriate for some classes of direct search methods that do not rely on a
mesh, but require a form of sufficient descent [20, 27].

Section 2 shows how to adapt this idea to the Mads framework. The resulting class
of algorithms is called Mads. We give precise conditions under which our new approach
ensures the same hierarchical nonsmooth convergence results as in Mads. We also detail an
example that illustrates the necessity of these conditions.

Finally, this new method is tested in Section 3 on two test problems with our Nomad
software. The user of the software simply needs to flag and specify the bounds of the
periodic variables and the algorithmic conditions necessary to handle the periodicity will
be automatically satisfied. First, a classification problem expressed as a new blackbox
problem, and then a biobjective portfolio selection problem from finance. In both cases,
the proposed strategy to handle periodic variables allows the algorithm to escape from
suboptimal solutions created by the artificial bounds on the variables.

2 Mesh Adaptive Direct Search with Periodic Variables

2.1 The Mesh Adaptive Direct Search Algorithm

A key to the convergence of direct search algorithms such as Gps [8, 32] and Mads [10] is
that all trial points generated by the algorithm lie on a conceptual mesh which is defined
below. The mesh at iteration k is constructed using three elements: the set of previously
visited points Vk ⊂ Rn, a parameter ∆m

k ∈ R+ that dictates the coarseness of the mesh
(the superscript m stands for the word mesh), and finally, a finite set of directions forming
a matrix D ∈ Rn×nD . Only this last element, D, remains the same over all iterations k.

There are two restrictions on the matrix D. First, D must be a positive spanning
matrix [7, 15], i.e., nonnegative linear combinations of its columns must span Rn. Second,
it must be possible to write D as the product GZ of some nonsingular generating matrix
G ∈ Rn×n by an integer matrix Z ∈ Zn×nD . This last condition is used in the convergence
analysis of Gps [32] and shown to be a necessary condition in [6]. The mesh can be formally
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defined as follows.

Definition 2.1. At iteration k, the current mesh is defined to be the union

Mk =
∪

x∈Vk

{x+∆m
k Dz : z ∈ NnD}

where Vk is the set of points where the objective function and constraints have been evaluated
by the start of iteration k. V0 = {x0} contains the starting point.

Each iteration of Mads is composed of a search and a poll steps. Both steps generate
a finite number of trial points lying on the mesh in an attempt to improve the current
incumbent solution. The search step is optional and may generate trial points anywhere
on the mesh. It is usually defined by users with knowledge of the problem, although one
can use generic search strategies such as Latin-Hypercube sampling [30]. The poll step
explores mesh points in the neighborhood of the current incumbent solution. Both steps
can terminate opportunistically as soon as a new incumbent is found. If such an improvement
is made during the search step, the poll is skipped at this iteration.

The mesh size parameter update rules are such that at iteration k, there exists an
integer rk, positive or negative, such that ∆m

k = ∆m
0 τ rk (which implies that r0 = 0), where

τ = p
q > 1 is a fixed rational number, and where p ≥ 2 and q ≥ 1 are two integers. The

mesh size parameter is reduced (∆m
k+1 < ∆m

k ) only when iteration k fails to generate a new
incumbent solution. At the end of each iteration, the next mesh size parameter is set to be
the product of an integer power of τ by the current one: ∆m

k+1 = τwk∆m
k , where wk is a finite

integer, positive or negative. Note that this implies that τ rk+1 = τwkτ rk i.e. rk+1 = wk+rk.
A general description of Mads is summarized in Figure 1. The interested reader is

invited to consult [10] for a complete description of the algorithm. In the present document,
we only highlight the elements necessary for the convergence analysis of Mads, the periodic
version of Mads presented in the next section.

A general Mads algorithm

• Initialization: Let x0 be a starting point, G and Z be the matrices used to define D,
and τ be the rational number used to update the mesh size parameter.
Set the iteration counter k ← 0.

• search and poll steps: Perform the search and poll steps
(or only part of them) until an improved mesh point xk+1 is found on the
mesh Mk (see Definition 2.1), or until all trial points are visited.

• Updates: Update ∆m
k+1 and Vk+1.

Set k ← k + 1 and go back to the search and poll steps.

