
AN ANALYSIS OF LS ALGORITHM FOR THE PROBLEM OF
SCHEDULING MULTIPLE JOBS ON MULTIPLE UNIFORM

PROCESSORS WITH READY TIME∗

Wei Ding and Yi Zhao

Abstract: In the paper we mainly study the Cmax problem for scheduling n jobs on m uniform processors
provided each job has a ready time. We first propose an LS algorithm based on uniform processors with
ready time. We then obtain under this LS algorithm one tight bound of the ratio of the approximate
solution T LS to the optimal solution T ∗ for any m ≥ 3 provided T ∗ is bigger than the processing time of the
latest finish job. Moreover, we get under this LS algorithm an upper bound of the ratio of the approximate
solution T LS to the optimal solution T ∗ for any m ≥ 3.

Key words: Heuristic algorithm, LS algorithm, LPT algorithm, processors, tight bound

Mathematics Subject Classification: 90B35, 68M20

1 Introduction

The problem of scheduling n jobs {J1, J2, · · · , Jn} with given processing time on m uniform
processors {M1,M2, · · · ,Mm} with an objective of minimizing the makespan is one of the
most well-studied problems in the scheduling literature, where processing Jj after Ji needs
ready time w(i, j). It has been proved to be NP − hard, cf. [10]. Therefore, the study of
heuristic algorithms will be important and necessary for this scheduling problem. In fact,
hundreds of scheduling theory analysts have cumulatively devoted an impressive number of
papers to the worst-case and probabilistic analysis of numerous approximation algorithms
for this scheduling problem.

In 1969 Graham [7] showed in his fundamental paper that the bound of this scheduling
problem is 2 − 1

m as w(i, j) = 0 under the LS (List Scheduling) algorithm and the tight
bound is 4

3 − 1
3m under the LPT (Longest Processing Time) algorithm. In 1993 Ovacik

and Uzsoy [9] proved the bound is 4 − 2
m as w(i, j) ≤ tj , where tj is the processing time

of the job Jj , under the LS algorithm. In 2003 Imreh [8] studied the on-line and off-line
problems on two groups of uniform processors, presented the LG (Load Greedy) algorithm,
and showed that the bound about minimizing the makespan is 2+ m−1

k and the bound about
minimizing the sum of finish time is 2+ m−2

k , where m and k are the numbers of two groups
of uniform processors. Gairing et al. (2007, [6]) proposed a simple combinatorial algorithm
for the problem of scheduling n jobs on m uniform processors to minimize a cost stream and
showed it is effective and of low complexity.

∗This work was partially supported by (No. 10971234 and No. 10671213). The authors thank the referees
for their valuable comments and suggestions.
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Besides the above well-studied scheduling problem, one may face the problem of schedul-
ing multi groups of jobs on multi processors in real production systems, such as, the problem
of processing different types of yarns on spinning machines in spinning mills. Recently, the
problems of scheduling multi groups of jobs on multi processors were studied provided each
job has no ready time. In 2004 Ding [1] obtained a tight bound TLPT /T ∗ ≤ 2 for the problem
of scheduling two groups of jobs on two special-purpose processors and m general-purpose
processors under an LPT algorithm. In 2005 Ding [2] gave a bound TLPT /T ∗ ≤ 4/3 for
the problem of scheduling three groups of jobs on three special-purpose processors and one
general-purpose processor under an LPT algorithm. In the same year Ding [3] got a bound
TLPT /T ∗ ≤ 5/4 for the problem of scheduling four groups of jobs on four special-purpose
processors and one general-purpose processor under an LPT algorithm. In 2006 Ding [4]
proposed a bound TLPT /T ∗ ≤ (n + 1)/n for the problem of scheduling n groups of jobs on
one special-purpose processors and n general-purpose processors under an LPT algorithm.
In 2008 Ding [5] presented a bound

TLPT

T ∗
≤

{ 2m+1
m+1 , if m ≥ n− 1,
m+n
m+1 , if m < n− 1,

for the problem of scheduling n groups of jobs on n special-purpose processors and m general-
purpose processors under an LPT algorithm.

