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Abstract: In this paper, cone preinvex and related functions have been studied. The concept of cone
subpreinvex functions is introduced. Some properties of cone subpreinvex functions have been established
and their relationships with cone convex, cone subconvex, cone preinvex functions have been explored. Under
the condition of cone subpreinvex functions, optimality conditions for vector valued minimization problems
are obtained over topological vector space. A Mond-Weir type dual problems are formulated. The duality
results are established under the condition of cone subpreinvex functions.
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1 Introduction

It is well known that convexity plays a central role in mathematical economics, engineering,
management sciences and optimization. In recent years, several extensions and generaliza-
tions have been developed for classical convexity. An important generalization of convex
functions is invex functions introduced by Hanson [5], Hanson pointed that, under the as-
sumption of invexity, the Kuhn-Tucker conditions are sufficient for optimality of nonlinear
programming problems. Ben-Israel and Mond [1] introduced a class of convex functions,
which is called the preinvex function. Weir and Mond [14] and Weir and Jeyakumar [15]
have studied the basic properties of preinvex functions and their applications in optimization.
More recently, properties and applications of generalized preinvexity and generalized invexity
were studied by many authors for example, [4, 18, 7] and references therein. In the study of
multiobjective programming problems, cone convex [3], cone convexlike [6], cone subconvex-
like [8], cone strictly convexlike, cone generalized convexlike, cone generalized subconvexlike
[16], cone subconvex [9], cone semistrictly convex [13] have been introduced one after the
other. Under these generalized cone convexity assumptions, alternative theorems, optimality
conditions for minimizing problems and duality results have been obtained. Many results of
generalized cone convexity for vector valued have been extended to set-valued maps, many
characters of efficient solution and weakly efficient solution were studied under generalized
convexity for set-valued maps, see, for example, [10, 2, 11, 17, 12] and references therein.
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Motivated by these ideas, in the present paper, cone subpreinvex vector-valued functions
is introduced. Some examples are given to illustrate that cone subpreinvex functions is
extension for cone convex functions and it is differ from the known cone convexity. We obtain
optimality conditions for a vector minimization problem in terms of Gâteaux derivatives of
the functions. At the end, we associate a Mond-Weir type dual and establish a duality
result.

2 Preliminaries

Throughout this paper, let X, Y, Z be real topological vector spaces. Let X∗,Y ∗,Z∗ be the
dual spaces of X, Y, Z, respectively. The apex of all cones considered in this paper will be
at the origin. For a cone C ⊂ Y , we set

C∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0,∀y ∈ C},
C∗i = {y∗ ∈ Y ∗ : 〈y∗, y〉 > 0,∀y ∈ C \ {0Y }},

where 〈·, ·〉 denotes the dual product between Y and Y ∗. Consider the vector-valued map
f : Γ ⊆ X → Y . Let Γ ⊆ X be a nonempty set and C ⊂ Y be an convex cones with
nonempty interior. Let η : X ×X → X be a vector-valued function.

Definition 2.1 ([3]). The function f is said to be C-convex on convex set Γ, if ∀α ∈ (0, 1),
∀x, y ∈ Γ such that

αf(x) + (1− α)f(y)− f(αx + (1− α)y) ∈ C.

Definition 2.2 ([8]). The function f is said to be C-subconvexlike on nonempty set Γ ⊂ X,
if ∃θ ∈ intC, ∀α ∈ (0, 1), ∀x1, x2 ∈ Γ, ∀ε > 0, ∃x3 such that

εθ + αf(x1) + (1− α)f(x2)− f(x3) ∈ C.

Definition 2.3 ([10, 2]). Let Γ be a nonempty set in X, and consider the set-valued map
F : Γ → 2Y .

(i) The set Γ is said to be η-invex if there exists a function η : X × X → X such that
x2 + αη(x1, x2) ∈ Γ, ∀x1, x2 ∈ Γ, ∀α ∈ (0, 1).

