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Abstract: Abstract convex analysis constructs a theory of nonconvex optimization based on suitable exten-
sions of the methods of (usual) convex analysis. One of its problems is to describe and characterize the set of
abstract convex functions with respect to given set of elementary functions. In this paper a characterization
of a class of abstract convex functions with respect to min-type functions in terms of global calmness is
obtained. By analogy with (usual) convex analysis, where convexity (in sense of upper envelope of a set of
affine functions) is related to the lower semicontinuity, a question is posed, in how far the global calmness
condition can be substituted with lower semicontinuity. As an application of the obtained characterization,
it is shown that this is the case when the considered function f is of bounded domain (while an example
shows that a similar assertion for functions with unbounded domains is not true). This result stresses the
importance of concepts as convexity at a point and uniform lower semicontinuity. These auxiliary concepts
are defined in the paper and some of their properties, related to the proved result, are established.

Key words: abstract convexity, min-type functions, convexity at a point, uniform lower semicontinuity

Mathematics Subject Classification: 49J52, 49N15

1 Introduction

Abstract convex analysis, grown after the monographs of Pallaschke, Rolewicz [12], Singer
[19], and Rubinov [15], to a mathematical discipline with own face and problems, aims to
generalize the results of convex analysis to abstract convex functions on the basis of global
aspects of the subdifferential (the generalizations of the local aspects lead to nonsmooth
analysis). Its importance is due to various applications to duality theory, optimization of
nonconvex functions etc. After Singer [19] we notice that the problem of constructing a
theory of nonconvex optimization, based on suitable extensions of the methods of (usual)
convex analysis, has been attacked by several authors independently at about the same time,
such as Kutateladze, Rubinov [8]–[9], Dolecki, Kurcyusz [4]–[5], Lindberg [10], Balder [1].
Some of the artifacts of abstract convex analysis have been developed on an earlier stage,
say those of generalized convex sets (Danzer, Grünbaum, Klee [3], Fan [6]), of the conjugate
of a function associated to arbitrary and not necessary bilinear coupling (Moreau [11], and
others), and have been applied to nonconvex optimization, e. g. to develop a unified theory
of augmented Lagrangians ([4], [5], [10], [1]).

As Singer [19] underlines, one of the main question in abstract convex analysis is the
following: Given an arbitrary set X, which (extended real-valued) functions on X should be
called convex? Once the abstract convex functions with respect to a given set of elementary
functions H are defined, the problem is to characterize them.
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In this paper we occupy with this problem in Rn, when the set of the elementary functions
H is the set of abstract affine functions corresponding to the set of abstract linear functions
L consisting of the minima of k linear functions. This convexity is called Hk-convexity
and is proved to find many applications in optimization [15], say in the theory of extended
Lagrange and extended penalty functions, star-shaped analysis, and to numerical methods
in global (nonconvex and nonsmooth) optimization as say extensions of the cutting planes
and branch-and-bound methods.

As a refinement of the Hk-convexity we introduce in the next section (like in [2]) the
notion of the H0

k-convexity. Theorem 3.1 in Section 3, which is our main result, gives a
characterization (sufficient and necessary conditions) for theH0

k-convexity of a given function
f : Rn → R+∞ in terms of (global) calmness when 1 ≤ k ≤ n. The case k ≥ n+1 is discussed
in Theorems 3.6 and 3.7.

Let us stress that for us the H0
k-convexity is a tool to study some aspects of the Hk-

convexity. Theorem 3.1 shows that the H0
k-convexity obeys (in comparison to Hk-convexity)

some analytic comfort. By analogy with (usual) convex analysis, one expects to associate the
convexity properties considered here (the ones in terms of upper envelopes) rather to lower
semicontinuity than to calmness. Section 4 gives an example showing that the substitution
of calmness with lower semicontinuity in Theorem 3.1 makes the thesis false. However
Theorem 4.6 shows that for functions with bounded domains the thesis remains true. Its
proof requires some notions defined in the paper, namely the ones of convexity at a point
and of uniform lower semicontinuity. Section 5 does few comments, among them concerning
the difference between the H0

k-convexity and the Hk-convexity.
The paper is related to the study on Hk-convexity undertaken by Rubinov and Shvei-

del in [15], [16], [17] and [18]. The paper does not discuss abstract subdifferentiability
associated to H0

k-convexity, though it would be worth to compare H0
k-convexity and H0

k-
subdifferentiability. H0

k-subdifferentiability for positively homogeneous functions is discussed
in [2] in the case k = n, and in [7] in the case k < n .

2 Preliminaries

Denote by R+∞ := R∪{+∞}. Let X be a given set and H be a set of functions h : X → R.
The set H is called the set of elementary functions. For a function f : X → R+∞ the
support set of f with respect to H is defined by supp (f,H) = {h ∈ H | h ≤ f}. Here h ≤ f
means h(x) ≤ f(x) for all x ∈ X. The function f is called H-convex (convex with respect
to H) at the point x0 ∈ X if f(x0) = sup{h(x0) | h ∈ supp (f,H)}. The function f is called
H-convex, if it is H-convex at any point x ∈ X.

Often a set L is given, and H is defined by H = {h = ` − c | ` ∈ L, c ∈ R}. Then
L is called the set of abstract linear functions, and H the set of abstract affine functions.
When L coincides with the set of the usual linear functions, then H is the set of the usual
affine functions, and f is H-convex if and only if it is both convex in the usual sense and
lower semicontinuous (lsc). So, the convexity with respect to a set of elementary functions
generalizes the usual convexity, and opens the perspectives to extend the various application
of usual convexity to abstract convexity (that is H-convexity) with an appropriate set of
elementary functions H.

In the sequel we consider the case X = Rn. Then 〈x, y〉 =
∑n

j=1 xjyj denotes the scalar
product of the vectors x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, and ‖x‖ = 〈x, x〉1/2

denotes Euclidean norm of x.
We occupy in this paper with (abstract) convexity with respect to min-type functions.

For a positive integer k we define the class of abstract linear functions Lk (min-type
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functions) as the set of the functionals ` : Rn → R such that `(x) = min1≤i≤k〈li, x〉
for some l1, . . . , lk ∈ Rn. The respective set of abstract affine functions is denoted by
Hk := {h = `−c | ` ∈ Lk, c ∈ R}. The Hk-convexity is referred to as convexity with respect
to min-type functions.

