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1 Introduction

The concept of two-sided matching markets is well known in mathematical economics. In
two-sided matching markets, the set of participants, called the players, is divided into two
disjoint subsets; the set of individuals and the set of institutions. Generically, we recognize
the individuals as workers and the institutions as firms. The basic problem in such a market
is to assign the workers and firms to each other. Each worker has a list of preferences of
those firms where he/she is willing to work. Similarly, each firm has preferences over those
workers or the group of workers whom the firm wants to employ.

A job allocation is an assignment of workers and firms where each worker is assigned
with at most as many firms as he/she wishes and each firm is assigned with at most as
many workers as it wishes to employ. A job allocation is stable if all players have acceptable
partners and there is no worker-firm pair which is not matched but prefer to be matched to
each other rather than staying with their current partners.

The theory of two-sided matching markets was originated by Gale and Shapley [8]. In
their pioneering work, they presented the marriage model; a model in which a player on
one side is matched with at most one player on the opposite side. The monetary transfer is
not permitted in their model. For this reason, the players in this model are called “rigid”.
Gale and Shapley proposed an algorithm which finds a stable matching. The one-to-one
buyer-seller model by Shapley and Shubik [15], known as assignment game, in contrast to
Gale and Shapley’s marriage model, deals with the players who can trade money, that is,
the “flexible” players. Shapley and Shubik showed that the core of the assignment game is
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a non-empty complete lattice, where the core of a game is defined as the set of undominated
outcomes.

The Gale and Shapley marriage model and Shapley and Shubik assignment game has
been widely studied and several variations and extensions of these can be found in the
literature. Crawford and Knoer [1] developed an algorithm, called the “salary adjustment
process” which is a generalization of Gale and Shapley’s deferred-acceptance algorithm to
the case where money is present, that is, assignment game. The non-emptiness of the core is
shown in this model. Kelso and Crawford [10] extended the model of Crawford and Knoer [1]
by considering one-to-many job market with money under the gross substitution condition.
A generalization of the assignment game is also presented in Demange and Gale [2] where
preferences of the players may be represented by any continuous utility functions in the
money variable.

Kaneko [9] gave a very general and complicated model. He unified the Gale and Shapley
marriage model and the Shapley and Shubik assignment game and established the non-
emptiness of the core but could not establish the lattice property. The unification of the
marriage model and the continuous model of Demange and Gale [2] can be observed in
Roth and Sotomayor [14]. However, the existence of stable outcome is not guaranteed in
their model but they investigated the lattice property for payoffs in the core. A one-to-one
matching model is proposed in Eriksson and Karlander [3] where they unified the discrete
and continuous models. The marriage model becomes a special case of their model if the
players, at least on one side, are rigid. The assignment game is obtained when all players
are flexible. The existence of stable matching is guaranteed in this model. They further
discussed the lattice property of the set of stable outcomes. Some more investigation of
their model is also found in Sotomayor [16]. Recently, Sotomayor [17] presented a one-to-
one matching model, which is a special case of the model of Eriksson and Karlander [3] in
the sense that all players on one side are flexible. On the other side, however, some players
are rigid and the remaining flexible. A characterization of the core of this hybrid market
can be seen in this paper.

Motivated by the works of Eriksson and Karlander [3] and Sotomayor [16], Fujishige and
Tamura [6] proposed a common generalization of the marriage model and the assignment
game by utilizing the framework of discrete convex analysis developed by Murota [11, 12, 13].
They further extended their model in [7] by assuming possibly bounded side payments and
proved the existence of pairwise stable outcome. The structure of the set of pairwise stable
outcome is not discussed in their paper. Very recently, Farooq [4] gave a generalization of
the hybrid models of the Eriksson and Karlander [3] and Sotomayor [16]. He proved the
existence of a stable outcome for one-to-one matching problem with linear valuations and
bounded side payments.

The present work is a generalization of the model of Farooq [4] in the sense that we
consider one-to-many matching and possibly bounded salaries. Our model includes, as
special cases, the models of Gale and Shapley [8], Shapley and Shubik [15], Eriksson and
Karlander [3], Sotomayer [16] and Farooq [4]. The main features of our model are:
— the set of players is partitioned into two sets; the set of firms and set of workers,
— a worker can work for at most one firm,
— each firm has a certain quota to employ workers,
— each worker-firm pair may have lower and upper bounds on the salary,
— the preferences of the players are identified by strictly increasing and linear valuations.∗

We remark that the restrictions of boundedness or unboundedness on the salaries do not
∗Valuations can be defined in different ways. Here by valuation, we mean estimation of the value of some

asset or real property.
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impact the algorithm since preferences of the players in our model are represented by strictly
increasing and linear valuations. For example, in unrestricted case, the firm’s individual ra-
tionality constraints induce upper bounds and the worker’s individual rationality constraints
induce lower bounds for the salaries. Therefore, the possible bounded salaries can not be
considered as novelty in our model. Rather, it would help us to understand the compari-
son of our model and the known models. In the theory of stable matchings, generally it is
believed that when one develops an algorithm to show the existence of a stable matching
for the one-to-one models (the marriage markets), the same ideas may be adapted to show
the existence of a stable matching for one-to-many models (the college admissions markets).
However, due to the generality of our model, the simple adaptation of the old algorithm for
one-to-one model does not work. A comprehensive work is done in this paper to extend the
ideas of the algorithm for one-to-one model (Farooq [4]) to the algorithm for one-to-many
model.

We organize the paper as follows. In Section 2, we describe our model and define the
pairwise stability. In Section 3, we give a characterization of the pairwise stability. We
shall use this characterization to establish an algorithm to obtain a stable outcome in our
model. Section 4 deals with a brief description of some existing models and a comparison
of our model with the other models. The main part of our work appears in Section 5.
In this section, we propose an algorithm which finds a stable job allocation and prove the
correctness and termination of the algorithm.

