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1 Introduction

In [18, 19], Nash first studied non-cooperative games with complete information and proved
that each game had an equilibria in mixed strategies. However, in real-world, game-theoretic
situations, players are often uncertain of the structure of the game. When payoff functions
are uncertain, Harsanyi [12] modeled these incomplete information games as what he called
Bayesian game. In that model, the uncertain payoffs were treated as expectation. A short-
coming of this model is that it is not obvious how players can estimate the prior distribution.
Holmström and Myerson [15] refined Bayesian games and considered the case where players
need not know the distribution. Indeed, in an ex post equilibria no player has an incentive to
deviate from the strategy she selects regardless of the realization of the uncertainty. A few
recent papers have explored the application of robust optimization to game theory. Hayashi
et al. [14] characterized the robust Nash equilibria in simple games as solutions to a second-
order cone complementary problem. Aghassi and Bertsimas [1] also considered robust games
and proved that robust Nash equilibria always exists. Ordönez and Moses-Stier [20] showed
that robust Wardrop equilibria of net-work games always exists with a finite number of
players. The technique adopted in [1, 14, 20] could be considered as robust optimization ap-
proach. Robust optimization is emerging as a leading methodology to address optimization
problems under uncertainty. It converts problems with uncertainty into computationally
tractable optimization problems. Ben-Tal and Nemirovski [2, 3, 5], Bertsimas et al. [6] etc.
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derived robust counterparts of uncertain programming problems under the condition that
the uncertain set U was given as an ellipsoid or an intersection of finitely many ellipsoids.
Such a robust counterpart exhibits a lateral increase in complexity. Bertsimas and Sim [7, 8]
studied a general conic optimization problem from the cardinality of an uncertain set. Using
this approach, the robust counterpart is tractable preserving the computational complexity
of the nominal problem, i.e., robust LPs (linear programming problems) remain LPs and
robust SOCPs (second-order conic programming problems [17]) remain SOCPs etc.

In this paper, from the cardinality of an uncertain set, we consider a two-person game,
in which each player attempts to minimize his own cost with each player’s own cost matrix
uncertain. For example, for a robust inspection game in [1], the payoff matrices for the
employee and employer are usually uncertain. We focus on the tractability of the following
model, a special case with N=2 in [1]. In this situation, the model essentially reduces to a
bimatrix game as follows:

player one min
y∈Y

yT Ãz (1.1)

and
player two min

z∈Z
yT B̃z, (1.2)

where Y := {y ∈ <n : y ≥ 0, eT
ny = 1} and Z := {z ∈ <m : z ≥ 0, eT

mz = 1} denote
mixed strategy sets for players one and two respectively. Let Ã ∈ DA and B̃ ∈ DB denote
uncertain cost matrices of players one and two respectively where DA and DB are assumed
to be bounded sets, and en ∈ <n and em ∈ <m are vectors of all ones. Then the robust
counterparts of (1.1) and (1.2) can be stated as

player one min max
Ã∈DA

yT Ãz

s.t. y ∈ Y
(1.3)

and
player two min max

B̃∈DB

yT B̃z

s.t. z ∈ Z.
(1.4)