Figure 1: High-level description of the Mads algorithm.

2.2 Modification to the Mads Algorithm for Periodic Variables

We propose a modification to the algorithm in Figure 1 in order to treat periodic variables.
This modification is more elaborate than simply bounding the periodic variables and is based
on the following notation. Let Π be the n×n diagonal matrix with the periods or zeroes on
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the diagonal:

Πi,i =

{
ui − ℓi if i ≤ n,
0 otherwise.

In order to simplify the presentation, we modify the traditional Mads notation by adding
a bar over each element that we wish to carry over to the new algorithm. Mads translates
a trial point t ∈ Mk generated by the search or poll step of Mads as follows:

t̄ = t+Πρ ∈ Rn (2.1)

where ρ ∈ Zn satisfies t̄i = ti + ρi(ui − ℓi) ∈ [ℓi, ui[ for the periodic variables i ≤ n and
ρi = 0 for the non-periodic variables i > n. The translated point t̄ becomes the new trial
point for Mads. It is easy to see that f(t̄) = f(t) and that for each periodic variable i ≤ n,
there is a unique integer ρi that satisfies t̄i ∈ [ℓi, ui[.

2.3 Necessary Algorithmic Conditions

This section describes an example showing that the strategy exposed in 2.2 is not acceptable
without additional algorithmic conditions. This example shares similarities with the one
in [6] showing the necessity of the assumption that D be the product of a non-singular
matrix with an integer matrix.

Example 2.2. Consider the optimization problem in R with the continuously differentiable
periodic function f(x) = sin(2x) on Ω =

[
−π

2 ,
π
2

[
. The minimizer is at x̂ = −π

4 . On the
closed interval, there is a local minimizer at x = π

2 .

Let us apply a Mads algorithm with parameters x0 = π − 3, ∆m
0 = 1, G = 1, Z =

D = [−1, 1], and τ = 2. In addition, wk = −1 if no improvement has been made at
iteration k, and wk = 0 otherwise. The search step of the Mads algorithm is defined as
follows. At iteration k, if ∆m

k = 1 and if there exist positive integers ak and bk such that
xk = bkπ − ak > 0, then the search generates the trial point

tk = xk − ((⌈1/xk⌉ − 1)ak + 1)∆m
k (2.2)

where ⌈1/xk⌉ ∈ N \ {0} denotes the smallest integer larger than 1/xk. This trial point tk
belongs to the current mesh Mk since ((⌈1/xk⌉−1)ak+1)) is an integer. The search step is
opportunistic in the sense that the iteration terminates as soon as a new incumbent solution
is generated. The period of the variable is π and setting ρ = (⌈1/xk⌉ − 1)bk moves tk to

tk = tk + (⌈1/xk⌉ − 1)bkπ = ⌈1/xk⌉ × xk − 1.

The trial point tk belongs to the open interval ]0, xk[ since

0 = (1/xk)× xk − 1 < tk = ⌈1/xk⌉xk − 1 < (1/xk + 1)xk − 1 = xk .

Accordingly to (2.1), tk is the Mads trial point (instead of tk). This leads to f(tk) = f(tk) =
sin(2tk) < sin(2xk) = f(xk) and thus xk+1 = tk is the next incumbent solution.

By induction on k, the entire sequence of iterates {xk} is monotone decreasing and
converges to the origin, which does not satisfy any sort of optimality condition.

In order to avoid the behavior detailed in this example while applying the strategy
described in 2.2 and to keep the convergence properties of Mads, we add the following
algorithmic conditions and analyze them in the next section.
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Condition 2.3. The mesh size parameter ∆m
k = τ rk∆m

0 is bounded above at every iteration,
i.e., there exists an integer rmax ≥ 0 such that ∆m

k ≤ τ rmax∆m
0 for every k.

Condition 2.4. The matrix 1
∆m

0
G−1Π is integer.

Condition 2.3 already holds for the two existing Mads implementations, LtMads [10]
and OrthoMads [2]. In both cases ∆m

k is bounded above by ∆m
0 for all k. However, these

implementations consider another parameter called the poll size parameter ∆p
k which can

grow to larger values allowing trial points to be further away after successful iterations.
The convergence analysis of Mads relies on the assumption that all trial points belong to a
bounded subset of Rn and as a consequence, the poll size parameter will be bounded above.