2 Model Description

We consider two finite disjoint sets of players P and Q. Let P and Q be the set of workers
and firms, respectively, and E = P ×Q. We assume that each worker can work for at most
one firm and that each firm can employ as many workers as it wishes. For each j ∈ Q, let
µ(j) denote the maximum number of workers j can employ and µ = (µ(j) | j ∈ Q) ∈ ZQ

+,
where ZQ

+ is the set of positive vectors of ZQ.
Assume that each worker-firm pair (i, j) may have lower and upper bounds on the salary,

that is, the salaries are possibly bounded. The lower and upper bounds on the salaries are
expressed by two vectors π and π, where π ∈ (R∪{−∞})E , π ∈ (R∪{+∞})E and π ≤ π.†

A vector s = (sij | (i, j) ∈ E) ∈ RE is called a feasible salary vector if π ≤ s ≤ π.
We also assume that each worker has a list of preferences of those firms where he/she

is willing to work. Similarly, each firm has preferences over those workers whom the firm
wants to employ. The preferences of the players are represented by continuous, strictly
increasing linear functions, which are called linear valuations in our work. For each (i, j) ∈ E,
νij : R → R represents the valuation of a worker i for a monetary transfer from a firm j to
i. Similarly, νji : R → R represents the valuation of the firm j for a monetary transfer from
a worker i to j.‡

We say that a firm j is acceptable to a worker i at α ∈ R if νij(α) ≥ 0. Similarly, a
worker i is acceptable to a firm j at α ∈ R if νji(α) ≥ 0.

A worker i prefers a firm j to a firm j′ at α, α′ ∈ R if νij(α) > νij′(α′) and i is indifferent
between j and j′ at α, α′ ∈ R if νij(α) = νij′(α′). Similarly, a firm j prefers a worker i to a
worker i′ at α, α′ ∈ R if νji(α) > νji′(α′) and j is indifferent between i and i′ at α, α′ ∈ R
if νji(α) = νji′(α′).

†For any two vectors x ∈ (R ∪ {−∞})E and y ∈ (R ∪ {+∞})E , we say that x ≤ y if xij ≤ yij for all
(i, j) ∈ E.

‡The monetary transfer from a worker to a firm should not be surprising. For example, a worker can
agree on the reduction of his/her demanded salary after negotiation with a firm.
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A set X = {(Sj , j) | j ∈ Q} ⊆ 2P ×Q is called a job allocation if

(i) |Sj | ≤ µ(j) for all j ∈ Q.

(ii) Sj ∩ Sj′ = ∅ for all j, j′ ∈ Q with j 6= j′.

In the sequel, whenever we say that Sj ∈ X (or j ∈ X), we always mean that (Sj , j) ∈ X.
For any j ∈ Q, we reserve the notation Sj for X only.

We say that a firm j employs a worker i if i ∈ Sj . Obviously, a firm j is businessless
if Sj = ∅. Similarly, a worker i is said to be unemployed if i /∈ Sj for all j ∈ Q. We set
Si = {j} if i ∈ Sj and Si = ∅ if i is unemployed. We say that a worker i and a firm j are
matched if i ∈ Sj .

A quadruple (X; s, q, r) is said to be an outcome if X is a job allocation, s is a feasible
salary vector and (q, r) ∈ RP ×RQ is defined by

qi =
{

νij(sij) if i ∈ Sj for some j ∈ Q
0 otherwise (∀i ∈ P ), (2.1)

rj =
{

min{νji(−sij) | i ∈ Sj} if |Sj | = µ(j)
0 otherwise (∀j ∈ Q), (2.2)

where the minimum over an empty set is defined to be 0.
An outcome (X; s, q, r) is blocked by a worker-firm pair (i, j) if

i /∈ Sj and νij(sij) > qi, νji(−sij) > rj . (2.3)

The statement in (2.3) is equivalent to saying that i and j are not matched but i prefers j to
his/her current employer§ and j prefers i atleast to one of his worker or still have a vacancy
to employ i.

An outcome (X; s, q, r) is pairwise stable if the following two conditions are satisfied:

(ps1) νij(sij) ≥ 0 and νji(−sij) ≥ 0 for all (i, j) ∈ E with i ∈ Sj .

(ps2) νij(α) ≤ qi or νji(−α) ≤ rj for all α ∈ R with πij ≤ α ≤ πij and for all (i, j) ∈ E
with i /∈ Sj .

Condition (ps1)¶ says that if a firm employs a worker then both are acceptable to each
other. Condition (ps2) means (X; s, q, r) is not blocked by any worker-firm pair.

A job allocation X is called pairwise stable if (X; s, q, r) is pairwise stable.

3 Characterization

This section is devoted to the characterization of a pairwise stable outcome. We shall use
this characterization to devise the algorithm in Section 5.

A characteristic vector χS ∈ {0, 1}P of a set S ⊆ P is defined by

χS(k) =
{

1 if k ∈ S,
0 if k ∈ P \ S.

Analogously, we can define a characteristic vector χS ∈ {0, 1}Q of a set S ⊆ Q. Obviously,
χS is the zero vector if S = ∅.

Next theorem gives a characterization of a pairwise stable outcome. This theorem is a
modification of Theorem 2.1 [5] related to our model.

§For convenience, we say that a worker is self-employed if he/she is unemployed.
¶ps stands for pairwise stability.
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Theorem 3.1. Let X be a job allocation. There exists a feasible salary vector s and a vector
(q, r) defined by (2.1) and (2.2) forming a pairwise stable outcome (X; s, q, r) if and only if
there exists a feasible salary vector p and vectors zP , zQ ∈ {0, 1}E such that

(ps′1) for all i ∈ P , χSi
is an optimal solution of

maximizek∈Q νik(pik)χS(k)
subject to S ⊆ Q,

|S| ≤ 1,
χS(k) ≤ zP (i, k) (k ∈ Q).

(3.1)

(ps′2) for all j ∈ Q, χSj
is an optimal solution of

maximize
∑

k∈P νjk(−pkj)χS(k)
subject to S ⊆ P,

|S| ≤ µ(j),
χS(k) ≤ zQ(k, j) (k ∈ P ).

(ps′3) zP ∨ zQ = 1.‖

(ps′4) zP (i, j) = 0 ⇒ pij = πij and zQ(i, j) = 0 ⇒ pij = πij.

Proof. (⇐) Suppose that there exist a feasible salary vector p, and zP , zQ ∈ {0, 1}E such
that the conditions (ps′1)−(ps′4) are satisfied. We prove that (X; s, q, r) satisfies (ps1) and
(ps2), where s = p and (q, r) is defined by (2.1) and (2.2). The condition (ps1) is implied
by (ps′1) and (ps′2). We only show that (ps2) is also satisfied.