A pair of strategies (y, z) is called a robust optimization equilibria for problems (1.1) and (1.2)
if y optimizes (1.3) and z optimizes (1.4) simultaneously. Accordingly, (1.3) and (1.4) are
called robust counterparts of (1.1) and (1.2). In general, problems (1.3) and (1.4) are semi-
infinite programming problems and computationally intractable. How to deal with an uncer-
tain set plays an important role in the solution of these problems. Aghassi and Bertsimas [1]
formulated the set of equilibria of an arbitrary robust finite game, with bounded polyhedral
uncertain set and no privative information, as the dimension-reducing, component-wise pro-
jection of the solution set of a system of linear equalities and inequalities. Hayashi et al. [14]
studied the robust optimization equilibria when the uncertain set is a standard ellipsoid un-
der l2-norm. A standard ellipsoid is an image of an Euclidean ball with the same dimension
under a one-to-one affine mapping. In fact, the uncertain set may be general ellipsoids such
as flat ellipsoids–usual ellipsoids in proper affine subspaces (such an ellipsoid corresponds
to the case of partial uncertainty) or ellipsoidal cylinders–sets of the type sum of a flat el-
lipsoid and a linear subspace. Taking this into account, we consider a general uncertain set
including flat ellipsoids, ellipsoidal cylinders and standard ellipsoids as well. Furthermore,
we investigate the robust optimization equilibria when the cost matrix is uncertain under
l2-norm or l1∩ l∞-norm. When the bounded sets DA and DB are constraint-wise uncertain,
we obtain tractable optimization formulations for (1.3) and (1.4). In particular, when the
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cost matrices are uncertain under l2-norm, the robust counterparts can be formulated as a
second-order cone complementarity problem (SOCCP) [9, 11] in the following form:

K 3 Gx + q ⊥ Hx + r ∈ K, Cx = d, (1.5)

where x ∈ <ς+τ , constant matrices G, H ∈ <ς×(ς+τ), q, r ∈ <ς , C ∈ <τ×(ς+τ) and d ∈ <τ ,
K is a closed convex cone defined by K = Kς1 ×Kς2 × · · ·×Kςm with ςj-dimensional second-
order cones Kςj = {(x1,x2) ∈ <×<ςj−1| ‖x2‖2 ≤ x1} and ς = ς1 + · · ·+ ςm. When the cost
matrices are uncertain under l1 ∩ l∞-norm, the robust counterparts can be formulated as a
mixed complementarity problem (MCP) [10]:

<ς
+ 3 Gx + q ⊥ Hx + r ∈ <ς

+, Cx = d, (1.6)

where G, H, C, q, r and d are the same as those in (1.5).
The paper is organized as follows. Section 2 discusses the existence of robust optimization

equilibria and investigates the robust counterparts in which players one and two’s cost
matrices belong to column-wise and row-wise uncertainty respectively with any arbitrary
norm. Section 3 considers the robust optimization equilibria under l2-norm. In this situation,
we show that the robust optimization equilibria can be formulated as a second-order cone
complementarity problem. In Section 4, we show that the robust counterparts under l1∩ l∞-
norm can be converted to a mixed complementarity problem. Some numerical results are
presented in Section 5.

2 Existence of Robust Optimization Equilibria and Robust Coun-
terparts under General Norm

To obtain the existence of a robust optimization equilibria, we need the following lemma in
[1].

Lemma 2.1 (Theorem 2 [1]). Any N-person, noncooperative, simultaneous-move, one-
shot robust game, in which N < ∞, in which player i ∈ 1, ..., N has 1 < ai < ∞ possible

actions, in which the uncertain set of payoff matrices U ⊂ <N
NQ

i=1
ai

is bounded, and in which
there is no private information, has an equilibria.

In our model, we consider two-person, noncooperative, simultaneous-move, one-shot ro-
bust game, in which players one and two have n and m possible strategies respectively, in
which each player’s cost matrix belongs to a bounded set, and in which there is no private
information. It follows from Lemma 2.1 that there exists an equilibria for problems (1.3)
and (1.4). In other words, there exists a robust optimization equilibria in problems (1.1)
and (1.2).

In what follows, we derive the optimization formulations for (1.3) and (1.4) where each
player’s cost matrix is uncertain. We consider the case where DA is a column constraint-wise
uncertain set and DB is a row constraint-wise uncertain set [2, 4]. Let