However, if each job has a ready time, then the problem of scheduling multi jobs on
multi processors at different speeds has not been studied yet. Note that the LPT algorithm
is not a effective way to deal with such a problem if each job has a ready time. Meanwhile,
the classical LS algorithm is only useful to solve the problem of scheduling multi jobs on
multi processors at same speeds. Therefore, our purpose of this study is to propose an
LS algorithm based on uniform processors with ready time and to use this new algorithm
to analyze this problem provided each job has a ready time and processors have different
speeds.

The remainder of the paper is organized as follows. In Section 2, we proposed an LS
algorithm for the problem of scheduling n jobs on m uniform processors provided each job
has a ready time. In Section 3, we obtain under this LS algorithm one tight bound of the
ratio of the approximate solution TLS to the optimal solution T ∗ for any m ≥ 3 provided
T ∗ is bigger than the processing time of the latest finish job. Moreover, we get under this
LS algorithm an upper bound for the ratio of the approximate solution TLS to the optimal
solution T ∗ for any m ≥ 3.

Notation. As above and henceforth, we let Ji (i = 1, 2, · · · , n) denote the ith job and
let Mi (i = 1, 2, · · · ,m) denote the ith processor, respectively. We then denote by ti (i =
1, 2, · · · , n) the processing time of Ji and by si (i = 1, 2, · · · ,m) the speed of the processor
Mi, respectively.

Set s := min
1≤i≤m

si. Let s
′
i = si/s (i = 1, 2, · · · ,m) denote the relative speed of the

processor Mk by comparing si with the smallest speed s. If no ambiguity, we still use si

(i = 1, 2, · · · ,m) to denote s
′
i. Thus, we may assume that the smallest speed s is equal to

1. In contrast to the smallest speed s, we have si ≥ 1 (i = 1, 2, · · · ,m).
If the job Jj (j = 1, 2, · · · , n) is processed after the job Jl (l = 1, 2, · · · , n), then we

use w(j, l) to denote the ready time – the time a processor spends waiting for reassignment
when it could be running. Additionally, we let α denote the least upper bound of the ratio
of the ready time w(j, l) to the processing time tl for j, l = 1, 2, · · · , n, i.e.,

α = max
j, l=1,2,··· ,n

{w(j, l)
tl

}
.
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If the job Jj is earlier than the job Ji to be assigned to a processor, then we write Jj ≺ Ji.
If the job Ji is assigned to the processor Mk, then we write Ji ∈ Mk. Let ti/sk denote the
actual processing time of the job Ji on the processor Mk and let MLk(Ji) (k = 1, 2, · · · ,m)
denote the set of jobs assigned in the processor Mk before the job Ji is assigned, i.e.,

MLk(Ji) = {Jj |Jj ≺ Ji, Jj ∈ Mk}, k = 1, 2, · · · ,m.

Let MTk(Ji)/sk (k = 1, 2, · · · ,m) stand for the actual finish time of the processor Mk before
the job Ji is assigned and

MTk(Ji) =
∑

Jj∈Mk,Jj≺Ji

(w(∗, j) + tj), k = 1, 2, · · · ,m.

Next, we write TLS as the actual latest finish time of m processors under an LS algo-
rithm and T ∗ as the actual latest finish time of m processors under the optimal algorithm,
respectively. We finally denote TLPT by the approximate solution under an LPT algorithm,
TLPT /T ∗ by the bound of a scheduling problem under the LPT algorithm, and TLS/T ∗ by
the bound of a scheduling problem under the LS algorithm, respectively.

2 An LS algorithm

In the section, we will propose an LS algorithm for this scheduling problem.
The algorithm is defined by the fact that whenever a processor becomes idle for assign-

ment, the first job unexecuted is taken from the list and assigned to this processor. If there
are no less than one processor being idle, then the algorithm chooses the processor with the
smallest index. In addition, there is an arbitrary order for the jobs at the beginning of being
processed.

The steps of this LS algorithm are the following:
Step 1. Initialization.

Set j = 1, MLk(Jj) = ∅, MTk(Jj) = 0, k = 1, 2, · · · ,m.

Step 2. Choose the first idle processor.
Set p = min{ i

∣∣ MTi(Jj)/si = min
1≤k≤m

MTk(Jj)/sk}.
Step 3. Update the assignment and the latest finish processor Mp.