Suppose that (ps2) does not hold. Then there exists (i, j) ∈ E with i /∈ Sj and α ∈ R
with πij ≤ α ≤ πij such that νij(α) > qi and νji(−α) > rj . If νij(α) > qi then by (ps′1)
and the fact that νij is increasing, at least one of the following two cases must hold:

(a1) zP (i, j) = 0 or (a2) zP (i, j) = 1 and pij < α.
Similarly, if νji(−α) > rj then by the fact that νji is increasing, at least one of the following
two cases must hold:

(b1) zQ(i, j) = 0 or (b2) zQ(i, j) = 1 and pij > α.
Obviously, (a1) and (b1) can not hold together by (ps′3). If (a1) and (b2) are true then
(ps′4) yields that pij = πij which is not possible. With the same argument, (a2) and (b1) can
not be true together. The statements (a2) and (b2) are obviously incompatible. Therefore
(ps2) must hold.

(⇒) Suppose that there exists a feasible salary vector s such that (X; s, q, r) is a pairwise
stable outcome, where (q, r) is defined by (2.1) and (2.2). Then (ps1) and (ps2) hold true.
We prove that there exist p and zP , zQ ∈ {0, 1}E which satisfy (ps′1)−(ps′4). Define zP and
zQ as follows:

zP (i, j) =
{

0 if νij(πij) > qi and i /∈ Sj

1 otherwise
(∀(i, j) ∈ E),

zQ(i, j) =
{

0 if νji(−πij) > rj and i /∈ Sj

1 otherwise (∀(i, j) ∈ E).

From the definitions of zP and zQ, we observe that for any (i, j) ∈ E with i /∈ Sj , the
following holds:

zP (i, j) = zQ(i, j) = 1 ⇒ νij(πij) ≤ qi and νji(−πij) ≤ rj . (3.2)

‖For any (i, j) ∈ E, the (i, j)-th component of zP ∨zQ is given by (zP ∨zQ)(i, j) = max{zP (i, j), zQ(i, j)}.
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The statement (3.2) together with (ps2) implies that

∃γij ∈ [πij , πij ] such that νij(γij) ≤ qi and νji(−γij) ≤ rj (3.3)
for all (i, j) ∈ E with zP (i, j) = zQ(i, j) = 1 and i /∈ Sj .

Now define the salary vector p ∈ RE as follows:

pij =





πij if zP (i, j) = 0
πij if zQ(i, j) = 0
γij if zP (i, j) = zQ(i, j) = 1 and i /∈ Sj

sij otherwise

(∀(i, j) ∈ E), (3.4)

where γij , for (i, j) ∈ E with zP (i, j) = zQ(i, j) = 1 and i /∈ Sj , is defined by (3.3). The
definitions of zP and zQ along with (ps2) imply (ps′3) and the definition of p implies (ps′4).
Next we prove (ps′2). Let j ∈ Q and S ⊆ P is such that |S| ≤ µ(j) and χS(k) ≤ zQ(k, j)
for all k ∈ P . For any i ∈ S \ Sj , it is enough to show that

νji(−pij) ≤ rj . (3.5)

Since i ∈ S we must have zQ(i, j) = 1. If zP (i, j) = 1 then (3.3) and the definition of p
implies (3.5). If zP (i, j) = 0 then the definitions of zP and p give νij(pij) > qi. This along
with (ps2) gives (3.5). Analogously, we can prove (ps′1). This completes the proof.

4 Comparison of our Model with Existing Models

In this section, we compare our model with few existing models that are directly related
to our model. With each (i, j) ∈ E, we associate a pair (βij , βji) of real numbers. We say
that j ∈ Q is acceptable to i ∈ P if βij ≥ 0. Similarly, i is acceptable to j if βji ≥ 0. A
(one-to-one) matching is a subset of E such that each player appears at most once.

In the pioneering work by Gale and Shapley [8] in two sided matching markets, an
algorithm is proposed which produces a stable matching. The main characteristic of their
algorithm is that when men are proposer, it gives a unique stable matching and each man
has the best partner that he can have in any other stable matching. However, if the role
of the sexes are reversed, the algorithm yields a unique stable matching where each woman
has the best partner that she can have in any other stable matching.

In the one-to-one buyer-seller model by Shapley and Shubik [15], known as assignment
game, they proved non constructively the existence of a stable outcome and showed that
the set of stable outcomes and the core of the game are the same. By obvious reasons, the
players in the marriage model are called “rigid” and the players in the assignment game are
called “flexible”.

It is very natural to think of a single market which consists of both rigid and flexible
players. Eriksson and Karlander [3] proposed a mixed market model (the RiFle assignment
game) consisting of both rigid players and flexible players. They proved the existence of
stable outcome. However, their proofs do not hold for all continuous markets (the assignment
game due to Shapley and Shubik [15]). Sotomayor [16] also considered the mixed market
model that contains both the marriage model and the assignment game as special cases. Her
model is a generalization of the RiFle assignment game in the sense that her proofs hold
for both discrete and continuous markets. Mainly using her terminologies, we describe this
hybrid model mathematically.
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We think of the sets P and Q as sets of workers and firms, respectively. We partition
the players into two classes R and F where R is the set of rigid players and F is the set of
flexible players. Define two subsets R∗ and F ∗ of E by:

R∗ = {(i, j) ∈ E | i ∈ R or j ∈ R},
F ∗ = {(i, j) ∈ E | i, j ∈ F}.

R∗ and F ∗ are called the sets of rigid and flexible pairs, respectively. A matching X is called
pairwise stable if there exists (q, r) ∈ RP ×RQ such that

(h1) qi + rj = βij + βji for all (i, j) ∈ X.

(h2) qi = βij and rj = βji for all (i, j) ∈ X ∩R∗.

(h3) q ≥ 0, r ≥ 0 and qi = 0 (resp. rj = 0) if i (resp. j) is unmatched.

(h4) qi + rj ≥ βij + βji for all (i, j) ∈ F ∗.

(h5) qi ≥ βji or rj ≥ βji if (i, j) ∈ R∗.

Sotomayor [16] proved the existence of the stable outcome in this model. Further she proved
that the core is a complete lattice. One can easily see that if F ∗ = ∅ then the above model
coincides with marriage model by Gale and Shapley [8]. Also, if R∗ = ∅ then it would
coincide with the assignment game by Shapley and Shubik [15].