Dj
A := {Ãc

j | Ãc
j = Ac

j +
Lj∑

lj=1

rlj
j 4p

lj
j : ‖4pj‖ ≤ Γj}, j = 1, ..., m (2.1)

be the set of all possible realizations of the j-th column in the uncertain cost matrix Ã, i.e.,
the projection of DA ⊆ <n×m = <n×· · ·×<n onto the j-th direct factor of the right hand side
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of the latter relation. In (2.1), Ac
j is the nominal value for the j-th column of matrix Ã, rlj

j ∈
<n×1, lj = 1, · · · , Lj are directions of data perturbation, 4pj = (4p1

j 4p2
j · · · 4p

Lj

j )T

with 4p
lj
j , lj = 1, · · · , Lj being independent and identically distributed random variables

with mean value zero. This implies that E[Ãc
j ] (the mean value of Ãc

j) equals to Ac
j . Lj

may be small, modeling situations involving a small collection of primitive independent
uncertainties, or large, potentially as large as the number of entries in the data. In the
former case, the elements of Ãc

j are strongly dependent, while in the latter case the elements
of Ãc

j are weakly dependent or even independent (when Lj is equal to the number of entries
in the data). Γj is a parameter controlling the tradeoff between robustness and optimality.
We say that the uncertainty DA is column constraint-wise, if the uncertain set DA is the
direct product of the “partial” uncertain sets Dj

A:

DA = D1
A ×D2

A × · · · ×Dm
A .

By construction, we have

max
Ã∈DA

yT Ãz = max
Ãc

j∈Dj
A

yT (Ãc
1 · · · Ãc

m)z.

In other words, problem (1.3) remains unchanged when we extend the initial uncertain set
DA to the direct product D1

A × D2
A × · · · × Dm

A . The robust counterpart “feels” only the
possible realizations of the j-th column, j = 1, · · · ,m and does not feel the dependencies
(if any) between these columns in the instances. Similarly, we can define row constraint-
wise uncertainty set. Thus, given an arbitrary uncertain set, we can always extend it to a
constraint-wise uncertain set resulting in the same robust counterpart.

Similarly, DB is of row constraint-wise uncertainty in the sense that

DB = D1
B ×D2

B × · · · ×Dn
B

and

Di
B := {B̃r

i | B̃r
i = Br

i +
Ki∑

ki=1

ski
i 4qki

i : ‖4qi‖ ≤ Ωi}, i = 1, ..., n, (2.2)

where Br
i is the nominal value for the i-th row of matrix B̃, 4qi = (4q1

i 4q2
i · · · 4qKi

i )T

and ski
i ∈ <1×m, ki = 1, · · · ,Ki. ‖ · ‖ is an arbitrary vector norm whose dual norm ‖ · ‖∗ is

given by

‖s‖∗ = max
‖x‖≤1

sT x.

It is well known (see, for example [16]) that the dual norm of the dual norm is the orig-
inal norm. With these notations, we can obtain an equivalent formulation to the inner
optimization for problem (1.3). Observe that

max
Ã∈DA

yT Ãz = max
Ãc

j∈Dj
A

yT (Ãc
1 · · · Ãc

m)z

= yT Az + max
‖4pj‖2≤Γj

[z1yT (
L1∑

l1=1

rl1
1 4pl1

1 ) + · · ·+ zmyT (
Lm∑

lm=1

rlm
m 4plm

m )]

= yT Az + max
‖4p1‖2≤Γ1

z1yT R14p1 + · · ·+ max
‖4pm‖2≤Γm

zmyT Rm4pm

= yT Az +
m∑

j=1

zjΓj‖RT
j y‖∗,
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where Rj = (r1
j r2

j · · · rLj

j ) ∈ <n×Lj .
Therefore, problem (1.3) can be written as

player one min
y,γj

yT Az +
∑m

j=1 Γjzjγj

s.t. ‖RT
j y‖∗ ≤ γj , j = 1, · · · ,m,

y ≥ 0, eT
ny = 1.

(2.3)

Similar to the above analysis, problem (1.4) can be formulated as

player two min
z,σi

yT Bz +
∑n

i=1 Ωiyiσi

s.t. ‖ST
i z‖∗ ≤ σi, i = 1, · · · , n,

z ≥ 0, eT
mz = 1,

(2.4)

where Si = (si
1T si

2T · · · si
Ki

T ) ∈ <m×Ki .