Convexity with respect to min-type functions is studied in [15], [16], [17], [18]. The
original aim to characterize the class of Hk-convex functions, undergoes in this paper some
change, as explained below. Let us underline that when k ≥ n+1 the problem to characterize
the Hk-convex functions find a satisfactory solution in [15]. So, the interesting case is k ≤ n.

For a given function f : Rn → R+∞ the problem to characterize the Hk-convexity
at x0 ∈ Rn meets with some constructive difficulties, which is clarified in [2] for positively
homogeneous (PH) functions. It is proved there (Theorem 6.1 in [2]) that every convex-along-
lines (CAL) and globally calm PH function is H0

n-convex. The proof is rather constructive.
The property of f to be CAL is necessary for f to be H0

n-convex. However it is not necessary
for f to be Hn-convex. The only thing we can affirm is that for any Hn-convex PH function
there exists a line through the origin along which it is CAL. However the constructive
approach from Theorem 6.1 in [2] cannot be applied to prove that: Every globally calm PH
function being convex along certain line passing through the origin is Hn-convex. Moreover,
such a claim turns to be wrong as the following example shows:

Example 2.1 ([2]). Consider the function f : R2 → R defined by

f(x1, x2) =





x2
1/

√
x2

1 + x2
2, x1 > 0,
0, x1 = 0,

−2x2
1/

√
x2

1 + x2
2, x1 < 0.

The function f is PH, globally calm, and convex along the line (x1, x2) | x1 = 0, but it is
not H2-convex.

So, instead of looking for characterization of the Hk-convexity at x0 ∈ Rn, we look for
characterization of the H0

k-convexity defined below. Before giving the formal definition of
H0

k-convexity, let us mention that any H0
k-convex function at a given point x0 is also Hk-

convex. Hence, every sufficient condition for H0
k-convexity of f at x0 is also sufficient for Hk-

convexity. The importance ofH0
k-convexity we see in the possibility to characterize it, that is

to find a condition both sufficient and necessary (characterization) for a function f to be H0
k-

convex at a given point x0. The importance of the characterization as a necessary condition
for H0

k-convexity in relation to Hk-convexity is that any function f which either is not
Hk-convex, or is Hk-convex but not H0

k-convex, for sure should break the characterization
property. For instance, the function from Example 2.1 being not H2-convex, is in virtue of
Theorem 6.1 in [2] automatically not CAL.

Thus, we will look for characterization of the H0
k-convexity defined as follows. Let x0 ∈

Rn. Define the set of abstract linear functions L0
k(x0) of all ` ∈ Lk, `(x) = min1≤i≤k〈li, x〉,

having the property

〈l1, x0〉 = 〈l2, x0〉 = · · · = 〈lk, x0〉 (= `(x0)) . (2.1)

The respective set of abstract affine functions is H0
k(x0) = {h = `− c | ` ∈ L0

k(x0), c ∈ R}.
We say that f is H0

k-convex at x0 if it is H0
k(x0)-convex at x0. We say that f is H0

k-convex
if it is H0

k-convex at any x0 ∈ Rn. Let us underline, that while for a function f the H0
k-

convexity at a given x0 follows the usual definitions of abstract convex analysis with H0
k(x0)

as an underlying set of elementary functions, the definition of H0
k-convexity of f (without

specifying a concrete point x0) is not based on an underlying set of elementary functions H0
k
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and therefore does not follow the usual definition of abstract convex analysis. The notion
of H0

k-convexity can be considered as some tool to study Hk-convexity. In fact f is H0
k-

convex when it is Hk-convex and for all x0 ∈ Rn the representation f(x0) = sup{h(x0) |
h ∈ supp (Rn,Hk)} holds also when restricting the choice to h ∈ supp (Rn,H0

k(x0)) (observe
that H0

k(x0) ⊂ Hk).
Let us stress the following simple assertion:

Proposition 2.2. If k1 < k2 and f : Rn → R+∞ is H0
k1

-convex (at x0 ∈ Rn), then f is
also H0

k2
-convex (at x0).

Proof. We have L0
k1

(x0) ⊂ L0
k2

(x0). Indeed, let ` ∈ L0
k1

with `(x) = min1≤i≤k1〈li, x〉
satisfying (2.1) with k = k1. Now put li = lk1 for i = k1 + 1, . . . , k2. Obviously, now
`(x) = min1≤i≤k2〈li, x〉 and (2.1) holds with k = k2. Therefore ` ∈ L0

k2
(x0). Similarly, we

have H0
k1

(x0) ⊂ H0
k2

(x0), which follows from

H0
k1

(x0) = {`− c | ` ∈ L0
k1

(x0), c ∈ R} ⊂ {`− c | ` ∈ L0
k2

(x0), c ∈ R} = H0
k2

(x0).

Assume that f is H0
k1

-convex at x0. Then

f(x0) = sup{h(x0) | h ∈ supp (f,H0
k1

(x0))}
≤ sup{h(x0) | h ∈ supp (f,H0

k2
(x0))} ≤ f(x0) .

Hence there are equalities everywhere in this chain of inequalities. In particular

f(x0) = sup{h(x0) | h ∈ supp (f,H0
k2

(x0))} ,

that is f is H0
k2

-convex at x0.

In the sequel we use the notion of calmness, originating from [14]. The function f : Rn →
R+∞ is called calm at the point x0 ∈ dom f if

Calm f(x0) := inf
{

f(x)− f(x0)
‖x− x0‖ | x ∈ Rn, x 6= x0

}
> −∞ .

The quantity Calm f(x0) is called the calmness of f at x0.

3 H0
k-convexity at a Point

Given a function f : Rn → R+∞, a point x0 ∈ Rn, a number c ∈ R, an m-dimensional
subspace L ⊂ Rn, and a vector ζ ∈ Rn, we introduce the function

fx0,c,L,ζ(x) =
{

c + 〈ζ, z〉 , x = x0 + z, z ∈ L ,
f(x) , otherwise .