If j ≤ n, then set MLp(Jj+1) = MLp(Jj) + {Jj},
MTp(Jj+1) = MTp(Jj) + w(∗, j) + tj , j = j + 1.

After that go to Step 2.
Step 4. If j > n then set TLS = max

1≤k≤m
{MTk/sk}. Output the assignment of each processor

MLk (k = 1, 2, · · · ,m) and the latest finish time TLS .

3 Analysis of the LS algorithm

In the section, we first obtain under the LS algorithm one tight bound of the ratio of the
approximate solution TLS to the optimal solution T ∗ for any m ≥ 3 provided T ∗ is bigger
than the processing time of the latest finish job. Then, we get under the LS algorithm an
upper bound of the ratio of the approximate solution TLS to the optimal solution T ∗ for
any m ≥ 3.
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Theorem 3.1. Consider the problem of scheduling n jobs {J1, J2, · · · , Jn} on m uniform
processors {M1, M2, · · · , Mm} provided each job has a ready time. Given the ready time
w(j, l) and the processing time tl of Jl for j, l = 1, 2, · · · , n, and let

α = max
j, l=1,2,··· ,n

{w(j, l)
tl

}.

Assume that the optimal solution T ∗ is bigger than the processing time tj of the latest finish
job Jj. Then the tight bound of this scheduling problem under the LS algorithm is

TLS

T ∗
≤ (1 + α)(1 +

1
sk
− 1

m∑
i=1

si

)

for any m ≥ 3, where sk is the speed of the latest finish processor.

Proof. Based on the LS algorithm introduced in Section 2, we may assume that some
processor Mk (1 ≤ k ≤ m) is the latest finish processor and the latest finish job is Jj (1 ≤
j ≤ n). Then on the processor Mk, we have

TLS =
MTk

sk
. (3.1)

On other processors, we have

MTi

si
≥ MTk − (w(∗, j) + tj)

sk
, i = 1, 2, · · · ,m, i 6= k. (3.2)

Thus
m∑

i=1

MTi = MTk +
m∑

i=1
i6=k

MTi

≥ skTLS +
m∑

i=1
i6=k

siT
LS − 1

sk
(w(∗, j) + tj)

m∑
i=1
i6=k

si

=
m∑

i=1

siT
LS − 1

sk
(w(∗, j) + tj)

m∑
i=1
i6=k

si. (3.3)

On the other hand, by the assumption of the theorem, we have

T ∗ ≥ tj . (3.4)

Since T ∗ is the optimal solution, it follows that

T ∗ ≥

n∑
i=1

ti

m∑
i=1

si

. (3.5)

By the definition of α and (3.4), we get

w(∗, j) + tj ≤ (1 + α)tj ≤ (1 + α)T ∗. (3.6)



AN ANALYSIS OF LS ALGORITHM FOR SCHEDULING MULTIPLE JOBS 555

Then, by (3.3) and (3.6), we obtain

m∑

i=1

MTi ≥
m∑

i=1

siT
LS − 1

sk
(1 + α)T ∗

m∑
i=1
i6=k

si. (3.7)

In view of the definition of α and (3.5), we deduce

m∑

i=1

MTi =
m∑

i=1

∑

{th}∈MLi

(w(∗, h) + th)

=
n∑

h=1

(w(∗, h) + th)

≤ (1 + α)
n∑

h=1

th

≤ (1 + α)T ∗
m∑

i=1

si. (3.8)

Using (3.7) and (3.8), we have

(1 + α)T ∗
m∑

i=1

si ≥
m∑

i=1

MTi ≥ TLS
m∑

i=1

si − 1
sk

(1 + α)T ∗
m∑

i=1
i6=k

si.

This yields

(1 + α)(
m∑

i=1

si +
1
sk

m∑
i=1
i6=k

si)T ∗ ≥ TLS
m∑

i=1

si.

Therefore

TLS

T ∗
≤ (1 + α)

m∑
i=1

si

(
m∑

i=1

si +
1
sk

m∑
i=1
i6=k

si)

=
(1 + α)

m∑
i=1

si

[
m∑

i=1

si +
1
sk

(
m∑

i=1

si − sk)]

= (1 + α)(1 +
1
sk
− 1

m∑
i=1

si

).