3 Uncertain Cost Matrix under l2-Norm

The choice of a norm in (2.3) and (2.4) is very important. An uncertain set with l2-norm
forms a relatively wide family, possesses a very nice analytical structure, and can be used
to approximate well many cases of complicated convex sets. Under l2-norm, (2.3) and (2.4)
turn to be the following SOCPs:

player one min
y,γj

yT Az +
∑m

j=1 Γjzjγj

s.t.
(

γj

RT
j y

)
∈ KLj+1, j = 1, · · · ,m,

y ≥ 0, eT
ny = 1

(3.1)

and
player two min

z,σi

yT Bz +
∑n

i=1 Ωiyiσi

s.t.
(

σi

ST
i z

)
∈ KKi+1, i = 1, · · · , n,

z ≥ 0, eT
mz = 1.

(3.2)

Let us consider (3.1) first. It is an SOCP whose KKT conditions can be stated as

KLj+1 3
(

Γjzj

uj

)
⊥

(
γj

RT
j y

)
∈ KLj+1, j = 1, · · · ,m,

<n
+ 3 y ⊥ Az + enξ −R1u1 − · · · −Rmum ∈ <n

+, eT
ny = 1,

where uj ∈ <Lj , γj ∈ <, j = 1, · · · ,m and ξ ∈ < are the Lagrangian multipliers. Similarly,
the KKT conditions for (3.2) can be written as

KKi+1 3
(

Ωiyi

ti

)
⊥

(
σi

ST
i z

)
∈ KKi+1, i = 1, · · · , n,

<m
+ 3 z ⊥ BT y + emη − S1t1 − · · · − Sntn ∈ <m

+ , eT
mz = 1,

where ti ∈ <Ki , σi ∈ <, i = 1, · · · , n and η ∈ < are the Lagrangian multipliers.
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Let Γ̄j and Ω̄i be two vectors containing mostly zeros except Γj and Ωi at the j-th and
i-th components respectively. Let

x = (yT zT uT
1 · · · uT

m tT
1 · · · tT

n γ1 · · · γm σ1 · · · σn ξ η)T .

Let

Let K = K1+ · · ·+Kn, L = L1+ · · ·+Lm. Then problems (3.1) and (3.2) can be formulated
as the KKT system which is an SOCCP (1.5) with ς = 2m+2n+K+L, τ = 2, q, r being two
ς-dimensional zeros vectors, and K = <n

+ ×KL1+1 × · · · KLm+1 ×<m
+ ×KK1+1 × · · · KKn+1,

C =
(

eT
n 0 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 0
0 eT

m 0 · · · 0 0 · · · 0 0 · · · 0 0 · · · 0 0 0

)
and d =

(
1
1

)
.

The above arguments have shown that the following theorem.

Theorem 3.1. Let the uncertain cost matrix sets DA and DB be given by (2.1) and (2.2)
respectively under l2-norm. Then solving a robust optimization equilibria for problems (1.1)
and (1.2) can be converted to solving an SOCCP as above.

As discussed in [8], when all the data entries of the problem have independent random
perturbation, we can further reduce the size of the robust model. Essentially, we can express
the model of uncertainty in the form of (2.1), for which rlj

j contains mostly zeros except

at the entries corresponding to the data element, that is, r1
j = (r1

j 0 · · · 0)T , · · · , rLj

j =

(0 · · · 0 r
Lj

j )T , and for which 4p
lj
j is the independent random variable associated with the
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lj-th data element. Then Lj , j = 1, · · · ,m equal to n. Following a similar argument to
problem (2.2), we can show that when r1

j = · · · = rn
j and s1

i = · · · = sm
i , problems (2.1) and

(2.2), under l2-norm, reduce to a special case in [14].