Let us underline that from here on L means, as said above, a linear subspace of Rn. This
is a traditional notation in convex analysis [13] for linear subspaces. We do this remark to
avoid eventual confusion with the notation L used in Section 2 to denote the set of abstract
linear functions. The notation L in this context is traditional in abstract convex analysis
[15]. Since in the present paper the two notations are “spacially” separated, the one used
up to here, and the other from here on, we think after this warning there is no basis for
confusion.
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With the function f we relate the following condition:

C(f, x0, c, L, ζ) : inf
z∈L

Calm fx0,c,L,ζ(x0 + z) > −∞ .

Given a function g : Rn → R+∞ and a subspace L ⊂ Rn, we denote by g|L the restriction
of g on L. The dual space of L is denoted by L∗ (that is L∗ stands for the set of the linear
functionals on L). The notation ∂g|L(x0) denotes the subdifferential of g|L at x0 ∈ L, that
is

∂g|L(x0) = {`∗ ∈ L∗ | g|L(x) ≥ `∗(x)− `∗(x0) + g|L(x0) for all x ∈ L} .

The elements `∗ ∈ ∂g|L(x0) are called subgradients of g|L at x0. From the representation
`∗(x) = 〈ζ, x〉 with appropriate ζ ∈ Rn we can identify the functional `∗ with the vectors ζ,
considering equivalent any two vectors ζ1, ζ2, whose difference ζ1 − ζ2 is orthogonal to L
(in order that the representation `∗(x) = 〈ζ, x〉 is unique, we can restrict the considerations
only to vectors ζ ∈ L). On the basis of this identification the subdifferential ∂g|L(x0) is
considered as a set of vectors ζ ∈ Rn. In this sense further we use to write ζ ∈ ∂g|L(x0).

In the sequel we will also consider the function fx0,c with x0 ∈ Rn and c ∈ R, defined by

fx0,c(x) =
{

c , x = x0 ,
f(x) , otherwise .

The following theorem characterizes theH0
k-convexity at a point x0 in the case 1 ≤ k ≤ n.

Theorem 3.1. Let f : Rn → R+∞ and x0 ∈ Rn. Let k be integer with 1 ≤ k ≤ n.
Then f is H0

k-convex at x0 if and only if for any c < f(x0) there exists a (n + 1 − k)-
dimensional subspace L ⊂ Rn with x0 ∈ L, and there exists ζ ∈ ∂fx0,c|L(x0), such that
condition C(f, x0, c, L, ζ) is satisfied.

Proof. Necessity. Let f be H0
k-convex at x0 ∈ Rn, and let c < f(x0) be a real. Then there

exists h ∈ supp (f,H0
k(x0)) with h(x0 ≥ c). We can assume without loss of generality that

h(x0) = c. Indeed, when h(x0) > c, we can substitute h(x) by h̄(x) = h(x) − (c − h(x0)).
Obviously h̄(x0) = c and h̄ ∈ supp (f,L0

k(x0)), the latter follows from h̄(x) < h(x) ≤ f(x).
Let h = `−γ, where ` ∈ L0

k(x0) and γ ∈ R. From c = h(x0) = `(x0)−γ we get γ = `(x0)−c,
that is h(x) = `(x)−`(x0)+c. Suppose that `(x) = min1≤i≤k〈li, x〉 and (2.1) holds. Actually
the equalities

〈l1, x〉 = 〈l2, x〉 = . . . 〈lk, x〉 (3.1)

form a homogeneous linear system with k − 1 equations, hence of rank at most k − 1.
Accounting, due to (2.1), that x0 solves this system, we can find a (n + 1− k)-dimensional
subspace L ⊂ Rn such that x0 ∈ L and any x ∈ L solves (3.1). Obviously, the restriction of `
on L is linear, so we can write `∗ := `|L ∈ L∗. The inequality f(x) ≥ h(x) = `(x)−`(x0)+c,
x ∈ Rn, restricted to L gives

fx0,c(x)− fx0,c(x0) ≥ `∗(x)− `∗(x0) , x ∈ L ,

whence `∗ ∈ ∂fx0,c|L(x0). Using this inequality and the representation `∗(x) = 〈ζ, x〉, x ∈ L,
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for z ∈ L we get

Calm fx0,c,L,ζ(x0 + z) = inf
x∈Rn

x6=x0+z

fx0,c,L,ζ(x)− fx0,c,L,ζ(x0 + z)
‖x− x0 − z‖

≥ min

(
inf

x∈Rn

x6=x0+z

fx0,c(x)− c− 〈ζ, z〉
‖x− x0 − z‖ , inf

x=x0+w, w∈L
w 6=z

fx0,c,L,ζ(x)− c− 〈ζ, z〉
‖x− x0 − z‖

)

≥ min

(
inf

x∈Rn

x6=x0+z

`(x)− `(x0)− 〈ζ, z〉
‖x− x0 − z‖ , inf

w∈L
w 6=z

〈ζ, w − z〉
‖w − z‖

)

≥ min
(
− max

1≤i≤k
‖li‖ , −‖ζ‖

)
.

(3.2)

The right hand side of this inequality is finite and does not depend on z, whence condition
C(f, x0, c, L, ζ) is satisfied.

Sufficiency. Let c < f(x0). Due to condition C(f, x0, c, L, ζ) there exists a constant
C > 0 such that

inf
z∈L

Calm fx0,L,c,ζ(x0 + z) ≥ −C > −∞ . (3.3)

Consider the subspace M = {x ∈ Rn | 〈l, x〉 = 0 for all l ∈ L} of Rn orthogonal to the
subspace L. Since M is a (k − 1) -dimensional subspace, we can find k vectors m1, . . . , mk

such that their convex hull S, which is a simplex, contains the ball B = {x ∈ M : ‖x‖ ≤ 1}.
Let q(x) = max1≤i≤k〈mi, x〉 be the support function of S. Since S ⊃ B and the support
function of B is equal to ‖x‖ , it follows that

q(x) = max
1≤i≤k

〈mi, x〉 ≥ ‖x‖, x ∈ M . (3.4)

Fix x ∈ Rn and let x̄ be the orthogonal projection of x on L. Then

x̄ =
n+1−k∑

i=1

〈ui, x〉ui ,

where {u1, . . . , un+1−k} is an orthonormal basis of L. Since x̄ = x0 + (x̄− x0) ∈ x0 + L, we
have

fx0,c,L,ζ(x̄) = c + 〈ζ, x̄− x0〉 . (3.5)

Since x̄ ∈ L, from (3.3) we have

fx0,c,L,ζ(x)− fx0,c,L,ζ(x̄) ≥ −C ‖x− x̄‖ .