A simple way to satisfy Condition 2.4 is to choose an integer j and let G be a diagonal
matrix such that

Gi,i =

{
ui−ℓi
j∆m

0
if i ≤ n,

1
j∆m

0
otherwise.

(2.3)

This condition is violated in Example 2.2 as 1
∆m

0
G−1Π = π is not an integer.

2.4 Convergence Analysis

The problem with the previous example is that although the points tk lie on the same mesh
Mk, the trial points tk do not lie on a mesh. These trial points converge to a point that
does not satisfy any optimality conditions.

In the present section, we show that under Conditions 2.3 and 2.4, all trial points tk lie
on another mesh called Mk, constructed using three elements: the set of previously visited
points Vk, a parameter ∆m

k that dictates the coarseness of the mesh, and a finite set of
directions forming a matrix D.

The set of visited points Vk is the same as the one used in the definition of Mk. The other
two elements differ. The n×2n direction matrix is a maximal positive basis D = G[In −In]
where In is the identity matrix and G is the same nonsingular matrix used to define D. The
parameter ∆m

k is defined as follows:
∆m

0 =
∆m

0

prmaxqrmax
for k = 0, and

∆m
k+1 = pwk∆m

k for k ≥ 1

where rmax is the nonnegative integer from Condition 2.3, wk ∈ Z is the integer used for the
mesh size update (∆m

k+1 = τwk∆m
k ) and p ≥ 2 and q ≥ 1 are the integers such that τ = p

q .
This leads to the following lemma:

Lemma 2.5. Under Condition 2.3, the mesh size parameter at iteration k satisfies

∆m
k =

∆m
k

prmaxqrmax−rk
=

∆m
0

prmax−rkqrmax
.
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Proof. By definition, the result is true for k = 0. By induction, suppose that the result is
true for some value of k. Then, for k + 1, rk+1 = rk + wk, and therefore, using τ = p

q ,

∆m
k+1 = pwk∆m

k =
∆m

k

prmax−wkqrmax−rk

=
∆m

k+1τ
−wk

prmax−wkqrmax−rk

=
∆m

k+1

prmaxqrmax−rk−wk
=

∆m
k+1

prmaxqrmax−rk+1
.

Substituting ∆m
k+1 =

(
p
q

)rk+1

∆m
0 completes the proof.

This notation allows us to define the following mesh through D:

Mk =
∪

x∈Vk

{
x+∆m

k Dz : z ∈ NnD
}
.

Figure 2 illustrates meshes in R2 for periodic variables on the interval [0, 2π]. The mesh
size parameter of the two first plots satisfies Condition 2.4 since the ratio of the period over
the mesh size parameter is rational : 4

3 . The ratio for the last two plots is equal to π, and
therefore Condition 2.4 is not satisfied. This is illustrated in the last plot where the mesh
Mk is dense on the domain [0, 2π]× [0, 2π].

Figure 2: Examples of meshes in R2. In the first three figures, the mesh consists of the
intersection of all lines, and in the last one the mesh is dense in the entire domain.

Theorem 2.6. Under Conditions 2.3 and 2.4, every trial point generated at iteration k of
Mads belongs to the mesh Mk.

Proof. Consider the point tk = xk + ∆m
k Dz with z ∈ NnD , lying on the mesh Mk, and

translated to tk = tk +Πρk where ρk ∈ Zn and (tk)i ∈ [ℓi, ui[ for every i ≤ n. Then

tk = xk +∆m
k Dz +Πρk

= xk +∆m
k

(
prmaxqrmax−rkDz +Πρk/∆m

k

)
= xk +∆m

k

(
prmaxqrmax−rkDz +

prmax−rkqrmax

∆m
0

Πρk

)
= xk +∆m

k

(
prmaxqrmax−rkGZz +GG−1 p

rmax−rkqrmax

∆m
0

Πρk

)
= xk +∆m

k G

(
prmaxqrmax−rkZz +

prmax−rkqrmax

∆m
0

G−1Πρk

)
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belongs toMk since Condition 2.4 ensures that

(
prmaxqrmax−rkZz +

prmax−rkqrmax

∆m
0

G−1Πρk

)
is an integer vector.