4 Uncertain Cost Matrix under l1 ∩ l∞-Norm

The uncertain set with l2-norm provides a reasonable approximation to more complicated
uncertain sets. However, a practical drawback of such an approach is that it leads to nonlin-
ear models, which are relatively expensive in computation. In what follows, we investigate
the case in which DA and DB are constraint-wise uncertain sets under l1∩ l∞-norm, that is,
‖x‖1∩∞ = max{ 1

Γ‖x‖1, ‖x‖∞} with Γ > 0 (see [8]). In this situation, the approximation to
an uncertain set is relatively reasonable (see [6, 7, 8]). Furthermore, the robust counterparts
turn to be linear programming problems and their KKT conditions can be written as an
MCP. To obtain tractable formulations for problems (2.3) and (2.4) under l1 ∩ l∞-norm, we
need to investigate the dual norm of l1 ∩ l∞-norm. To this end, Bertsimas et al. [6] defined
a different norm, called D-norm. Specifically, for x = (x1, · · · , xν)T ∈ <ν and p ∈ [1, ν], the
D-norm is defined by

‖|x|‖p = max
{S∪{t}|S⊆N,|S|≤bpc,t∈N\S}

{
∑

j′∈S

|xj′ |+ (p− bpc)|xt|}, (4.1)

where N denotes the set of indices j′, j′ = 1, · · · , ν with xj′ subject to parameter uncertainty.
The following result can easily be obtained from [6].

Lemma 4.1. (a) The dual norm of the norm ‖| · |‖p is given by

‖|s|‖∗p = max{1
p
‖s‖1, ‖s‖∞}. (4.2)

(b) The inequality ‖|x|‖p ≤ γ with x ≥ 0 is equivalent to

pθ +
ν∑

j′=1

tj′ ≤ γ, tj′ + θ ≥ xj′ , tj′ ≥ 0, ∀ j′ = 1, · · · , ν, θ ≥ 0. (4.3)

Consider the case where DA and DB are bounded uncertain sets under l1 ∩ l∞-norm. In
other words, the norm in expression (2.1) is given by (4.2) with p = Γj , namely,

‖4pj‖ = ‖|4pj |‖∗Γj
= max{ 1

Γj
‖4pj‖1, ‖4pj‖∞}

for j = 1, · · · ,m. Following from Lemma 4.1 (a) and the dual norm of the dual norm is the
original norm, the dual norm of the above is ‖ · ‖∗ = ‖| · |‖Γj . Then, by (4.1) and Lemma
4.1 (b), the constraints

‖RT
j y‖∗ ≤ γj , j = 1, · · · ,m (4.4)

in (2.3) under l1 ∩ l∞-norm are equivalent to

Γjθj +
Lj∑

lj=1

wj
lj
≤ γj , (rlj

j )T y ≤ wj
lj

+ θj , ∀ lj = 1, · · · , Lj ,

wj = (wj
1, · · · , wj

Lj
)T ∈ <Lj

+ , θj ∈ <+, j = 1, · · · ,m,
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which can be rewritten as

Γjθj + eT
Lj

wj ≤ γj , RT
j y ≤ wj + eLj

θj , θj ∈ <+, wj ∈ <Lj

+ , j = 1, · · · ,m.

Let Γ = diag(Γj), j = 1, · · · ,m, R =
(

R1 R2 · · · Rm

) ∈ <n×L,

θ =




θ1

θ2

...
θm


 , γ =




γ1

γ2

...
γm


 , w =




w1

w2

...
wm


 and M =




eT
L1

0 0 · · · 0
0 eT

L2
0 · · · 0

. . . . . . . . . . . . . . . . .
0 0 0 · · · eT

Lm


 .

Then problem (2.3) can be written as the following minimization problem over (y γ θ w) ∈
<n ×<m ×<m ×<L:

minyT Az + (Γz)T γ
s.t. Γθ + Mw ≤ γ,

RT y ≤ w + MT θ,
eT

ny = 1,
y ∈ <n

+, θ ∈ <m
+ , w ∈ <L

+.