Due to (3.4) and x− x̄ ∈ M we get

‖x− x̄‖ ≤ max
1≤i≤k

〈mi, x− x̄〉 ,

so that
fx0,c,L,ζ(x)− fx0,c,L,ζ(x̄) ≥ −C ‖x− x̄‖ ≥ −C max

1≤i≤k
〈mi, x− x̄〉 .

Since mi ∈ M, i = 1, . . . , k, and x̄ belongs to the subspace L being orthogonal to M , it
follows that 〈mi, x̄〉 = 0 for i = 1, . . . , k. Using these equalities and (3.5) we obtain

fx0,c(x) ≥ fx0,c,L,ζ(x) =
(
fx0,c,L,ζ(x)− fx0,c,L,ζ(x̄)

)
+ fx0,c,Lζ(x̄)



CONVEXITY WITH RESPECT TO min-TYPE FUNCTION 581

≥ −C max
1≤i≤k

〈mi, x〉+ c + 〈ζ, x̄− x0〉

≥ −C max
1≤i≤k

〈mi, x〉+ c +
n+1−k∑

i=1

〈ui, x〉 〈ζ, ui〉 − 〈ζ, x0〉 ,

or equivalently

fx0,c(x)− fx0,c(x0) ≥ min
1≤i≤k

〈−C mi +
n+1−k∑

i=1

〈ζ, ui〉ui , x 〉 − 〈ζ, x0〉 . (3.6)

Here we have used the inequality fx0,c(x) ≥ fx0,c,L,ζ(x) which needs to be explained only
when x = x0 + z, z ∈ L. Then this inequality reduces to

fx0,c(x0 + z)− fx0,c(x0) ≥ 〈ζ, z〉 , z ∈ L ,

which is true by definition, since ζ ∈ ∂fx0,c|L(x0) is a subgradient of the function fx0,c|L .
Put now

li = −C mi +
n+1−k∑

i=1

〈ζ, ui〉ui , i = 1, . . . , k ,

and observe that these vectors do not depend on x (from here on x could be considered an
arbitrary vector). Define the functional ` : Rn → R by `(x) = min1≤i≤k〈li, x〉. We have
obviously

〈li, x0〉 = 〈−C mi , x0 〉+
n+1−k∑

i=1

〈ζ, ui〉 〈ui, x0〉

= 〈
n+1−k∑

i=1

〈ζ, ui〉ui , x0 〉 = 〈ζ̄, x0〉 , i = 1, . . . , k ,

where ζ̄ =
∑n+1−k

i=1 〈ζ, ui〉ui is the orthogonal projection of ζ on L. These equalities show
that ` ∈ L0

k(x0) and

`(x0) = 〈ζ̄, x0〉 = 〈ζ, x0〉 − 〈ζ − ζ̄, x0〉 = 〈ζ, x0〉 .
Now inequality (3.6) can be written as

f(x) ≥ `(x)− `(x0) + c , ∀x ∈ Rn ,

which shows that the function h = ` − `(x0) + c ∈ H0
k(x0) belongs to supp (f,H0

k(x0)).
With account that h(x0) = c and c < f(x0) arbitrary, we see that f(x0) = sup{h(x0) | h ∈
supp (f,H0

k(x0))}, that is f is H0
k-convex at x0.

In the previous theorem the hypotheses involve the non-emptyness of the subdifferential
∂g(x0) where g = f |x0,c. The question, when this subdifferential is not empty, leads to the
notion of a function convex at a point, which will be introduced next.

Let L be a m-dimensional linear space, g : L → R+∞ a given function, and x0 ∈ L. We
will say that g is convex at x0, if g(x0) = (conv g)(x0). The equality conv g = conv {gx |
x ∈ L}, where gx(y) = g(x) for y = x and gx(y) = +∞ for y ∈ L \ {x}, represents conv g as
a convex hull of the family of convex functions {fx | x ∈ L}. Hence according to Theorem
5.6 in [13] we have (conv g)(x) = inf {∑y∈L λyg(y) | ∑y∈L λyy = x}, where the infimum is
taken over all representation of x as a convex combination of y ∈ L, such that only finitely
many coefficients λy are non-zero. The formula is also valid if one actually restricts y to lie
in dom g. Further, due to Carathéodory Theorem (Theorem 17.1 in [13]), we can confine to
convex combinations of at most m + 1 elements. Therefore it holds:
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Proposition 3.2. The function g : L → R+∞ (L is m-dimensional linear space) is convex
at x0 ∈ L if and only if g(x0) = inf {∑m+1

i=1 λyig(yi) | ∑m+1
i=1 λyiyi = x0}.

Now we discuss the non-emptyness of the subdifferential ∂g(x0).

Proposition 3.3. Let g : L → R+∞ (L is m-dimensional linear space) be a proper function
(that is dom f 6= ∅) and let ∂g(x0) 6= ∅ for some x0 ∈ L. Then x0 ∈ dom g, g is convex at x0,
and conv g is lsc at x0. In such a case it holds ∂g(x0) = ∂(conv g)(x0) = ∂(cl conv g)(x0).

Proof. Let ζ ∈ ∂g(x0) and y ∈ dom g. Then

g(x0) ≤ g(y)− 〈ζ, y〉+ 〈ζ, x0〉 < +∞ .

Varying y in the above inequality and applying convex combinations we get

g(x0) ≤
∑

y

λyg(y)− 〈ζ,
∑

y

λyy〉+ 〈ζ, x0〉 . (3.7)

When
∑

y λyy = x0, this gives g(x0) ≤ ∑
y λyg(y), which proves that g is convex at x0.

Inequality (3.7) shows that ∂g(x0) ⊂ ∂(conv g)(x0). The opposite inclusion is obvious,
whence ∂g(x0) = ∂(conv g)(x0). Hence, the convex function conv g is subdifferentiable at
x0. Then according to Corollary 23.5.2 in [13] conv g is lsc at x0 and ∂(conv g)(x0) =
∂(cl conv g)(x0).