Let us assume that µ = (1, . . . , 1) ∈ ZQ
+ and define the linear valuations in a special way

as follows:
νij(sij) = βij + sij , νji(−sij) = βji − sij (∀(i, j) ∈ E),

where sij ∈ R with πij ≤ sij ≤ πij and βij , βji ∈ R. If we fix π = π = 0 then the
marriage model due to Gale and Shapley [8] becomes a special case of our model. If we
let π = (−∞, . . . ,−∞) and π = (+∞, . . . ,+∞) then we get the assignment game due to
Shapley and Shubik [15]. Now we assume that π ∈ (R ∪ {−∞})E and π ∈ (R ∪ {+∞})E ,
that is, the set of pairs is partitioned randomly in to the set of rigid pairs and flexible pairs.
This then shows that hybrid model of Eriksson and Karlander [3] and Sotomayor [16] is a
special case of our model.

5 An algorithm for Finding a Stable Job Allocation

This section deals with finding a stable job allocation for our model described in Section
2. We do this by establishing an algorithm which is an extended version of the algorithm
proposed by Farooq [4]. His algorithm works when each worker can work for at most one firm
and each firm can employ at most one worker, and the salaries are bounded. The algorithm
proposed in this section includes the cases where firms can employ as many workers as they
wish and when the salaries have no bounds. At the end of this section, we show that the
algorithm works correctly and terminates after a finite number of iterations.

Let us define the valuations νij and νji as follows:

νij(x) = αijx + βij , νji(x) = αjix + βji (∀(i, j) ∈ E), (5.1)

where αij and αji are given positive real numbers and, βij and βji are any given real
numbers.



538 Y. ALI AND R. FAROOQ

Initially, we define the salary vector p ∈ RE by

pij :=

{
πij if νji(−πij) ≥ 0 and πij < +∞
max{πij ,

βji

αji
} otherwise (∀(i, j) ∈ E). (5.2)

Then πij ≤ max{πij ,
βji

αji
} ≤ pij ≤ πij for all (i, j) ∈ E. That is, p is a feasible salary vector.

Now define zP ∈ {0, 1}E as follows:

zP (i, j) =
{

1 if νji(−pij) ≥ 0
0 otherwise (∀(i, j) ∈ E). (5.3)

We next define z0 ∈ {0, 1}E by

z0(i, j) =
{

0 if νij(pij) ≤ 0
1 otherwise (∀(i, j) ∈ E), (5.4)

and fix
z̃P = zP ∧ z0.

∗∗ (5.5)

Note that any (i, j) ∈ E with z̃P (i, j) = 1 implies that νij(pij) > 0 and νji(−pij) ≥ 0, that
is, i and j are mutually acceptable. Furthermore, define ẑP ∈ {0, 1}E by

ẑP (i, j) =





1 if z̃P (i, j) = 1 and νij(pij) =
max{νij′(pij′) | j′ ∈ Q, z̃P (i, j′) = 1}

0 otherwise
(∀(i, j) ∈ E). (5.6)

Thus for any (i, j) ∈ E with ẑP (i, j) = 1, we see that the worker i and the firm j are
mutually acceptable and i prefers j to all those firms which accept i. Also for any j ∈ Q
and S ∈ 2Q, define rS

j ∈ R by

rS
j = min{νji(−pij) | i ∈ S}. (5.7)

Let S ∈ 2P , zQ ∈ {0, 1}E and p be a feasible salary vector. Then the 3-tuple (S, zQ, p)
is said to be a best choice for j ∈ Q if it satisfies the following property:

(BC) ∀i ∈ P \ S with zQ(i, j) = 1, the following hold:

(a) νji(−pij) ≤ rS
j .

(b) |S| ≤ µ(j) and if νji(−pij) > 0 then |S| = µ(j).

To find a matching, initially we define a vector zQ ∈ {0, 1}E and a vector µ̃ ∈ ZQ
+ as follows:

zQ(i, j) :=





1 if pij < πij or
[πij = πij and νji(−πij) < 0]

0 otherwise
(∀(i, j) ∈ E), (5.8)

µ̃ = (µ̃(j) = 0 | j ∈ Q). (5.9)

∗∗For any (i, j) ∈ E, the (i, j)-th component of zP ∧ z0 is given by (zP ∧ z0)(i, j) = min{zP (i, j), z0(i, j)}.
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Now, for each j ∈ Q, define ηj by

ηj = {S ∈ 2P | (S, zQ, p) satisfies (BC) for j, µ̃(j) ≤ |S|
and χS(i) ≤ ẑP (i, j) (∀i ∈ P )} (5.10)

and let
η = ∪j∈Q{ηj}. (5.11)

We further define a set Γ as follows:

Γ = ∪j∈Q{ηj × {j}}. (5.12)

Find a matching X = {(Sj , j) | j ∈ Q}†† in the bipartite graph (η, Q; Γ) which satisfies the
following:

Sj ∩ Sj′ = ∅ for all Sj , Sj′ ∈ X with j 6= j′, (5.13)∑

(i,j)∈E

νji(−pij)χSj
(i) is maximum among the matchings

satisfying (5.13), (5.14)∑

(i,j)∈E

(lnαji− lnαij)χSj (i) is maximum among the matchings

satisfying (5.13) and (5.14). (5.15)

Then obviously X is a job allocation. Let SP be the set of all workers which are employed
by some firm, that is,

SP = ∪j∈QSj . (5.16)

We redefine zQ ∈ {0, 1}E and µ̃ ∈ ZQ
+ by

zQ(i, j) :=
{

1 if pij < πij or i ∈ Sj

zQ(i, j) otherwise (∀(i, j) ∈ E), (5.17)

µ̃ = (µ̃(j) = |Sj | | j ∈ Q). (5.18)

Since χSj
(i) ≤ ẑP (i, j), for all (i, j) ∈ E, the following holds:

(ps′1w) If SP 6= ∅ then, for all i ∈ SP , χSi
is an optimal solution of (3.1).