(ii) The set-valued map F is said to be C-preinvex on the η-invex set Γ iff, ∀x1, x2 ∈ Γ
and ∀α ∈ (0, 1), we have

αF (x1) + (1− α)F (x2)− F (x2 + αη(x1, x2)) ⊆ C.

When the set-valued map F : Γ → 2Y becomes the vector-valued map f : Γ → Y , we
get the definition of C-preinvex functions for vector-valued map.

Definition 2.4 ([9]). The function f is said to be C-subconvex on convex set Γ, if ∃θ ∈
intC, ∀α ∈ (0, 1), ∀ε > 0, such that

εθ + αf(x1) + (1− α)f(x2)− f(αx1 + (1− α)x2) ∈ C, ∀x1, x2 ∈ Γ.

It is obvious that
C-convexity⇒ C-preinvexity⇒ C-subconvexlikeness,
C-convexity⇒ C-subconvexity⇒ C-subconvexlikeness.

It is noticed that the Definition of C-subconvex function[9] is introduced under the
condition that C is a convex cone, but when C is a closed convex cone, by ε is arbitrary,
C-subconvex function[9] is also C-convex function[3].
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3 Cone Subpreinvex Functions

In this section, we will introduce a new class of cone convex functions, which named cone
subpreinvex functions.

Definition 3.1. The function f : Γ ⊆ X → Y is said to be C-subpreinvex with respect to
η and θ on η-invex set Γ, if ∃θ ∈ intC, ∀x, y ∈ Γ, ∀α ∈ (0, 1), such that

α(1− α)θ + αf(x) + (1− α)f(y)− f(y + αη(x, y)) ∈ C.

When η(x, y) = x− y, it is called C-subconvex function. (C-subconvex function defined in
this paper differs from C-subconvex function[9]).

It is clear that
C-convexity⇒ C-subconvexity(Def.3.1) ⇒ C-subpreinvexity.

But the converse implication is not true, which can be seen from the following examples.

Example 3.2. Let f : R → R2 and η be functions defined by

f(x) = (−|x|, 0), C = R2
+

η(x, y) =
{

x− y, x ≥ 0, y ≥ 0 or x ≤ 0, y ≤ 0
y − x, x > 0, y < 0 or x < 0, y > 0.

Then f is C-subpreinvex function with respect to η(x, y) and θ = (1, 1) ∈ intC, but f is not
C-subconvex function.

Because for ∀θ = (θ1, θ2) ∈ intC, taking x = θ1, y = −2θ1, α = 1
2 , we have

α(1− α)θ + αf(x) + (1− α)f(y)− f(αx + (1− α)y)

=
1
4
(θ1, θ2) + (−θ1

2
, 0) + (−θ1, 0)− (−θ1

2
, 0)

= (−3θ1

4
,
θ2

4
)

6∈ C.

Example 3.3. Let f : [0, 1] → R2 be defined as

f(x) = (x2,−x2), C = {(x, y) : −x ≤ y, y ≥ 0}.
Then f is C-subpreinvex function with respect to η(x, y) = x− y and θ = (1, 1) ∈ intC, i.e.
f is C-subconvex function with respect to the same θ, but f is not C-convex function.

Because for x = 0, y = 1, α = 1
2 , we have

αf(x) + (1− α)f(y)− f(αx + (1− α)y) = (
1
4
,−1

4
) 6∈ C.

From this example we can see ∀ θ = (θ1, θ2) ∈ intC, there exist x = 0, y = 1, α = 1
2 and

ε = 1
8θ2

> 0, such that

εθ + αf(x) + (1− α)f(y)− f(αx + (1− α)y) = (
θ1

8θ2
,
1
8
) + (

1
4
,−1

4
) = (

θ1

8θ2
+

1
4
,−1

8
) 6∈ C.