Now we consider conditions implying ∂g(x0) 6= ∅. According to Proposition 3.3, convex-
ity of g at x0 is necessary for this.

Proposition 3.4. Let g : L → R+∞ (L is m-dimensional linear space) be convex at x0.
If x0 /∈ dom g, then ∂g(x0) = ∅. If x0 ∈ ri dom g (ri stands for relative interior), then
∂g(x0) 6= ∅.

Proof. Like in Proposition 3.3, we see that convexity of g at x0 implies ∂g(x0) = ∂(conv g)(x0).
Now the thesis follows from Theorem 23.4 in [13] applied to the convex function conv g.

The function g : R → R+∞, given by g(x) = −√1− x2 for |x| ≤ 1 and g(x) = +∞
for |x| > 1, is convex and lsc, but not subdifferentiable at ±1. So, at the points of the
relative boundary of dom g, the convexity and the lower semicontinuity does not imply
subdifferentiability. However, with regard to the hypotheses of Theorem 3.1 where the
function g = fx0,c|L is of importance, the following holds:

Proposition 3.5. Let g : L → R+∞ (L is m-dimensional linear space) be convex at x0 ∈ L.
Let c < g(x0). Then gx0,c is convex at x0. If in addition x0 ∈ dom g and conv g is lsc at x0,
then ∂gx0,c(x0) 6= ∅. The same is true, if the condition “x0 ∈ dom g” is substituted by “g
bounded from below”.

Proof. Consider a convex combination
∑

y λyy = x0. One of the following cases can have
place:

10. λx0 = 1. Then λy = 0 for y 6= x0 and

∑
y

λy gx0,c(y) = gx0,c(x0) = c .
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20. λx0 < 1. Then
∑

y

λy gx0,c(y) =
∑

y 6=x0

λy gx0,c(y) + λx0c

= (1− λx0)
∑

y 6=x0

λy

1− λx0
g(y) + λx0c

≥ (1− λx0) + λx0c = c .

We have used the convex combination
∑

y 6=x0

λy

1− λx0
y =

1
1− λx0

(
x0 − λx0 x0

)
= x0 .

In both cases we obtain gx0,c(x0) = c ≤ ∑
y λygx0,c(y). Therefore gx0,c is convex at x0.

Let x0 ∈ dom g and h := cl conv g. From the hypotheses we have h(x0) = g(x0) < +∞.
The epigraph H+ := epi h = {(x, r) ∈ L × R | h(x) ≥ r} is closed and convex, and does
not contain the point (x0, c). Put H− = {(x0, c)}. The Separation Theorem guarantees the
existence of (ξ, η) ∈ L× R and γ ∈ R, such that

〈ξ, x〉+ η r ≥ γ for (x, r) ∈ H+ , (3.8)

〈ξ, x〉+ η r ≤ γ for (x, r) ∈ H− . (3.9)

Since (x0, g(x0)) satisfies (3.8), and with account of (3.9), we get η 6= 0. Further, since
(x0, r) ∈ H+ for all r ≥ g(x0), we get η > 0. Dividing by η and putting ζ = −ξ/η and
r = g(x) in (3.9), we get

〈−ζ, x〉+ g(x) ≥ γ

η
≥ 〈−ζ, x0〉+ c , (3.10)

which shows that ζ ∈ ∂gx0,c(x0).
Let us have now g bounded from below instead of x0 ∈ dom g. Suppose that g(x) ≥ µ >-

∞ for all x ∈ L. Obviously then also h(x) ≥ µ, ∀x ∈ L. We may assume that c > µ. For
δ > 0 define the set

Hδ =
{

(x, r) ∈ L× R | ‖x− x0‖ ≤ δ
c− r

c− µ
, r ≤ c

}
.

We claim that for some δ > 0 the convex set Hδ does not intersect the set H+ = epi h. If
this were not the case, we would have a sequence xn ∈ L with h(xn) < c and

‖xn − x0‖ ≤ 1
n

c− h(xn)
c− µ

≤ 1
n

.

This shows that xn → x0. From the closedness of h we get g(x0) = h(x0) ≤ lim infn h(xn) ≤
c. This contradicts the hypothesis c < g(x0). Put now H− = Hδ for δ > 0 chosen so that Hδ

and H+ are disjoint. The Separation Theorem gives the existence of (ξ, η) ∈ L×R\{(0, 0)}
and µ ∈ R such that (3.8) and (3.9) hold. If e ∈ L, ‖e‖ ≤ δ, then

(
c−r
c−µ e + x0, r

)
∈ H− for

all r ≤ c. According to (3.9) we have

c− r

c− µ
〈ξ, e〉+ 〈ξ, x0〉+ η r ≤ γ . (3.11)
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From (3.11) we get η 6= 0. Otherwise ξ 6= 0, and with regard that also ‖− e‖ ≤ δ, we should
have both

c− r

c− µ
〈ξ, e〉+ 〈ξ, x0〉 ≤ γ and − c− r

c− µ
〈ξ, e〉+ 〈ξ, x0〉 ≤ γ

for all r ≤ c, which is not possible if e is chosen so that 〈ξ, e〉 6= 0. Having obtained η 6= 0,
we claim that also η > 0. To show this observe that (x0, r) ∈ H− for all r ≤ c, which leads
to the inequality 〈ξ, x0〉+ η r ≤ γ, which cannot be true for all r ≤ c if it were η < 0.

Take in (3.9) the point (x, r) = (x0, c) and put ζ = −ξ/η. Dividing by η we get the
inequality (3.10) which shows that ζ ∈ ∂gx0,c(x0).

In the next two theorems we characterizeH0
k-convexity at a point x0 in the case k ≥ n+1.

Theorem 3.6 deals with the case x0 = 0 and Theorem 3.7 with the case x0 6= 0.

Theorem 3.6. The function f : Rn → R+∞ is H0
k-convex at 0 with k = n + 1 if and only

if for all c < f(0) it holds Calm f0,c(0) > −∞ (the necessity is true for arbitrary positive
integer k). For k > n + 1, the function f is H0

k-convex at 0 if and only if it is H0
n+1-convex

at 0.

Proof. Necessity. Let f beH0
k-convex at 0 with k arbitrary positive integer, and let c < f(0).