By the definitions of p and zQ, νji(−pij) ≤ 0 or i ∈ Sj for all (i, j) ∈ E with zQ(i, j) = 1.
Thus (ps′2) is satisfied. Also, for any (i, j) ∈ E, if zP (i, j) = 0 then νji(−pij) < 0. In this
case, (5.2) implies pij = πij and hence zQ(i, j) = 1 by (5.17). Now, if zQ(i, j) = 0 then
(5.17) implies that pij = πij . Therefore, νji(−pij) ≥ 0 by (5.2). Definition (5.3) yields
zP (i, j) = 1. Hence (ps′3) and (ps′4) hold. Therefore, the quadruple (X; p, zP , zQ) satisfies
(ps′2)−(ps′4).

Thus we have found a quadruple (X; p, zP , zQ) which satisfies (ps′1w), (ps′2)−(ps′4). Our
main purpose is to find a quadruple (X; p, zP , zQ) which satisfies (ps′1)−(ps′4). We observe
that if SP = P then (ps′1w) and (ps′1) coincide. Also, if z̃P (i, j) = 0 for all (i, j) ∈ E with
i ∈ P \SP then again (ps′1w) and (ps′1) coincide. Now, if z̃P (i0, j) = 1 for some (i0, j) ∈ E

††For the sake of convenience, X is represented in this form. For instance, if some j ∈ Q is not matched
in X then we can always add a pair (Sj , j) in X with Sj = ∅.
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with i0 ∈ P \ SP then we modify p as well as X, zP and zQ in such a way that (ps′1w),
(ps′2)−(ps′4) are preserved. We express this modification procedure here.

Define a set EP ⊆ E by

EP = {(i, j) ∈ E | ẑP (i, j) = 1}. (5.19)

Construct a directed graph T = ({i0} ∪ EP , A) with arc set A consisting of three disjoint
sets of arcs A0, A1 and A2 defined by

A0 := {(i0, (i0, j)) | (i0, j) ∈ EP },
A1 := {((i, j), (k, j)) ∈ EP × EP | i /∈ Sj , k ∈ Sj ,

νjk(−pkj) = r
Sj

j = νji(−pij)},
A2 := {((i, j), (i, k)) ∈ EP × EP | i ∈ Sj , j 6= k}.

(5.20)

For any ((i, j), (i, k)) ∈ A2 note that since i ∈ Sj , therefore, i /∈ Sk. We assign a weight to
each arc of A by defining the weight function w : A → R as follows:

w(a) =





lnαi0j if a = (i0, (i0, j)) ∈ A0,
− lnαji + lnαjk if a = ((i, j), (k, j)) ∈ A1,
− lnαij + lnαik if a = ((i, j), (i, k)) ∈ A2.

(5.21)

The graph T now satisfies the following lemma.

Lemma 5.1 (Farooq [4]). T has no negative cycle with respect to the weight function w.

By Lemma 5.1, we can find shortest distances from i0 to all vertices of T . Define
d : E → R∪ {+∞} where d(i, j) denotes the shortest distance from i0 to (i, j) with respect
to w in the graph T if (i, j) ∈ EP , otherwise take d(i, j) = +∞. For any parameter ε ≥ 0,
we define p(ε) as follows:

pij(ε) = pij − ε exp(−d(i, j)) (∀(i, j) ∈ E). (5.22)

The definition (5.22) states that for any (i, j) ∈ E, pij is decreased by a parameter ε > 0 if
there is a path from i0 to (i, j) in the graph T , that is, d(i, j) < +∞ and remains unchanged
otherwise. We denote the set of all reachable vertices from i0 in the graph T by R(i0), that
is,

R(i0) := {(i, j) ∈ E | d(i, j) < +∞}. (5.23)

Observe that R(i0) ⊆ EP . The following lemmas give few characteristics of the graph T . To
avoid the confusion, we again mention that Sj ∈ X and rj is defined by (2.2) for any j ∈ Q.

Lemma 5.2. Assume that (i, j) ∈ R(i0). If i /∈ Sj then 0 ≤ νji(−pij) ≤ rj.

We omit the proof of the above lemma since it is an easy consequence of Lemma 4.1 of
Farooq [4].

Lemma 5.3 (Farooq [4]). If (i, j) ∈ R(i0) then (i, k) ∈ R(i0) for all (i, k) ∈ EP . Further-
more, νij(pij(ε)) = νik(pik(ε)) for any ε ≥ 0.

Lemma 5.4 (Farooq [4]). Assume that (i, j) ∈ R(i0) with i /∈ Sj and there exists k ∈ Sj

such that r
Sj

j = νjk(−pkj). Then the following statements hold:

(i) νji(−pij(ε)) ≤ νjk(−pkj(ε)) for a sufficiently small ε ≥ 0.
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(ii) νji(−pij(ε)) ≤ νjk(−pkj(ε)) for all ε ≥ 0 if ((i, j), (k, j)) ∈ A1.

(iii) νji(−pij(ε)) = νjk(−pkj(ε)) for all ε ≥ 0 if the arc ((i, j), (k, j)) lies on a shortest path
from i0 to (k, j).

Our aim is to propose an algorithm which finds a stable job allocation. In each iteration of
the algorithm, we shall modify p by a parameter ε in such a way that the conditions (ps′1w),
(ps′2)−(ps′4) are preserved. The cases which may arise by modifying p are discussed below:

Case 1. For any (i, j) ∈ R(i0), we have νij(pij) ≥ νik(pik) for all (i, k) ∈ E. If (i, j), (i, k) ∈
R(i0) then νij(pij) = νik(pik). Lemma 5.3 implies that νij(pij(ε)) = νik(pik(ε)) for all ε ≥ 0.
If (i, j) ∈ R(i0) and (i, k) /∈ R(i0) then νij(pij) > νik(pik). Hence, we can find ε > 0 such
that νij(pij(ε)) = νik(pik(ε)) = νik(pik). In this way, a new element (i, k) is added in EP

which may augment Sk. This, however, depends upon whether |Sk| = µ(k) or |Sk| < µ(k).

Case 2. Since valuations are strictly increasing, for any (i, j) ∈ R(i0) we can always find
an ε ≥ 0 such that νij(pij(ε)) = 0 or pij(ε) = πij > −∞. As mentioned earlier, we want
(ps′1) and (ps′1w) to coincide. If z̃P is decreased, (ps′1) and (ps′1w) comes closer to each
other. Now if νij(pij(ε)) = 0 then we can decrease z0. Consequently, z̃P will decrease. If
pij(ε) = πij then decreasing p(ε) further would mean that it is no longer a feasible salary
vector. Also, in this case, we can switch zP (i, j) to zero and zQ(i, j) to 1. Thus (ps′3) and
(ps′4) are preserved, and z̃P will decrease.