Next, the following examples will show the bound given in the theorem is tight for any
m ≥ 3.

Consider the following scheduling problems.
(1) As m = 3, we assume speeds of three processors M1, M2, M3 are s1, s2, 1, respectively.
(i) If the processor M1 is the latest finish processor, then we let the set of processors be

M = {M1,M2,M3}.
a) As s1 ≤ s2, we set processing time and ready time of jobs are

Jobs Ji J1 J2 J3 J4 J5 J6 J7

Processing time ti s2
1 s2

2 s1 s1s2 s2 s1s2 s1 + s2 + 1
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and

Ready Time
w(0, 1) = αs2

1 w(1, 4) = αs1s2

w(0, 2) = αs2
2 w(2, 6) = αs1s2

w(0, 3) = αs1 w(3, 5) = αs2

w(4, 7) = α(s1 + s2 + 1) w(i, j) = 0 for others i,j.

Then in this case, the LS schedule and the optimal schedule are

The LS Schedule
Processors Jobs

M1 t1 = s2
1 t4 = s1s2 t7 = s1 + s2 + 1

M2 t2 = s2
2 t6 = s1s2

M3 t3 = s1 t5 = s2

and

The Optimal Schedule
Processors Jobs

M1 t4 = s1s2 t1 = s2
1 t3 = s1

M2 t6 = s1s2 t2 = s2
2 t5 = s2

M3 t7 = s1 + s2 + 1.

b) As s1 > s2, we set processing time and ready time of jobs are

Jobs Ji J1 J2 J3 J4 J5 J6 J7

Processing time ti s2
1 s2

2 s1 s1s2 s1s2 s2 s1 + s2 + 1

and

Ready Time
w(0, 1) = αs2

1 w(1, 5) = αs1s2

w(0, 2) = αs2
2 w(2, 4) = αs1s2

w(0, 3) = αs1 w(3, 6) = αs2

w(5, 7) = α(s1 + s2 + 1) w(i, j) = 0 for others i,j.

Then in this case, the LS schedule and the optimal schedule are

The LS Schedule
Processors Jobs

M1 t1 = s2
1 t5 = s1s2 t7 = s1 + s2 + 1

M2 t2 = s2
2 t4 = s1s2

M3 t3 = s1 t6 = s2

and

The Optimal Schedule
Processors Jobs

M1 t4 = s1s2 t1 = s2
1 t3 = s1

M2 t5 = s1s2 t2 = s2
2 t6 = s2

M3 t7 = s1 + s2 + 1.
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Thus, if the processor M1 is the latest finish processor, then we get

TLS =
MT1

s1
= (1 + α)(s1 + s2 +

s1 + s2 + 1
s1

), T ∗ = s1 + s2 + 1,

and
TLS

T ∗
= (1 + α)(1 +

1
s1
− 1

s1 + s2 + 1
).

(ii) If the processor M2 is the latest finish processor, then we let the set of processors
M = {M2,M1,M3}.

a) As s1 < s2, we set processing time and ready time of jobs are

Jobs Ji J1 J2 J3 J4 J5 J6 J7

Processing time ti s2
2 s2

1 s1 s1s2 s2 s1s2 s1 + s2 + 1

and

Ready Time
w(0, 1) = αs2

2 w(1, 6) = αs1s2

w(0, 2) = αs2
1 w(2, 4) = αs1s2

w(0, 3) = αs1 w(3, 5) = αs2

w(6, 7) = α(s1 + s2 + 1) w(i, j) = 0 for others i,j.

Then in this case, the LS schedule and the optimal schedule are

The LS Schedule
Processors Jobs

M2 t1 = s2
2 t6 = s1s2 t7 = s1 + s2 + 1

M1 t2 = s2
1 t4 = s1s2

M3 t3 = s1 t5 = s2

and

The Optimal Schedule
Processors Jobs

M1 t4 = s1s2 t2 = s2
1 t3 = s1

M2 t6 = s1s2 t1 = s2
2 t5 = s2

M3 t7 = s1 + s2 + 1.

b) As s1 ≥ s2, we set processing time and ready time of jobs are

Jobs Ji J1 J2 J3 J4 J5 J6 J7

Processing time ti s2
2 s2

1 s1 s1s2 s1s2 s2 s1 + s2 + 1

and

Ready Time
w(0, 1) = αs2

2 w(1, 4) = αs1s2

w(0, 2) = αs2
1 w(2, 5) = αs1s2

w(0, 3) = αs1 w(3, 6) = αs2

w(4, 7) = α(s1 + s2 + 1) w(i, j) = 0 for others i,j.