(4.5)

Problem (4.5) is a linear programming whose KKT conditions are

<m
+ 3 h1 ⊥ γ − Γθ −Mw ∈ <m

+ , <L
+ 3 g1 ⊥ −RT y + MT θ + w ∈ <L

+,

<m
+ 3 θ ⊥ Γh1 −Mg1 ∈ <m

+ , <L
+ 3 w ⊥ MT h1 − g1 ∈ <L

+, (4.6)

<n
+ 3 y ⊥ Az + Rg1 + enξ ∈ <n

+, Γz− h1 = 0, eT
ny = 1,

where ξ ∈ <, g1 ∈ <L and h1 ∈ <m are the Lagrangian multipliers.
Similarly, problem (2.4) under l1∩ l∞-norm can be written as the following minimization

problem over (z σ δ v) ∈ <m ×<n ×<n ×<K :

minyT Bz + (Ωy)T σ
s.t. Ωδ + Nv ≤ σ,

ST z ≤ v + NT δ,
eT

mz = 1,
z ∈ <m

+ , δ ∈ <n
+, v ∈ <K

+ ,

(4.7)

where Ω = diag(Ωi), i = 1, · · · , n, S =
(

S1 S2 · · · Sn

) ∈ <m×K ,

δ =




δ1

δ2

...
δn


 , σ =




σ1

σ2

...
σn


 , v =




v1

v2

...
vn


 and N =




eT
K1

0 0 · · · 0
0 eT

K2
0 · · · 0

. . . . . . . . . . . . . . . . . .
0 0 0 · · · eT

Kn


 .

The KKT conditions of problem (4.7) can be stated as

<n
+ 3 h2 ⊥ σ − Ωδ −Nv ∈ <n

+, <K
+ 3 g2 ⊥ − ST z + NT δ + v ∈ <K

+ ,

<n
+ 3 δ ⊥ Ωh2 −Ng2 ∈ <n

+, <K
+ 3 v ⊥ NT h2 − g2 ∈ <K

+ , (4.8)

<m
+ 3 z ⊥ BT y + Sg2 + emη ∈ <m

+ , Ωy − h2 = 0, eT
mz = 1,
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where η ∈ <, g2 ∈ <K and h2 ∈ <n are the Lagrangian multipliers.
Let x = (yT γ θ wT hT

1 gT
1 ξ zT σ δ vT hT

2 gT
2 η)T ,

G =




In 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Im 0 0 0 0 0 0 0 0 0 0 0
0 0 0 IL 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Im 0 0 0 0 0 0 0 0 0
0 0 0 0 0 IL 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Im 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 In 0 0 0 0
0 0 0 0 0 0 0 0 0 0 IK 0 0 0
0 0 0 0 0 0 0 0 0 0 0 In 0 0
0 0 0 0 0 0 0 0 0 0 0 0 IK 0




,

H =




0 0 0 0 0 R en A 0 0 0 0 0 0
0 0 0 0 Γ −M 0 0 0 0 0 0 0 0
0 0 0 0 MT −IL 0 0 0 0 0 0 0 0
0 Im −Γ −M 0 0 0 0 0 0 0 0 0 0

−RT 0 MT IL 0 0 0 0 0 0 0 0 0 0
BT 0 0 0 0 0 0 0 0 0 0 0 S em

0 0 0 0 0 0 0 0 0 0 0 Ω −N 0
0 0 0 0 0 0 0 0 0 0 0 NT −IK 0
0 0 0 0 0 0 0 0 In −Ω −N 0 0 0
0 0 0 0 0 0 0 −ST 0 NT IK 0 0 0




,

C =




eT
n 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −Im 0 0 Γ 0 0 0 0 0 0
0 0 0 0 0 0 0 eT

m 0 0 0 0 0 0
Ω 0 0 0 0 0 0 0 0 0 0 −In 0 0


 and d =




1
0
1
0


 .

Let q, r be two ς-th zeros vectors, then combining (4.6) and (4.8), we obtain an MCP (1.6)
where ς = 3m + 3n + 2K + 2L, τ = m + n + 2.

Therefore, we have the following theorem.