Case 3. Let (i, j) ∈ R(i0) and ((i, j), (k, j)) ∈ A1. Without loss of generality, assume
that ((i, j), (k, j)) lies on the shortest path from i0 to (k, j). Suppose that there exists
k′ ∈ Sj \ {k}. Then r

Sj

j ≤ νjk′(−pk′j).

(i) If r
Sj

j = νjk′(−pk′j) then ((i, j), (k′, j)) ∈ A1. By the construction of graph
T , ((i, j), (k′, j)) lies on the shortest path from i0 to (k′, j). Therefore, for any ε ≥ 0,
νjk(−pkj(ε)) = νjk′(−pk′j(ε)) by Lemma 5.4.

(ii) If r
Sj

j < νjk′(−pk′j) then again by the construction of the graph T , (k′, j) /∈ R(i0).
Hence, one can find ε > 0 such that νjk(−pkj(ε)) = νjk′(−pk′j(ε)). By Lemma 5.4, we
get νji(−pij(ε)) = νjk(−pkj(ε)). Thus any ε′ > ε yields νji(−pij(ε′)) = νjk(−pkj(ε′)) >
νjk′(−pk′j). But νjk′(−pk′j) = νjk′(−pk′j(ε′)) since (k′, j) /∈ R(i0). This shows that (ps′2)
does not hold. Therefore, p(ε) cannot be decreased any more.

Case 4. Let (i, j) ∈ R(i0) with i /∈ Sj and there exists k ∈ Sj such that r
Sj

j = νjk(−pkj).

From (2.2) and (5.7), it is easy to see that rj ≤ r
Sj

j . Then νji(−pij) ≤ r
Sj

j by Lemma 5.2.

(i) If νji(−pij) = νjk(−pkj) then ((i, j), (k, j)) ∈ A1. Lemma 5.4 implies that
νji(−pij(ε)) ≤ νjk(−pkj(ε)) for any ε ≥ 0.

(ii) If νji(−pij) < νjk(−pkj) and d(i, j) ≥ d(k, j) then νji(−pij(ε)) < νjk(−pkj(ε)) for
any ε ≥ 0.

(iii) If νji(−pij) < νjk(−pkj) and d(i, j) < d(k, j) then one can find an ε > 0 such
that νji(−pij(ε)) = νjk(−pkj(ε)). Then νji(−pij(ε′)) > νjk(−pkj(ε′)) for any ε′ > ε. This,
however, shows that (ps′2) does not hold. Therefore, in this case we cannot decrease p(ε)
any more.
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With the discussion above, we define the following parameters.

ε1 = max{ε ≥ 0 | νij(pij(ε)) ≥ νik(pik) ∀(i, j) ∈ R(i0),
∀(i, k) ∈ E with zP (i, k) = 1 and |Sk| < µ(k)},

ε2 = max{ε ≥ 0 | νij(pij(ε)) ≥ νik(pik) ∀(i, j) ∈ R(i0),
∀(i, k) ∈ E \R(i0) with zP (i, k) = 1 and |Sk| = µ(k)},

ε3 = max{ε ≥ 0 | νij(pij(ε)) ≥ 0 ∀(i, j) ∈ R(i0)},
ε4 = max{ε ≥ 0 | pij(ε) ≥ πij ∀(i, j) ∈ R(i0)},
ε5 = max{ε ≥ 0 | νji(−pij(ε)) ≤ νjk(−pkj) ∀(i, j) ∈ R(i0),

∀(k, j) ∈ EP with i, k ∈ Sj and νji(−pij) < νjk(−pkj)},
ε6 = max{ε ≥ 0 | νji(−pij(ε)) ≤ νjk(−pkj(ε)) ∀(i, j) ∈ R(i0),

∀(k, j) ∈ EP with i /∈ Sj , k ∈ Sj , d(i, j) < d(k, j)
and νji(−pij) < νjk(−pkj)},

(5.24)

where the maximum over an empty set is defined to be +∞. Observe that the existence of
ε1 and ε2 is due to Case 1, ε3 and ε4 is due to Case 2, ε5 is due to Case 3 and ε6 is due to
Case 4. To modify the salary vector p we determine the parameter ε ≥ 0 by

ε = min{ε1, ε2, ε3, ε4, ε5, ε6}. (5.25)

Note that ε is well defined by the definition of ε3. For the sake of convenience, we assume
that ε1 and ε2 exist for (̂i, ĵ), (̂i, k̂) ∈ E, ε3 and ε4 exist for (̂i, ĵ) ∈ E and, ε5 and ε6 exist
for (̂i, ĵ), (k̂, ĵ) ∈ E. By the above definition of ε, if ε = ε1 or ε = ε2 then νîĵ(pîĵ(ε)) =
νîk̂(pîk̂(ε)). Similarly, if ε = ε3 then νîĵ(pîĵ(ε)) = 0 and if ε = ε4 then pîĵ(ε) = πîĵ . Also, if
ε = ε5 or ε = ε6 then νĵî(−pîĵ(ε)) = νĵk̂(−pk̂ĵ(ε)).

Next we describe the algorithm which finds a stable outcome in a finite number of
iterations.
Algorithm Job Allocation

Step 0: Initially, define p, zP , z0, z̃P , ẑP by (5.2)−(5.6) and zQ, µ̃, ηj (j ∈ Q), η,Γ by (5.8)−
(5.12).

Step 1: Find a matching X in the bipartite graph (η, Q; Γ) satisfying (5.13)−(5.15). Define
SP by (5.16) and update zQ and µ̃ by (5.17) and (5.18).

Step 2: If P = SP or for any i ∈ P \ SP we have z̃P (i, j) = 0, for all (i, j) ∈ E, then stop.

Step 3: Let i0 ∈ P \ SP such that z̃P (i0, j) = 1 for some j ∈ Q. Define EP by (5.19).

Step 4: Construct a directed graph T = ({i0} ∪EP , A) with arc set A consisting of A0, A1

and A2 defined by (5.20). Define weight function w by (5.21). Find the shortest
distances d(i, j) from i0 to all vertices (i, j) of T with respect to w and put d(i, j) = +∞
if (i, j) is not a vertex of T . Determine ε by (5.25), find p(ε) by (5.22) and define R(i0)
by (5.23).