Corollary 2.7. Under Conditions 2.3 and 2.4, the entire convergence analysis of Mads
holds for Mads.

Proof. The convergence analysis of Mads relies on the fact that all trial points tk lie on
a mesh Mk. The translated trial points tk do not necessarily lie on the mesh Mk, but,
Theorem 2.6 ensures that they all lie on the conceptual mesh Mk. Furthermore, Lemma 2.5
ensures that ∆m

k → 0 if and only if ∆m
k → 0. It follows that the same convergence analysis

presented in MADS can be used, with Mk playing the role of Mk.

The Mads convergence analysis relies on the assumption that all trial points lie in a
bounded set. This assumption is satisfied in particular when the level sets of the objective
function are bounded. In the present context, it is trivial that all translated trial points tk
are such that the i-th periodic variable lies in the bounded interval [ℓi, ui[. The a posteriori
assumption that the trial points belong to a bounded set is replaced by Condition 2.4, which
can be verified a priori, in particular by setting G as in Equation (2.3).

3 Numerical Results

The aim of this section is to test numerically the proposed strategy to handle periodic
variables on two test problems. We first compare the strategy on Mads and Gps [32] with
coordinate directions for a classification problem, then on BiMads [13], the biobjective
version of Mads, for a portfolio selection problem [33]. For reproducibility, executions of
Mads are performed using the OrthoMads [2] instantiation of Mads. We did not consider
LtMads [10] since it uses randomness to generate new trial points, which complicates the
comparisons.

Numerical tests are conducted with the version 3.4 of Nomad [1, 22], which includes
periodic variables and biobjective optimization. Functions for both problems are periodic
with period 2π since all variables represent angles in spherical coordinates. A slight difference
between the periodic and aperiodic settings is that the aperiodic version considers bounds
of [0, π] for the first variable (first angle of the spherical coordinates) while the periodic
version keeps bounds of [0, 2π] to respect the 2π period for all variables.

The numerical tests use the default parameter values of Nomad. More precisely, the
initial mesh size parameter ∆m

0 is set to 1, and the other mesh parameters are τ = 4 with
OrthoMads and τ = 2 with Gps, and wk = 1 whenever iteration k is successful, and
wk = −1 otherwise. The matrix G is automatically set to G = 1

10Π as in Equation (2.3)
with j = 10 and n = n, and the mesh directions D = GZ are defined using Z = [In − In].
It follows that Condition 2.3 is satisfied since 1

∆m
0
G−1Π = 10In. The source code of Nomad

and of both test problems as well as the test logs are available for download from [1].

3.1 A Hyperplane Separation Problem

This section first describes the original formulation of the problem and gives a new blackbox
formulation on which Nomad is applied.
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3.1.1 Problem Presentation

Let Q be a finite set of points in Rn partitioned into Q = X ∪ Y with X ∩ Y = ∅. The
objective is to identify a hyperplane of equation aTx = b, with a ∈ Rn a normalized vector
and b ∈ R, that separates the sets X and Y as best as possible. In the present paper, we
achieve this by minimizing the number of points that are misclassified, i.e. located on the
“wrong” side of the hyperplane. The corresponding mathematical model may be formally
written as

min
a∈Rn,b∈R

g(a, b)

subject to ∥a∥ = 1
, where g(a, b) =

∣∣{x ∈ X : aTx < b}
∣∣+ ∣∣{x ∈ Y : aTx > b}

∣∣ .(3.1)
Observe that points located exactly on the hyperplane are not misclassified. A review on
the more general subject of classification can be found in [4]. Problem (3.1) is useful in the
field of automatic classification: After a hyperplane is decided for a sample of data whose
properties are known, it can be applied to some unknown new data in order to classify them.
For example, it may be applied to differentiate healthy cells from ill cells for the detection
of tumors (problem Cancer in Uci Repository of Machine Learning Databases [5]).