Then there exists h ∈ H0
k(0) such that h ∈ supp (f,H0

k(0)) and h(0) > c. Without loss of
generality we can assume h(0) = c (this was explained in the proof of Theorem 3.1). Then
h(x) = `(x)− `(0) + c = `(x) + c for some ` ∈ L0

k(0). Let `(x) = min1≤i≤k〈li, x〉. Then

Calm f0,c(0) = inf
x6=0

f0,c(x)− f0,c(0)
‖x‖ ≥ inf

x6=0

h(x)− c

‖x‖ = inf
x6=0

`(x)
‖x‖

= inf
x6=0

min1≤i≤k〈li, x〉
‖x‖ ≥ − max

1≤i≤k
‖li‖ > −∞ .

Sufficiency Consider the case k = n + 1. Let c < f(0) and C > 0 be such that
Calm f0,c(0) > −C. Take the vectors m1, . . . , mn+1 such that their convex hull S con-
tains the ball B = {x ∈ Rn | ‖x‖ ≤ 1}. Let q(x) = max1≤i≤k〈mi, x〉 be the support function
of S. Since S ⊃ B and the support function of B is equal to ‖x‖ it follows that

q(x) = max
1≤i≤k

〈mi, x〉 ≥ ‖x‖, x ∈ Rn .

Put li = −Cmi, i = 1, . . . , n + 1, and `(x) = min1≤i≤n+1〈li, x〉. Obviously

〈l1, 0〉 = 〈l2, 0〉 = · · · = 〈ln+1, 0〉 = 0 (= `(0)) ,

whence ` ∈ L0
n+1(0). Now

`(x) = min
1≤i≤n+1

〈li, x〉 = −C max
1≤i≤n+1

〈mi, x〉 ≤ −C ‖x‖ ≤ f0,c(x)− c ≤ f(x)− c .

This shows that h = `+c ∈ supp (f,H0
n+1(0)). Since c < f(0) is arbitrary, h(0) = sup{h(0) |

h ∈ supp (f,H0
n+1(0))}, that is f is H0

n+1-convex at 0.
Let now k > n + 1. If f is H0

k-convex at 0, then, as proved in the necessity, the function
f0,c is calm at 0 for any c < f(0). This implies, as proved in the sufficiency, that f is
H0

n+1-convex at 0. Conversely, if f is H0
n+1-convex at 0, then on the basis of Proposition

2.2 it is also H0
k-convex at 0.
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Theorem 3.7. For k ≥ n + 1, the function f : Rn → R+∞ is H0
k-convex at x0 6= 0, if and

only if it is H0
n-convex at x0.

Proof. Necessity Let f be H0
k-convex at x0, and let c < f(x0). Then there exists h ∈

supp (f,H0
k(x0)) with h(x0) ≥ c. Without loss of generality we can assume h(x0) = c. Let

h(x) = `(x)−`(x0)+c, where ` ∈ L0
k(x0). Let `(x) = min1≤i≤k〈li, x〉 with 〈li, x〉 = `(x0) for

i = 1, . . . , k. Put L = {tx0 | t ∈ R} and consider the function fx0,c,L,ζ defined with ζ ∈ Rn

such that 〈ζ, x〉 = `(x) for x ∈ L (observe that `|L is a linear functional). Applying the
estimations (3.2) from the necessity of Theorem 3.1 with z ∈ L we get

Calm fx0,c,L,ζ(x0 + z) ≥ min
(
− max

1≤i≤k
‖li‖ , −‖ζ‖

)
,

where the right hand side is finite and does not depend on z. Therefore condition
C(f, x0, c, L, ζ) is satisfied. Now on the basis of the sufficiency of Theorem 3.1, we get that
f is H0

n-convex at x0. Conversely, if f is H0
n-convex at x0, then on the basis of Proposition

2.2 it is also H0
k-convex at x0 with k ≥ n + 1.

4 H0
k-convexity and Lower Semicontinuity

The following proposition associates the H0
k-convexity and lower semicontinuity.

Proposition 4.1. If the function f : Rn → R+∞ is H0
k-convex at x0 ∈ Rn then it is lsc at

x0.

Proof. The function f is lsc at x0, since it holds f(x0) = sup{h(x0) | h ∈ supp (f,H0
k(x0)}

and the functions in H0
k(x0) are continuous.

In this paper we deal mainly with the case k ≤ n. To avoid confusion due to this fact,
let us specially underline that Proposition 4.1 is true for arbitrary positive integer k.

Now it is natural to pose the question, whether a lsc function f : Rn → R+∞ is H0
k-

convex. From convex analysis we know that this is the case when k = 1 (each lsc convex
function is an upper envelope of affine functions). However the following example shows
that the things look different when k ≥ 2.

Example 4.2. The function f : R2 → R given by

f(x1, x2) =
{ −

√
|x1x2| , x1 ≥ 0,√
|x1x2| , x1 < 0,

is continuous (hence lsc), but it is not H0
2-convex at the nonzero points of the coordinate

axes.

To fix the attention, consider the point x0 = (a, 0), a > 0. Let c < f(x0) = 0. Now
L = {tx0 | t ∈ R} is the unique 1-dimensional space containing x0. If ζ ∈ ∂fx0,c(x0), ζ ∈ L,
then ζ = 0. Indeed, for t 6= 0, we should have fx0,c(x0 + tx0) − fx0,c(x0) ≥ 〈ζ, tx0〉, or
equivalently −c ≥ t〈ζ, x0〉. For t > 0, dividing by t and letting t → +∞, we get 0 ≥ 〈ζ, x0〉.
For t < 0, dividing by t and letting t → −∞, we get 0 ≤ 〈ζ, x0〉. Hence 〈ζ, x0〉 = 0. When
ζ ∈ L this gives ζ = 0. Fix x2 > c2/a and let t > 0. Now

Calm fx0,c,L,ζ(x0 + tx0) ≤ fx0,c,L,ζ((1 + t)a, x2/(1 + t))− fx0,c,L,ζ((1 + t)a, 0)
x2/(1 + t)
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= (1 + t)
−√ax2 − c

x2
→ −∞ as t →∞ .