Step 5: (a) If ε = ε1 then set µ̃(k̂) := µ̃(k̂) + 1 and go to Step 7; else go to (b).

(b) If ε = ε2 then go to Step 7; else go to (c).

(c) If ε = ε3 then set z0(̂i, j) := 0 for all j ∈ Q and go to Step 7; else go to (d).

(d) If ε = ε4 then set zP (̂i, ĵ) := 0 and zQ(̂i, ĵ) := 1 and go to Step 7; else go to (e).
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(e) If ε = ε5 then go to Step 7; else go to (f).

(f) If ε = ε6 then, for each j ∈ Q, define r
Sj

j by (5.7) for p(ε). Construct a directed
graph T = ({i0} ∪ EP , A) with arc set A consisting of A0, A1 and A2 defined by
(5.20) for p(ε). Define weight function w by (5.21) and R(i0) by (5.23). If X
satisfies (5.14) and (5.15) then put p = p(ε) and go to Step 6; else go to Step 7.

Step 6: Update zQ by (5.17). Find the shortest distances d(i, j) from i0 to all vertices (i, j)
of T with respect to w and put d(i, j) = +∞ if (i, j) is not a vertex of T . Determine
ε by (5.25) and find p(ε) by (5.22). Go to Step 5.

Step 7: Put p := p(ε). Update z̃P and ẑP by (5.5)−(5.6) and define ηj (j ∈ Q), η and Γ by
(5.10)−(5.12). Go to Step 1.

In the sequel, we shall use the notation [Step AA → Step BB] which means the
Job Allocation goes from Step AA to Step BB.

The following lemma describes the important features of Job Allocation.

Lemma 5.5. In each iteration of Job Allocation, the following statements hold:

(i) zP and z0 decrease or remain the same. zQ and µ̃ increase or remain the same.

(ii) If ε ∈ {ε1, ε2} or ε = ε5 < min{ε3, ε4} or [Step 5 (f) → Step 7] is executed then ẑP

increases or remains the same. In particular, ẑP increases if ε = ε1 > 0 or ε = ε2 < ε1.

(iii) If ε = ε3 < min{ε1, ε2} or ε = ε4 < min{ε1, ε2, ε3} then ẑP decreases.

(iv) If [Step 5 (f) → Step 6] is executed then the graph (η, Q; Γ) is preserved.

(v) If ẑP (i, j) turns to 0 from 1 at Step 7, for some (i, j) ∈ E, then it never changes its
orientation in the subsequent iterations.

(vi) If ẑP (i, j) turns to 1 from 0 at Step 7, for some (i, j) ∈ E, then pij(ε) is the initial
value defined in (5.2).

(vii) For any (i, j) ∈ E, if pij(ε) < pij at Step 4 or at Step 6 then µ̃(j) = µ(j).

Proof. The following inequality holds for any (i, j) ∈ R(i0):

νij(pij(ε)) ≥ νik(pik(ε)) (∀(i, k) ∈ E \R(i0) with zP (i, k) = 1) (5.26)

since ε ≤ min{ε1, ε2}. If ε < min{ε1, ε2} then

νij(pij(ε)) > νik(pik(ε)) (∀(i, k) ∈ E \R(i0) with zP (i, k) = 1). (5.27)

Also, for all (i, j), (i, k) ∈ R(i0), Lemma 5.3 yields that

νij(pij(ε)) = νik(pik(ε)). (5.28)

For all (i, j) ∈ R(i0), (5.26) and (5.28) imply that

νij(pij(ε)) ≥ νik(pik(ε)) (∀(i, k) ∈ E with zP (i, k) = 1). (5.29)

(i) z0 decreases at Step 5 (c) if [Step 5 (c) → Step 7] is executed, else it is not updated.
Similarly, zP decreases at Step 5 (d) if [Step 5 (d) → Step 7] is executed, else it is not
updated. This implies the first part of the assertion.
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In each iteration at Step 1, µ̃ is updated by (5.18) for the current matching where for
each j ∈ Q, µ̃(j) is the number of workers employed by j. µ̃(k̂) increases at Step 5 (a) if
[Step 5 (a) → Step 7] is executed. In the next iteration, µ̃(j) is the lower bound of the
number of workers employed by j, for each j ∈ Q. Hence µ̃ increases or remains the same.
Next, we see that in each iteration, zQ is updated at Step 1 and in some iterations it is
updated at Step 6 as well. In either case, we use (5.17) to update zQ. From (5.17), it is
obvious to see that zQ increases or remains the same.

(ii) Observe that ε = ε1 if [Step 5 (a) → Step 7] is executed. If ε = ε1 = 0 then
pij(ε) = pij , for all (i, j) ∈ E, and hence ẑP remains the same. If ε = ε1 > 0 then
νîĵ(pîĵ) > νîk̂(pîk̂) and νîĵ(pîĵ(ε)) = νîk̂(pîk̂(ε)). This together with the inequality (5.29)
implies that ẑP increases. Analogously, we can prove that ẑP increases when [Step 5 (b) →
Step 7] is executed. Note that in this case 0 < ε = ε2 < ε1. Next, when [Step 5 (e) → Step
7] or [Step 5 (f) → Step 7] is executed then ε < min{ε1, ε2, ε3, ε4}. From (5.27) and (5.28),
it is clear that ẑP remains the same.

(iii) [Step 5 (c) → Step 7] is executed when ε = ε3 < min{ε1, ε2} and [Step 5 (d) →
Step 7] is executed when ε = ε4 < min{ε1, ε2, ε3}. Note that by (i), z0 and zP remain the
same or decrease. If [Step 5 (c) → Step 7] is executed then z0 decreases at Step 5 (c) and
if [Step 5 (d) → Step 7] is executed then zP decreases at Step 5 (d). In either case, (5.27)
and (5.29) imply that ẑP decreases at Step 7.