Marcotte et al. [28] propose a mixed integer program (Mip) for problem (3.1) where
the binary variables express if the data points are misclassified or not. This formulation
is difficult to solve when the number of points grows large. The Mip formulation of the
Diabetes problem (whose complete name is Pima Indians Diabetes in theUci databases)
is not solvable by Cplex 10.11 [18] on our hardware: it was stopped after 12 hours, due
to memory limitation (branching tree of size 3.2 GB) with a current best solution of 130
misclassified points. Hence, this problem can be classified as difficult and has been chosen
for our tests in Section 3.1.2. In order to be treated with direct search solvers such as
Nomad, the problem is transformed into a blackbox. The technical presentation of this
transformation is detailed in the appendix.

3.1.2 Results

Nomad is applied to the Diabetes instance from the Uci databases. All seven variables
represent angles. The default Nomad parameters are used and it terminates when the mesh
size parameter reaches a precision of 10−13, the default NOMAD precision.

As the choice of the starting point is important, several executions are performed from 100
starting points generated from a Latin-Hypercube sample [31]. The periodic and aperiodic
versions are compared with the OrthoMads and Gps directions for a total of 400 runs.
Table 1 summarizes these 400 executions. The best classification was obtained with both
periodic algorithms for a total of 148 misclassified points.

Figure 3 shows performance profiles allowing to analyze graphically these results. Per-
formance profiles have been introduced in [16] and are adapted to the classification problem
as follows: The four plots correspond to the different tested strategies and summarize 100
executions from a different starting point. For a given Alpha value (horizontal axis), a point
belonging to one of these plots indicates the number of instances on which the corresponding
method gave a value within Alpha% of the best obtained solution equal to 148. For example
the coordinates (10, 20) mean that 20 instances out of 100 gave a solution within 10% of
148, i.e. less than or equal to 162.

The two periodic plots begin at the coordinates (0, 1) meaning that both methods ter-
minated once with the value 148. The two aperiodic plots begin at (0, 0) meaning that all
solutions obtained with the aperiodic methods are worse than 148. From both the Table 1
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and Figure 3, it is clear that the periodic versions Mads and Gps dominate the aperiodic
algorithms Mads and Gps.

Table 1: Results for the 400 runs from 100 different starting points for four different methods.

Method Best Worst Average Median Std Dev

Periodic OrthoMads 148 181 163 163 7.86
Aperiodic OrthoMads 150 227 174 175 15.60
Periodic Gps 148 182 163 162 8.29
Aperiodic Gps 150 237 178 177 21.00

Figure 3: Performance profiles for the 400 runs from 100 different starting points. Plots
close to the upper left portion of the graph are the best.

The effect of the treatment of periodic variables presented in this paper is visualized in
Figure 4 showing the evolution of the seventh variable for both Mads and Mads during
the first 1000 evaluations of a particular instance. This instance is the one with the starting
point that gave the best result with Mads. In both the aperiodic and periodic cases, the
algorithm drives the variable to small values, but in the periodic case, θ7 crosses over to
take values near 2π. The algorithm converges then to a solution with a large seventh angle.
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Figure 4: Values of the seventh angle with periodic variables (left) and without periodic
variables (right).

3.2 A Biobjective Problem from Finance

This portfolio selection problem with five assets and two objective functions is taken from [21].
The objective is to maximize the mean return and the skewness of the portfolio for a fixed
variance of one. This last constraint can be implicitly expressed with a change of vari-
ables to spherical coordinates. The problem then becomes non-linear and BiMads [13], the
biobjective version of Mads, was used in [33] to solve it. BiMads consists in sequentially
launching several instances of Mads with different single-objective formulations, in order to
approximate the Pareto front. The Pareto front is the set of undominated points, i.e. points
such that no other point in the front has better values for both the objective functions. We
denote by BiMads the algorithm identical to BiMads except that it treats the periodic
variables using Mads instead of Mads.

As in the classification problem of 3.1, the change of variables reduces the five assets to
four variables in [0, 2π[ except for the the first angle of the aperiodic version which lies in
[0, π[. The two objective functions are periodic with respect to these angles. There are no
other constraints.