Theorem 4.2. Let the uncertain cost matrix sets DA and DB be given respectively by (2.1)
and (2.2) under l1 ∩ l∞- norm. Then solving a robust optimization equilibria for problems
(1.1) and (1.2) can be converted to solving an MCP as above.

Remark 4.3. In our model, we only considered the case RT
j y ≥ 0, j = 1, · · · ,m in (4.4).

The case RT
j y ≤ 0 can be investigated in a similar way.

5 Numerical Experiments

In the previous sections, we have shown that some robust optimization equilibria problems
for bimatrix games can be formulated as SOCCPs or MCPs with different norms. In this
section, we present two numerical examples for robust optimization equilibria. The algorithm
we adopt is based on the methods proposed in [13]. For simplicity, we study the case where
the two players’ cost matrices are uncertain under l2-norm. Moreover, we assume that
Lj = Ki=3 for all i, j = 1, 2, 3, and assume that R1 = S1 = I3, R2 = S2 = 2I3, and
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R3 = S3 = 3I3. This implies that all data entries of the problems have independent random
perturbations [8]. First we consider the bimatrix game with cost matrices:

A1 =



−1 8 3
10 −1 4
3 10 1


 , B1 =




6 −4 0
−1 7 5
3 1 4


 .

In practical applications, the above data such as Lj , Si and cost matrices etc. are ob-
tained by statistics or sampling or other estimations. Denote Γ = (Γ1,Γ2,Γ3) and Ω =
(Ω1,Ω2,Ω3). When Γ = Ω = 0, we obtain the solution ȳ = (0.4815, 0.1852, 0.3333) and
z̄ = (0.1699, 0.2628, 0.5673). Essentially, this solution is a Nash equilibria. In this case, the
costs for players one and two are 3.7052 and -1.5928 respectively. From table one, we observe
that the precise estimation (Nash equilibria) may be inaccurate in some cases. On the other
hand, as Γj and Ωi increase to 6 for all i and j, the corresponding robust solutions deviate
from the precise estimation and in these situations, the two players costs are reduced. Sub-
sequently, as Γj and Ωi continue to increase, the two players’ cost also increase.

Table one: Robust optimization equilibria for various Γ and Ω

Next we consider the bimatrix game with cost matrices:

A2 =



−16 20 10
11 −9 40
−15 −10 −27


 , B2 =



−14 −40 −18
−11 10 50
36 16 40


 .

Similarly, when Γ = Ω = 0, we obtain that the Nash equilibria are ȳ =
(0.4144, 0.2808, 0.3048) and z̄ = (0, 1, 0) and the corresponding costs for players one and
two are 2.7128 and -8.8912 respectively. From table two, we see that the two players’ costs
don’t vary significantly when Γj and Ωi increase gradually to 1, 2 and 6 for j = 1, 2, 3 and
i = 1, 2, 3 respectively, which shows that in this case, the model possesses high robustness.
Subsequently, as Γj and Ωi continue to increase from 1, 2 and 6 to 6, 12 and 15 for j = 1, 2, 3
and i = 1, 2, 3 respectively, player one’s cost increases while player two’s cost decreases.
When Γj and Ωi increase from 6, 12 and 15 for j = 1, 2 and i = 1, 2 respectively to 15,
player one’s cost decreases while player two’s cost increases.

Table two: Robust optimization equilibria for various Γ and Ω
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The two tables above indicate two aspects. One is that precise estimation (Nash equi-
libria) may be inaccurate in some cases so the robustness should be considered under un-
certainty. The other is that as shown in the two tables, the players’ costs in many cases
increase as the parameters increase. However, it may happen that the two players simulta-
neously obtain relatively low costs when the size of the parameters Γ and Ω increases to a
certain degree and then as the parameters continue to increase, one player’s cost increases
accompanied by the decrease of the other’s cost. Therefore, it shows that the parameters Γ
and Ω play an important role in controlling the robustness and optimality. However, how
to choose an appropriate parameter is significantly a hard work.
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