Then in this case, the LS schedule and the optimal schedule are
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The LS Schedule
Processors Jobs

M2 t1 = s2
2 t4 = s1s2 t7 = s1 + s2 + 1

M1 t2 = s2
1 t5 = s1s2

M3 t3 = s1 t6 = s2

and

The Optimal Schedule
Processors Jobs

M1 t4 = s1s2 t2 = s2
1 t3 = s1

M2 t5 = s1s2 t1 = s2
2 t6 = s2

M3 t7 = s1 + s2 + 1.

Thus, if the processor M2 is the latest finish processor, we get

TLS =
MT2

s2
= (1 + α)(s1 + s2 +

s1 + s2 + 1
s2

), T ∗ = s1 + s2 + 1,

and
TLS

T ∗
= (1 + α)(1 +

1
s2
− 1

s1 + s2 + 1
).

(iii) If the processor M3 is the latest finish processor, then we let the set of processors is
M = {M3,M1,M2}.

a) As s1 ≤ s2, we set processing time and ready time of jobs are

Jobs Ji J1 J2 J3 J4 J5 J6 J7

Processing time ti s1 s2
1 s2

2 s2 s1s2 s1s2 s1 + s2 + 1

and

Ready Time
w(0, 1) = αs1 w(1, 4) = αs2

w(0, 2) = αs2
1 w(2, 5) = αs1s2

w(0, 3) = αs2
2 w(3, 6) = αs1s2

w(4, 7) = α(s1 + s2 + 1) w(i, j) = 0 for others i,j.

Then in this case, the LS schedule and the optimal schedule are

The LS Schedule
Processors Jobs

M3 t1 = s1 t4 = s2 t7 = s1 + s2 + 1
M1 t2 = s2

1 t5 = s1s2

M2 t3 = s2
2 t6 = s1s2

and

The Optimal Schedule
Processors Jobs

M1 t5 = s1s2 t2 = s2
1 t1 = s1

M2 t6 = s1s2 t3 = s2
2 t4 = s2

M3 t7 = s1 + s2 + 1.

b) As s1 > s2, we set processing time and ready time of jobs are
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Jobs Ji J1 J2 J3 J4 J5 J6 J7

Processing time ti s1 s2
1 s2

2 s1s2 s2 s1s2 s1 + s2 + 1

and

Ready Time
w(0, 1) = αs1 w(1, 5) = αs2

w(0, 2) = αs2
1 w(2, 6) = αs1s2

w(0, 3) = αs2
2 w(3, 4) = αs1s2

w(5, 7) = α(s1 + s2 + 1) w(i, j) = 0 for others i,j.

Then in this case, the LS schedule and the optimal schedule are

The LS Schedule
Processors Jobs

M3 t1 = s1 t5 = s2 t7 = s1 + s2 + 1
M1 t2 = s2

1 t6 = s1s2

M2 t3 = s2
2 t4 = s1s2

and

The Optimal Schedule
Processors Jobs

M1 t4 = s1s2 t2 = s2
1 t1 = s1

M2 t6 = s1s2 t3 = s2
2 t5 = s2

M3 t7 = s1 + s2 + 1.

Thus, if the processor M3 is the latest finish processor, we get

TLS = MT3 = (1 + α)(2s1 + 2s2 + 1), T ∗ = s1 + s2 + 1,

and
TLS

T ∗
= (1 + α)(2− 1

s1 + s2 + 1
).