Nomad is used with three different budgets of 100, 500, and 1000 evaluations from the
starting point x0 = (π/2, π, π, π)T in the center of the domain. Note that the choice of the
starting point is not as important as in the single-objective case since BiMads changes this
parameter between single-objective executions. The Latin Hypercube sampling that Nomad
uses by default for biobjective optimization is disabled in order to remove randomness.
All other Nomad parameters are set to the default values and in particular OrthoMads
directions are considered.

Table 2 shows the numbers of single-objective executions and of undominated points.
Figure 5 shows the two Pareto front approximations generated by BiMads with or without
periodic variables and for the three budgets of evaluations. As we maximize the two objective
functions, a good approximation of the Pareto front has to be as far as possible from the
axes. The figure clearly shows the dominance of the front generated while using periodic
variables for 100 and 500 evaluations, even if less undominated points are produced. With
a budget of 500 evaluations, there are even points of the periodic front that dominate
the entire aperiodic front. With 1000 evaluations, the two methods generate two similar
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approximations, but the periodic version gives 16 more points. The true Pareto front is of
course identical for both periodic and aperiodic formulations. But the aperiodic formulation
introduces artificial bounds on the variables, thereby creating local solutions, or makes the
true Pareto front inaccessible to the Mads algorithm.

Table 2: Numbers of single-objective executions and of undominated points for the six
different biobjective optimizations.

Method Evaluations Single-obj. Undominated
executions points

Periodic 100 5 6
Aperiodic 100 5 23
Periodic 500 12 61
Aperiodic 500 12 100
Periodic 1000 16 127
Aperiodic 1000 16 143

Figure 5: Pareto front approximation with 100, 500, and 1000 function evaluations, with
or without periodic variables. Mean return and skewness are the two objective functions to
maximize. Best points are far from the origin.

Figure 6 gives insight of why BiMads outperforms BiMads for the 500 evaluations
budget. The figure plots the values of the third angle generated by the algorithm versus the
number of function evaluations. With BiMads, this variable barely moves from 0, while
BiMads allowed the variable to vary significantly and access more interesting values.

4 Discussion

This paper examined the natural strategy of handling periodic variables by mapping trial
points into the interval defined by the period. This strategy requires algorithmic conditions
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Figure 6: Values of the third angle for 500 evaluations, with periodic variables (left), and
without periodic variables (right).

involving the mesh size parameter which must be bounded above at every iteration (Condi-
tion 2.3), the initial mesh size parameter ∆m

0 , the set of directions used to define the mesh
D = GZ, and the period of the variables Π (Condition 2.4). In practice, these conditions are
satisfied by our implementation, and in theory, the new method inherits the entire Mads
convergence analysis.

The strategy to handle periodic variables applies to any instantiation of the Mads class
of algorithm. We have tested it on the Gps and OrthoMads instantiations of Mads on
a new blackbox formulation of a classification problem. We have also tested it on a more
general algorithm called BiMads that uses Mads to solve subproblems. In all the numerical
experiments conducted here, the new strategy outperforms the approach of treating the
periodic variables as bound constrained variables. Removing the artificial bound constraints
on periodic variables allows the direct search algorithm to find better local solutions.
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Appendix: Blackbox Formulation of the Hyperplane Separation Prob-
lem

This appendix presents a blackbox formulation of the hyperplane separation problem studied
in Section 3.1 and usable by any direct search solver. The main component of the blackbox
takes the vector a ∈ Rn and scalar b ∈ R as input and counts the number of misclassified
points g(a, b). With little computational effort, the blackbox may be modified so that it
computes the minimum of g(a, b) and g(−a,−b). This means that for given values of a
and b, it identifies the best strategy for choosing the sides associated with X and Y . We
introduce g+(a, b) = min{g(a, b), g(−a,−b)}. The first step in the blackbox elaboration
consists in reformulating Problem (3.1) as

min
a∈Rn,
∥a∥=1

(
min
b∈R

g+(a, b)

)
. (4.1)
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The second step uses spherical coordinates to express the normalized vector a ∈ Rn. Define
a : [0, π[× [0, 2π[n−2→ Rn with θ 7→ a(θ) to be the transformation into Euclidian coordinates
from the spherical coordinates θ in dimension n. Let m(θ) = min

b∈R
g+(a(θ), b) denote the least

number of misclassified points that can be achieved for a given value of θ. Problem (4.1)
can then be reformulated as

min
θ∈Rn−1

m(θ)

subject to θ1 ∈ [0 π[
θi ∈ [0 2π[ , i = 2, 3, . . . , n− 1

. (4.2)

Note that spherical coordinates allow to modify the upper bound of the first variable from
π to 2π and in that case all variables are periodic.