Therefore, f is not C-subconvex function defined by Hu and Ling [9]. On the other hand,
by Definitions 2.4 and 3.1, it is obvious that every C-subconvex function defined by Hu
and Ling [9] must be C-subconvex function defined in this paper. Thus, C-subpreinvexity
defined in Definition 3.1 is a new class of cone convexity.



594 C. LIU, X. YANG AND Q. QIU

Example 3.4. Let us set

Γ = {(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 > 1} ∪ {(0, 1), (1, 0)},

f(x1, x2) = (x1, x2), ∀(x1, x2) ∈ Γ, C = R2
+.

Then f is C-subconvexlike function because f(Γ) + intC is convex set. But f is not
C-subconvex function as Γ is not convex set.

In the following we assume that X, Y and Z are Hausdorff topological vector spaces,
C ⊆ Y is a pointed closed convex cone with nonempty interior. we will give some properties
of cone preinvex function in terms of Gâteaux derivative, which is defined below.

Definition 3.5. A mapping f : X → Y is said to be Gâteaux differentiable at x̄ ∈ X if for
any v ∈ X,

lim
t→0

f(x̄ + tv)− f(x̄)
t

(3.1)

exists. (3.1) is denoted by f
′
x̄(v).

From Definition 3.5, it is easy to know that f
′
x̄(0) = 0, and f

′
x̄(αv) = αf

′
x̄(v), for any real

number α.

Theorem 3.6. Let Γ be a η-invex subset of X and f : Γ ⊆ X → Y be Gâteaux differentiable,
if f is C-subpreinvex function with respect to η and θ on Γ, then

−2θ + f
′
y(η(x, y)) + f

′
x(η(y, x)) ∈ −C, ∀x, y ∈ Γ,

where f
′
y(η(x, y)) is the Gâteaux derivative of f at y in the direction η(x, y).

Proof. Suppose f is C-subpreinvex function with respect to η and θ on Γ, then ∀x, y ∈
Γ, ∀α ∈ (0, 1),

α(1− α)θ + αf(x) + (1− α)f(y)− f(y + αη(x, y)) ∈ C.

Hence,

(1− α)θ + f(x)− f(y)− f(y + αη(x, y))− f(y)
α

∈ C.

Taking limit as α → 0+, we have

θ + f(x)− f(y)− f
′
y(η(x, y)) ∈ C. (3.2)

Similarly, we can get
θ + f(y)− f(x)− f

′
x(η(y, x)) ∈ C. (3.3)

Adding (3.2) and (3.3), we have

−2θ + f
′
y(η(x, y)) + f

′
x(η(y, x)) ∈ −C.
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4 Optimality Condition

In this section, we consider the following optimization problem.

(MP )
min f(x),
s. t. −g(x) ∈ D.

where f : X → Y and g : X → Z, C ⊆ Y , D ⊆ Z are pointed closed convex cones with
nonempty interiors, Y, Z are ordered Hausdorff topological vector spaces with the order
defined by cones C and D, respectively. We denote the feasible set of (MP) by S, i.e.,

S := {x ∈ X : −g(x) ∈ D}.

Definition 4.1. Let e ∈ intC, ε ≥ 0.
(1) A point x̄ ∈ S is said to be a εe-efficient solution of (MP) iff there exists no x ∈ S such
that

f(x̄)− f(x) ∈ C \ {0}+ εe.

(2) A point x̄ ∈ S is said to be a εe-weakly efficient solution of (MP) iff there exists no x ∈ S
such that

f(x̄)− f(x) ∈ intC + εe.

When ε = 0, (1) and (2) is said to be efficient solution of (MP) and weakly efficient
solution of (MP), respectively.

Now we present the following sufficient optimality conditions.

Theorem 4.2. Let f : X → Y and g : X → Z be Gâteaux differentiable at x̄ ∈ S, and let f
be C-subpreinvex with respect to η and θ, g be D-preinvex with respect to η on X. If there
exist λ̄ ∈ C∗i, µ̄ ∈ D∗ such that

〈λ̄, f
′
x̄(x)〉+ 〈µ̄, g

′
x̄(x)〉 = 0, ∀ x ∈ X, (4.1)

〈µ̄, g(x̄)〉 = 0. (4.2)

Then x̄ is a θ-efficient solution of (MP).