Thus, the above example shows that the bound given in Theorem 3.1 is tight for m = 3.
(2) As m > 3, we assume that sm = 1, si ≥ 1, i = 1, 2, · · · ,m− 1, and let the set of jobs

is

Line 1 2 3 · · · m− 2 m− 1 m
Line 1 s2

1 s2
2 s2

3 · · · s2
m−2 s2

m−1 sm−1

Line 2 s1s2 s2s3 s3s4 · · · sm−2sm−1 sm−1s1 sm−2

Line 3 s1s3 s2s4 s3s5 · · · sm−2s1 sm−1s2 sm−3

Line 4 s1s4 s2s5 s3s6 · · · sm−2s2 sm−1s3 sm−4

· · · · · · · · · · · · · · · · · · · · · · · ·
Line i s1si s2si+1 s3si+2 · · · sm−2si−2 sm−1si−1 sm−i

· · · · · · · · · · · · · · · · · · · · · · · ·
Line m-1 s1sm−1 s2s1 s3s2 · · · sm−2sm−3 sm−1sm−2 s1

Line m
m−1∑
i=1

si + 1.
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It follows that the processing time of the lasted finish job is
m−1∑
i=1

si + 1, the others are sisj ,

i = 1, 2, · · · ,m, j = 1, 2 · · · ,m− 1, and the total number of jobs is m(m− 1) + 1.
In short, by adjusting the order between processors and jobs according to the latest

finish processor and the value of si, we can get an example so that the last job is assigned
to the latest finish processor Mk and the ready time w(0, j) = αtj , j = 1, 2, · · · ,m. If some

processor processes tj is after ti, then we set w(i, j) = αtj and w(∗,m(m−1)+1) = α
m∑

i=1

si.

Otherwise, we set w(i, j) = 0 so that each job needs the ready time in the LS schedule.
However, each job does not need the ready time in the optimal schedule through adjusting
the order of jobs.

Thus, the LS schedule of this example is

The LS Schedule
Processors Jobs

Mk s2
k sksk+1 sksk+2 · · · sksk−1

m−1∑
i=1

si + 1

M1 s2
1 s1s2 s1s3 · · · s1sm−1

M2 s2
2 s2s3 s2s4 · · · s2s1

M3 s2
3 s3s4 s3s5 · · · s3s2

· · · · · · · · · · · · · · · · · ·
Mm−1 s2

m−1 sm−1s1 sm−1s2 · · · sm−1sm−2

Mm sm−1 sm−2 sm−3 · · · s1

and the optimal schedule of this example is

The Optimal Schedule
Processors Jobs
M1 s1s2 s2

1 s1s3 · · · s1sm−1 s1

M2 s2s3 s2
2 s2s4 · · · s2s1 s2

M3 s3s4 s2
3 s3s5 · · · s3s2 s3

· · · · · · · · · · · · · · · · · · · · ·
Mk sksk+1 s2

k sksk+2 · · · sksk−1 sk

· · · · · · · · · · · · · · · · · · · · ·
Mm−1 sm−1s1 s2

m−1 sm−1s2 · · · sm−1sm−2 sm−1

Mm

m−1∑
i=1

si + 1.

In this example, we have

TLS =
MTk

sk
= (1 + α)(

m−1∑

i=1

si +

m−1∑
i=1

si + 1

sk
), T ∗ =

m∑

i=1

si,

and
TLS

T ∗
=

MTk

sk
= (1 + α)(1 +

1
sk
− 1

m∑
i=1

si

).

Therefore, the above examples show that the bound given in Theorem 3.1 is tight for
any m ≥ 3. This completes the proof the theorem.
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Remark 3.2. Note that for the optimal solution T ∗, we always have

T ∗ ≥ tj
sk

,

where tj is the processing time of the latest finish job Jj and sk is the speed of the latest
finish processor. Theorem 3.1 shows that if the optimal solution T ∗ is bigger than the
processing time tj of the latest finish job Jj , then the bound (1 + α)(1 + 1

sk
− 1

mP
i=1

si

) of the

ratio of the approximate solution TLS to the optimal solution T ∗ is tight for any m ≥ 3
under the LS algorithm.

As special cases of Theorem 3.1, we have

Corollary 3.3. The scheduling problem in Theorem 3.1 under the LS algorithm has the
bound

TLS

T ∗
≤ (1 + α)(2− 1

m∑
i=1

si

),

where sk is the speed of the latest finish processor. Moreover, if sk = 1, then this bound is
tight for any m ≥ 3.

Corollary 3.4. If the ready time of every job is 0 in Theorem 3.1, i.e., all w(∗, ∗) = 0, then
the scheduling problem under the LS algorithm has the bound

TLS

T ∗
≤ 2− 1

m∑
i=1

si

where sk is the speed of the latest finish processor. Moreover, if sk = 1, then this bound is
tight for any m ≥ 3.