For a given value of θ ∈ Rn−1, evaluation of m(θ) requires finding the optimal value of
b, which is computed as follows: Let I be the set of indices of the points to be classified:
Q = {x(i) ∈ Rn : i ∈ I}. For every i ∈ I, let m(i) = g+(a(θ), b(i)) denote the number
of misclassified points with respect to the hyperplane passing through x(i): a(θ)Tx = b(i),
where b(i) = a(θ)Tx(i). The blackbox then sets m(θ) = min{m(i) : i ∈ I}, a nonnegative
integer value bounded above by |I|/2. The complexity of the evaluation is of the order of
the number of points |I|.

Figure 7 shows a plot of the function m on the Diabetes instance with respect to the
seventh angle while fixing the six others. It is a step function, and may cause direct search
algorithms to get stuck on a step. In order to allow direct search methods to discriminate
between points on a step, we add a perturbation δ(θ) ∈ [0, 1[ to the value m(θ).

Figure 7: Representation of the blackbox functions m(θ) and m(θ) + δ(θ) for the data set
Diabetes of the classification problem. All variables are fixed to 2.5, except the seventh
which varies between 0 and 2π.

The perturbation δ(θ) is constructed as follows. During each blackbox execution, we
consider the r = min{n2, |I|} points with the smallest values of m(i). The indices of these
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points are sorted in the set J (θ) = {i1, i2, . . . , ir} wherem(ik) ≤ m(iℓ) if k ≤ ℓ. It follows that
the first element of J (θ) satisfiesm(i1) = m(θ). Next, the set J (θ) is partitioned with respect

to the different values of m(i): J (θ) =
m(ir)∪

z=m(i1)

Jz(θ) with Jz(θ) = {i ∈ J (θ) : m(i) = z}.

The perturbation is then fixed to

δ(θ) = 1− 1

r

m(ir)∑
z=m(i1)

|Jz(θ)|
2z−m(i1)

. (4.3)

Since 1 ≤ |Jf(θ)(θ)| ≤ r and m(ir) ≥ z ≥ m(i1), the perturbation satisfies 0 ≤ δ(θ) < 1 and
therefore m(θ) = ⌊m(θ) + δ(θ)⌋. It follows that minimizing f(θ) = m(θ)+ δ(θ) is equivalent
to minimizing m(θ).

The perturbed function f is plotted in Figure 7, on the same graph as m, for the Di-
abetes instance. The purpose of this heuristic perturbation is to assign different values
to trial points that share the same value of m(θ). One can observe from the figure that a
descent method applied to θ7 would often lead to the minimizer.

An illustrative example of the computation of the functions m, δ and f is shown in
Figure 8, for a set of 7 points in dimension 2, with θ set to 3π

4 . The numbers of misclassified
points for the dashed hyperplanes are (m1,m2, . . . ,m7) = (2, 2, 3, 2, 1, 1, 2), and f( 3π4 ) = 1.
A total of r = 4 points are considered in the determination of the perturbation and their
indices J ( 3π4 ) = {5, 6, 1, 2} are partitioned as J1(

3π
4 ) = {5, 6} and J2(

3π
4 ) = {1, 2}. The

perturbation is then

δ

(
3π

4

)
= 1− 1

4

2∑
z=1

|Jz(θ)|
2z−1

= 1− 1

4

(
2

1
+

2

2

)
=

1

4
.

The blackbox returns the value f( 3π4 ) = m( 3π4 ) + δ( 3π4 ) = 1.25 indicating that there is only
one misclassified point.

Figure 8: Computation of the blackbox functions m, θ and f , with n = 2, q = 7, and θ = 3π
4 .

The sets X and Y are represented by circles and squares, respectively.
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