Therefore condition C(f, x0, c, L, ζ) is not satisfied and according to Theorem 3.1 f is not
H0

2-convex at x0.
Thus, the lower semicontinuity alone does not imply the H0

k-convexity, but it could do
this when combined with some additional condition. Theorem 4.6 below supports this claim.

We will need the notion of uniform lower semicontinuity. The function g : Rn → R+∞
will be called uniformly lsc on D ⊂ dom f if for all x ∈ D, and for all ε > 0, there exists
δ > 0 possibly depending on ε but not depending on x, such that y ∈ Rn and ‖y − x‖ < δ
implies g(y) > g(x)− ε. Obviously, if f is uniformly lsc on D, then f is lsc on D.

The following propositions present some properties of the uniform lower semicontinuity.

Proposition 4.3. Let g : Rn → R+∞ be uniformly lsc on D ⊂ dom f . Then the restriction
g|D of g on D is continuous.

Proof. Since f is lsc on D, in order to show its continuity it is enough to show that f is
also upper semicontinuous (usc) on f . Let x0 ∈ D and xn → x0 where xn ∈ D. Suppose
on the contrary, that γ := lim supn g(xn) > g(x0). Taking a subsequence, we may assume
that g(xn) → γ. Put ε = (γ − g(x0))/2 > 0. Then there exists δ > 0 such that x ∈ D
and ‖y − x‖ < δ implies g(y) > g(x) − ε. Diminishing eventually δ, we may assume that
‖xn − x0‖ < δ implies g(xn) > γ − ε. Fix now xn, such that ‖xn − x0‖ < δ. From the
uniform lower semicontinuity we should have g(x0) > g(xn)− ε, and therefore

g(x0) > g(xn)− ε > γ − 2ε = g(x0) ,

a contradiction.

Proposition 4.4. Let g : Rn → R+∞ be lsc on D ⊂ dom f , and let D be compact. If the
restriction g|D of g on D is continuous, then g is uniformly lsc on D.

Proof. Suppose on the contrary, that g is not uniformly lsc on D. Choose a sequence δn →
0+. Then there should exist ε0 > 0 and sequences xn ∈ D, yn ∈ Rn, such that ‖yn−xn‖ < δn

but g(yn) ≤ g(xn) − ε0. From the compactness of D, passing to a subsequence, we may
assume that xn → x0 ∈ D. Now we have also yn → x0. Taking limits in the inequality
g(yn) ≤ g(xn) − ε0 and using the continuity of g|D we get lim infg(yn) ≤ lim supn g(yn) ≤
g(x0)− ε0. This contradicts however the lower semicontinuity of g at x0.

In the proof of Theorem 4.6 we will need the following proposition.

Proposition 4.5. Let g : L → R+∞ (L is m-dimensional linear space) be lsc. Suppose also
that g is convex at x0 and dom g is bounded. Then the function conv g is lsc at x0.

Proof. Assume, on the contrary, that conv g is not lsc at x0. Then there exists c < f(x0)
and a convex combination

m+1∑

i=1

λν,i yν,i = xν (4.1)

with yν,i ∈ dom g and xν → x0, such that

m+1∑

i=1

λν,i g(yν,i) < c +
1
ν

.
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With account that dom g is bounded, passing to a subsequence, we may assume that
limν λν,i → λi and limν yν,i = yi for i = 1, . . . , m + 1. A passing to a limit in (4.1)
gives a representation of x0 as a convex combination

∑m+1
i=1 λiy

i = x0. From the lower
semicontinuity of g we have g(yi) ≤ lim infν g(yν,i) for i = 1, . . . , m + 1. Now we get

m+1∑

i=1

λi g(yi) ≤
m+1∑

i=1

λν,i lim inf
ν

g(yν,i)

≤ lim inf
ν

m+1∑

i=1

λν,i g(yν,i) ≤ lim inf
ν

(
c +

1
ν

)
= c .

This chain of inequalities contradicts however the convexity of g at x0, according to which
we should have

∑m+1
i=1 λig(yi) ≥ g(x0) > c.

Theorem 4.6. Let the function f : Rn → R+∞ be lsc with bounded domain dom f . Let
1 ≤ k ≤ n, and suppose that for any x0 ∈ Rn there exists a (n+1−k)-dimensional subspace
L ⊂ Rn with x0 ∈ L, such that the restriction f |L is convex at x0. Then f is H0

k-convex.

Proof. Fix x0 ∈ Rn and let c < f(x0). Put Bσ = {x ∈ Rn | ‖x‖ ≤ σ}. Let σ0 > 0 be such
that dom f ⊂ Bσ0 and x0 ∈ Bσ0 . and let σ0 < σ1. From the compactness of Bσ0 and the
lower semicontinuity of f we have

inf
x∈Rn

f(x) = inf
x∈Bσ0

f(x) > −∞ .

Therefore there exists µ such that −∞ < µ < c and µ ≤ infx∈Rn f(x).
Choose the (n + 1 − k)-dimensional space L containing x0 so that f |L is convex at x0.

Since f is lsc, also f |L is lsc. From Proposition 4.5 we get that conv f |L is lsc at x0. Let
c < c̄ < f(x0). Since f |L is bounded from below, according to Proposition 3.5 there exists
ζ ∈ ∂(f |L)x0,c̄(x0) = ∂fx0,c|L(x0). Obviously, it holds also ζ ∈ ∂f |x0,c(x0). Now we will
show that condition C(f, x0, c, L, ζ) is satisfied. Observe first, that the function fx0,c̄,L,ζ is
lsc. This follows straightforward from the facts that: L ⊂ Rn is closed, fx0,c̄,L,ζ(x) ≤ f(x)
for all x ∈ Rn, fx0,c̄,L,ζ restricted to Rn \ L coincides with the lsc function f , and fx0,c̄,L,ζ

restricted to L coincides with the continuous function x → c̄+〈ζ, x− x0〉. From Proposition
4.4 it follows that fx0,c̄,L,ζ is uniformly lsc on L∩Bσ1 . We will show that fx0,c̄,L,ζ is uniformly
lsc on L, for which it is enough to show that it is uniformly lsc on L ⊂ Bσ1 . This is however
obvious, since for x ∈ L \Bσ1 and ‖y − x‖ < σ1 − σ0 we have

fx0,c̄,L,ζ(y)− fx0,c̄,L,ζ(x) =
{ 〈ζ, y − x〉 , y ∈ L ,

+∞ , y /∈ L ,

(now for every ε > 0 and 0 < δ < min(σ1 − σ2, ε/‖ζ‖) the conditions x ∈ L \ σ1 and
‖y − x‖ < δ imply fx0,c̄,L,ζ(y)− fx0,c̄,L,ζ(x) ≥ −ε).