We now present an upper bound of the ratio of the approximate solution TLS to the
optimal solution T ∗ without making any assumptions.

Theorem 3.5. Consider the problem of scheduling n jobs {J1, J2, · · · , Jn} on m uniform
processors {M1, M2, · · · , Mm} provided each job has a ready time. Given the ready time
w(j, l) and processing time tl of Jl for j, l = 1, 2, · · · , n, and let

α = max
j, l=1,2,··· ,n

{w(j, l)
tl

}.

Then the bound of this scheduling problem under the LS algorithm is

TLS

T ∗
≤ (1 + α)(2− sk

m∑
i=1

si

)

for any m ≥ 3, where sk is the speed of the latest finish processor.

Proof. Based on the LS algorithm introduced in Section 2, we may assume that some
processor Mk (1 ≤ k ≤ m) is the latest finish processor and the latest job is Jj (1 ≤ j ≤ n).
Then on the processor Mk, we have

TLS =
MTk

sk
. (3.9)
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On other processors, we find

MTi

si
≥ MTk − (w(∗, j) + tj)

sk
, i = 1, 2, · · · ,m, i 6= k. (3.10)

Thus

m∑

i=1

MTi = MTk +
m∑

i=1
i6=k

MTi

≥ skTLS +
m∑

i=1
i6=k

siT
LS − 1

sk
(w(∗, j) + tj)

m∑
i=1
i6=k

si

=
m∑

i=1

siT
LS − 1

sk
(w(∗, j) + tj)

m∑
i=1
i6=k

si. (3.11)

On the other hand, for the optimal solution T ∗, we have

T ∗ ≥ tj
sk

(3.12)

and

T ∗ ≥

n∑
i=1

ti

m∑
i=1

si

. (3.13)

By the definition of α and (3.12), we get

w(∗, j) + tj ≤ (1 + α)tj ≤ (1 + α)skT ∗. (3.14)

Then, by (3.11) and (3.14), we obtain

m∑

i=1

MTi ≥
m∑

i=1

siT
LS − (1 + α)T ∗

m∑
i=1
i6=k

si. (3.15)

In view of the definition of α and (3.13), we deduce

m∑

i=1

MTi =
m∑

i=1

∑

{th}∈MLi

(w(∗, h) + th)

=
n∑

h=1

(w(∗, h) + th)

≤ (1 + α)
n∑

h=1

th

≤ (1 + α)T ∗
m∑

i=1

si. (3.16)
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Using (3.15) and (3.16), we have

(1 + α)T ∗
m∑

i=1

si ≥
m∑

i=1

MTi ≥ TLS
m∑

i=1

si − (1 + α)T ∗
m∑

i=1
i6=k

si.

This implies

(1 + α)(
m∑

i=1

si +
m∑

i=1
i6=k

si)T ∗ ≥ TLS
m∑

i=1

si.

Therefore

TLS

T ∗
≤ (1 + α)

m∑
i=1

si

(
m∑

i=1

si +
m∑

i=1
i6=k

si)

=
(1 + α)

m∑
i=1

si

[
m∑

i=1

si + (
m∑

i=1

si − sk)]

= (1 + α)(2− sk
m∑

i=1

si

).

This completes the proof of the theorem.

Remark 3.6. Theorem 3.5 shows that the approximate solution TLS is less than (1 +
α)(2− sk

mP
i=1

si

) times of the optimal solution T ∗ under the LS algorithm without making any

assumptions.

As special cases of Theorem 3.5, we have

Corollary 3.7. The scheduling problem in Theorem 3.5 under the LS algorithm has the
bound

TLS

T ∗
≤ (1 + α)(2− 1

m∑
i=1

si

)

for any m ≥ 3, where sk is the speed of the latest finish processor.

Corollary 3.8. If the ready time of every job is 0 in Theorem 3.5, i.e., all w(∗, ∗) = 0, then
the scheduling problem under the LS algorithm has the bound

TLS

T ∗
≤ 2− sk

m∑
i=1

si

for any m ≥ 3, where sk is the speed of the latest finish processor.
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