Proof. Supposing that x̄ is not a θ-efficient solution of (MP). Then there exists x ∈ S such
that

f(x̄)− f(x) ∈ C \ {0}+ θ. (4.3)

Since f is C-subpreinvex with respect to η and θ, therefore, for any α ∈ (0, 1),

α(1− α)θ + αf(x) + (1− α)f(x̄)− f(x̄ + αη(x, x̄)) ∈ C,

that is

(1− α)θ + f(x)− f(x̄)− f(x̄ + αη(x, x̄))− f(x̄)
α

∈ C.

Because f is Gâteaux differentiable, taking limit as α → 0+, we have

θ + f(x)− f(x̄)− f
′
x̄(η(x, x̄)) ∈ C.

Hence
〈λ̄, θ〉+ 〈λ̄, f(x)− f(x̄)〉 − 〈λ̄, f

′
x̄(η(x, x̄))〉 ≥ 0. (4.4)
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Similarly, as g is C-preinvex with respect to η, then for any α ∈ (0, 1),

〈µ̄, g(x)− g(x̄)〉 − 〈µ̄, g
′
x̄(η(x, x̄))〉 ≥ 0. (4.5)

Adding (4.4) and (4.5), by (4.1), (4.2) and x ∈ S, we obtain

〈λ̄, θ + f(x)− f(x̄)〉 ≥ 0

Since λ̄ ∈ C∗i, then
f(x̄)− f(x) 6∈ C \ {0}+ θ,

which is contradiction to (4.3).

From Definition 4.1, we know every εe-efficient solution of (MP) is also εe-weakly efficient
solution of (MP). Therefore, we get the following result.

Corollary 4.3. Let f : X → Y and g : X → Z be Gâteaux differentiable at x̄ ∈ S, and let
f be C-subpreinvex with respect to η and θ, g be D-preinvex with respect to η on X. If there
exist λ̄ ∈ C∗i, µ̄ ∈ D∗ such that (4.1) and (4.2) hold, then x̄ is a θ-weakly efficient solution
of (MP).

5 Duality

We consider the following Mond-Weir type dual for the problem (MP).

(MD)

max f(y),
s. t. 〈λ, f

′
y(x)〉+ 〈µ, g

′
y(x)〉 = 0, ∀ x ∈ X,

〈µ, g(y)〉 ≥ 0, y ∈ X,
0 6= λ ∈ C∗, µ ∈ D∗.

Where f
′
, g

′
is Gâteaux differential of f and g, respectively.

Theorem 5.1. Let x̄ be a feasible solution for (MP) and (ȳ, λ̄, µ̄) be feasible for (MD). Let
f be C-subpreinvex function with respect to η and θ on X, g be D-preinvex function with
respect to the same η on X. Then

f(ȳ)− f(x̄) 6∈ intC + θ.

Proof. Since g is D-preinvex function with respect to η on X, then for x̄, ȳ ∈ X, ∀α ∈ (0, 1),

αg(x̄) + (1− α)g(ȳ)− g(ȳ + αη(x̄, ȳ)) ∈ D,

hence

g(x̄)− g(ȳ)− g(ȳ + αη(x̄, ȳ))− g(ȳ)
α

∈ D.

Because D is a closed cone, by Gâteaux differentiability of g, letting α → 0+, we have

g(x̄)− g(ȳ)− g
′
ȳ(η(x̄, ȳ)) ∈ D,

which implies
〈µ̄, g(x̄)〉 − 〈µ̄, g(ȳ)〉 − 〈µ̄, g

′
ȳ(η(x̄, ȳ))〉 ≥ 0. (5.1)
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Because f is C-subpreinvex function with respect to η and θ on X, then for any α ∈ (0, 1),

α(1− α)θ + αf(x̄) + (1− α)f(ȳ)− f(ȳ + αη(x̄, ȳ)) ∈ C.