The proved uniform lower semicontinuity implies that there exists δ > 0, such that x ∈ L
implies

fx0,c̄,L,ζ(y)− fx0,c̄,L,ζ(x) > −(c̄− c) when ‖y − x‖ ≤ δ . (4.2)

When ‖y − x‖ ≤ δ and y ∈ L inequality (4.2) gives:

fx0,c,L,ζ(y)− fx0,c,L,ζ(x) = 〈ζ, y − x〉 ≥ −‖ζ‖ ‖y − x‖ . (4.3)

When ‖y − x‖ ≤ δ and y /∈ L inequality (4.2) gives:

fx0,c,L,ζ(y)− fx0,c,L,ζ(x) > 0 . (4.4)
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When ‖y − x‖ > δ and y ∈ L we have inequality (4.3).
When ‖y − x‖ > δ and y ∈ Bσ0 \ L we have

fx0,c,L,ζ(y)− fx0,c,L,ζ(x) ≥ µ− c− 〈ζ, x− x0〉
≥ − c− µ

δ
‖y − x‖ − 2σ0 ‖ζ‖

δ
‖y − x‖ .

(4.5)

When ‖y − x‖ > δ and y ∈ (Rn \Bσ0) \ L we have

fx0,c,L,ζ(y)− fx0,c,L,ζ(x) = +∞ . (4.6)

Combining relations (4.3)–(4.6) we obtain

Calm fx0,c,L,ζ(x) ≥ − max
(
‖ζ‖ ,

c− µ

δ
+

2σ0 ‖ζ‖
δ

)
.

The right hand side of this inequality does not depend on x. Therefore condition
C(f, x0, c, L, ζ) has place.

The following example is a straightforward application of Theorem 4.6 (observe that the
hypotheses of this theorem are satisfied).

Example 4.7. Let D ⊂ R2 be a bounded set. Define the function g : R2 → R+∞ by

g(x1, x2) =
{

f(x1, x2) , (x1, x2) ∈ D ,
+∞ , otherwise ,

where f is the function from Example 4.2. Then g is H0
2-convex (recall that the function f

in Example 4.2 was not H0
2-convex).

As Example 4.2 shows, the boundedness of the domain dom f is essential for the validity
of Theorem 4.6.

5 Comments

As it was mentioned in the beginning, we introduced the H0
k-convexity with the aim to

study Hk-convexity. This is because H0
k-convexity admits a characterization through a

constructive approach as in Theorem 3.1. The H0
k-convexity implies Hk-convexity, hence

the sufficient conditions for H0
k-convexity are also sufficient for Hk-convexity. The necessary

conditions for H0
k-convexity alone are not necessary for Hk-convexity. For instance, as it was

shown the convexity at x0 of the restriction f |L on some (n + 1− k)-dimensional subspace
L is a necessary condition for the H0

k-convexity at x0, but it is not necessary for the Hk-
convexity at x0. To stress the differences between H0

k-convexity andHk-convexity we turn to
Example 4.2. As it shown, the function f there is notH0

2-convex at the non zero points of the
coordinate axes. At the same time, at these points f is H2-convex. Let us e. g. demonstrate
the H2-convexity at the point x0 = (1, 0). For s > 0 define the functionals `s ∈ H2 by

`s(x1, x2) = min
(
(−√s + 2s

√
s) x1 − 2

√
s x2, (−√s− 2s

√
s) x1 + 2

√
s x2

)
.

It can be shown that `s ≤ f . Accounting that also `s(x0) = `s(1, 0) = −√s− 2s
√

s → 0 =
f(x0) as s → 0+, we get that f is H2-convex at x0. This example shows that the problem
to characteriza Hk-convexity in general meets with difficulties, and is still an open problem.
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Theorem 4.6 characterizes the H0
k-convex functions with bounded domains (when dom f

is bounded then it can be shown that the conditions of Theorem 4.6 are not only sufficient,
but also necessary for the H0

n-convexity of f). When dom f is unbounded, the hypothe-
ses of Theorem 4.6 do not characterize the H0

n-convexity of f , as seen from Example 4.2.
The characterization of H0

n-convexity in terms of lower semicontinuity for functions with
unbounded domain is also an open problem.

The notion of uniform continuity finds numerous applications in mathematical analysis.
The introduced here notion of uniform lower semicontinuity, due to Proposition 4.3, seems
to be of less importance. Nevertheless, as seen from the proof of Theorem 4.6, it can find
some applications.
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Paris Sér. A 283 (1976) 91–94.

[5] S. Dolecki and S. Kurcyusz, On Φ-convexity in extremal problems, SIAM J. Control
Optim. 16 (1978) 277–300.

[6] K. Fan, On the Krein-Milman theorem, in Convexity, V. Klee (ed.), Proc. Sympos.
Pure Math. Vol. 7, Amer. Math. Soc., Providence RI, 1963, pp. 211–220.

[7] I. Ginchev, Subdifferentiability with respect to min-type functions, C. R. Acad. Bulgare
Sci. 62 (2009) 799–804.

[8] S.S. Kutateladze and A.M. Rubinov, Minkowski duality and its applications (in Rus-
sian), Uspehi Mat. Nauk 27 (1972) 127–176 (English translation: Russian Math. Surveys
27 (1972) 137–191).

[9] S.S. Kutateladze and A.M. Rubinov, The Minkowski Dality and its Applications (in
Russian), Nauka, Novosibirsk, 1976.

[10] P.O. Lindberg, A generalization of Fenchel conjugation giving generalized Lagrangians
and symmetric nonconvex duality, in Survey of Mathematical Programming Vol. 1,
North Holland, Amsterdam-Oxford-New York, 1979, pp. 249–267.



590 IVAN GINCHEV

[11] J.J. Moreau, Inf-convolution, sous-additivité, convexité des fonctions numériques, J.
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