Since C is a closed cone, by Gâteaux differentiability of f , taking limit as α → 0+, we have

θ + f(x̄)− f(ȳ)− f
′
ȳ(η(x̄, ȳ)) ∈ C.

Hence
〈λ̄, θ〉+ 〈λ̄, f(x̄)− f(ȳ)〉 − 〈λ̄, f

′
ȳ(η(x̄, ȳ))〉 ≥ 0. (5.2)

Adding (5.1) and (5.2), by feasibility of x̄ and (ȳ, λ̄, µ̄) for (MP) and (MD), respectively, we
have

〈λ̄, θ + f(x̄)− f(ȳ)〉 ≥ 0,

Therefore,
f(ȳ)− f(x̄) 6∈ intC + θ.
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[4] G. Ruiz-Garzón, R. Osuna-Gómez and A. Rufián-Lizana, Generalized invex monotonic-
ity, Eor. J. Oper. Res. 144 (2003) 501–512.

[5] M.A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80
(1981) 545–550.

[6] M. Hayashi and H. Komiya, Perfect duality for convexlike programs, J. Optim. Theory
Appl. 38 (1982) 269-275.

[7] T. Jabarootian and J. Zafarani, Generalized invariant monotonicity and invexity of
non-differentiable functions, J. Glob.Optim. 36 (2006) 537–564.

[8] V. Jeyakumar, A generalization of a minimax theorem of Fan via a theorem of the
alternative, J. Optim. Theory Appl. 48 (1986) 525–533.

[9] Y.D. Hu and C. Ling, The generalized optimality conditions of multiobjective program-
ming problem in topological vector space, J. Math. Anal. Appl. 290 (2004) 363–372.

[10] L.J. Lin, Optimization of set-valued functions, J. Math. Anal. Appl. 186 (1994) 30–51.

[11] Z. Li, A theorem of the alternative and its application to the optimization of set-valued
maps, J. Optim. Theory Appl. 100 (1999) 365–375.

[12] P.H. Sach, New Generalized Convexity Notion for Set-Valued Maps and Application to
Vector Optimization, J. Optim. Theory Appl. 125 (2005) 157–179.



598 C. LIU, X. YANG AND Q. QIU

[13] S.K. Suneja and M. Bhatia, Cone convex and related functions in optimization over
topological vector spaces, Asia. Pac. J. Oper. Res. 24 (2007) 741–754.

[14] T. Weir and B. Mond, Preinvex functions in multiple-objective optimization, J. Math.
Anal. Appl. 136 (1988) 29–38.

[15] T. Weir and V. Jeyakumar, A class of nonconvex functions and mathematical program-
ming, Bull. Aust. Math. Soc. 38 (1988) 177–189.

[16] X.M. Yang, Alternative theorems and optimality conditions with weakened convexity,
Opsearch 29 (1992) 125–135.

[17] X.M. Yang, X.Q. Yang and G.Y. Chen, Theorems of the Alternative and Optimization
with Set-Valued Maps, J. Optim. Theory Appl. 107 (2000) 627–640.

[18] X.M. Yang, X.Q. Yang and K.L. Teo, Generalized invexity and generalized invariant
monotonicity, J. Optim. Theory Appl. 117 (2003) 607–625.

Manuscript received 6 November 2009
revised 23 August 2010, 8 September 2010

accepted for publication 9 August 2010

Caiping Liu
College of Economic Mathematics, Southwestern University of Finance and Economics
Chengdu 611130, China
E-mail address: caipingliu99@163.com

Xinmin Yang
Department of Mathematics, Chongqing Normal University
Chongqing 400047, China
E-mail address: yang@cqnu.edu.cn

Qiusheng Qiu
Department of Mathematics, Zhejiang Normal University
Jinhua 321004, China
E-mail address: qsqiu@zjnu.cn