(iv) If [Step 5 (f) → Step 6] is executed then ε = ε6 < min{ε1, ε2, ε3, ε4, ε5}. Therefore
at Step 6, µ̃ remains unchanged. Also by (ii), ẑP remains the same or increases. But
from the definitions of ε1 to ε6, we observe that ẑP increases if and only if ε = ε1 > 0 or
ε = ε2 < ε1. Therefore ẑP also remains unchanged when [Step 5 (f) → Step 6] is executed.
Since ε = ε6 < ε5, the definitions of ε5 and ε6 together with Lemma 5.4 imply the (a) of
(BC). The (b) of (BC) holds since ε < ε1. Thus (η, Q; Γ) is preserved at Step 6.

(v) If ε = ε3 < min{ε1, ε2} or ε = ε4 < min{ε1, ε2, ε3} then ẑP decreases. In other cases,
it increases or remains the same. ẑP decreases if z0 decreases at Step 5 (c) or zP decreases
at Step 5 (d). In each iteration at Step 7, we have ẑP ≤ z0 and ẑP ≤ zP . Since z0 and zp

decrease or remain the same, therefore, the decreased components of ẑP can never increase.
(vi) If ẑP (i, j) is 0 at Step 5 then (i, j) /∈ R(i0). (5.22) gives pij(ε) = pij and by (v), pij

must be the initial value defined by (5.2). This proves the assertion.
(vii) This follows from the fact that ε ≤ ε1 and by (5.18).

Lemma 5.6. In each iteration of Job Allocation, if there exists a matching X in the
bipartite graph (η, Q; Γ) at Step 1 then (Sj , zQ, p) satisfies (BC) for all j ∈ Q, where zQ is
the vector updated at Step 1.

Proof. We prove it by induction. In the first iteration at Step 1, the assertion obviously
holds. Suppose that there exists a matching X in the bipartite graph (η, Q; Γ) at Step 1 in
the t-th iteration, t ≥ 2, such that (Sj , zQ, p) satisfies (BC) for all j ∈ Q, where zQ is the
vector updated at Step 1. Also, for convenience, we denote the vectors/sets calculated for
p(ε) at Step 7 by zP (ε), z0(ε), z̃P (ε), ẑP (ε), ηj(ε), for all j ∈ Q, η(ε) and Γ(ε).

Let S ∈ 2P and j′ ∈ Q is such that χS(i) ≤ ẑP (ε)(i, j′) for all i ∈ P and |Sj′ | ≤ |S|.
Suppose that (S, zQ, p(ε)) satisfies (BC) for j′. To prove the assertion, it is equivalent to
show that (S, zQ(ε), p(ε)) satisfies (BC) for j′, where zQ(ε) is defined by

zQ(ε)(i, j) :=
{

1 if j = j′ and [pij(ε) < pij or i ∈ S]
zQ(i, j) otherwise (∀(i, j) ∈ E).
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If pij′(ε) = pij′ , for all (i, j′) ∈ E, then the following holds:

[zQ(i, j′) = 0, zQ(ε)(i, j′) = 1] =⇒ i ∈ S.

In this case, it is obvious to see that (S, zQ(ε), p(ε)) satisfies (BC) for j′. If there exists
(i, j′) ∈ E such that pij′(ε) < pij′ then

|S| = |Sj′ | = µ(j′) (5.30)

by Lemma 5.5 (vii). In this case, firstly, we show that rS
j′(ε) ≥ r

Sj′
j′ (ε), where rS

j′(ε) and

r
Sj′
j′ (ε) are calculated by (5.7) for p(ε). On contrary, suppose that rS

j′(ε) < r
Sj′
j′ (ε). Since

ε ≤ ε5, we have
νj′i(−pij′(ε)) ≥ r

Sj′
j′ (ε) (∀i ∈ Sj′). (5.31)

Let i′ ∈ S is such that rS
j′(ε) = νj′i′(−pi′j′(ε)). From (5.31), we get i′ /∈ Sj′ . Then (5.30)

yields that there exists ĩ ∈ Sj′ such that ĩ /∈ S. Definition (5.17) gives zQ(̃i, j′) = 1 and
(5.31) yields νj′ ĩ(−pĩj′(ε)) ≥ r

Sj′
j′ (ε). But rS

j′(ε) < r
Sj′
j′ (ε), that is, νj′ ĩ(−pĩj′(ε)) > rS

j′(ε).

This contradicts that (S, zQ, p(ε)) satisfies (BC) for j′. Therefore rS
j′(ε) ≥ r

Sj′
j′ (ε). Next, we

prove that (S, zQ(ε), p(ε)) satisfies (BC) for j′. It suffices to prove (a) of (BC).
Let i /∈ S such that zQ(ε)(i, j′) = 1. On contrary, suppose that

νj′i(−pij′(ε)) > rS
j′(ε). (5.32)

Since (S, zQ, p(ε)) satisfies (BC) for j′, we must have zQ(i, j′) = 0. This implies that i /∈ Sj′

and pij′(ε) < pij′ , that is, (i, j′) ∈ R(i0). By Lemma 5.2, we have νj′i(−pij′) ≤ rj′ . But
rj′ ≤ r

Sj′
j′ by definition. Lemma 5.4 and the definition of ε6 give

νj′i(−pij′(ε)) ≤ r
Sj′
j′ (ε). (5.33)

Since r
Sj′
j′ (ε) ≤ rS

j′(ε), the inequalities (5.32) and (5.33) contradict. Hence (S, zQ(ε), p(ε))
satisfies (BC) for j′.

Lemma 5.7. In each iteration of Job Allocation, there exists a matching at Step 1 in the
bipartite graph (η, Q; Γ) satisfying (5.13)−(5.15).

Proof. The initial selection of ηj , for all j ∈ Q, by (5.10) implies that there exists a matching
at Step 1 in the first iteration satisfying (5.13). Hence, one can find a matching satisfying
(5.13)−(5.15). We suppose that there exists a matching X = {(Sj , j) | j ∈ Q} in the
bipartite graph (η, Q; Γ) at Step 1 satisfying (5.13)−(5.15) in the t-th iteration, t ≥ 2. To
avoid any confusion, we specify that zQ is the vector after update at Step 1. The vectors/sets
calculated for p(ε) at Step 7 are denoted by zP (ε), z0(ε), z̃P (ε), ẑP (ε), ηj(ε), for all j ∈ Q,
η(ε) and Γ(ε).
Claim: For all j ∈ Q, (Sj , zQ, p(ε)) satisfies (BC).
[Proof of Claim] Let (i, j) ∈ E is such that i /∈ Sj and zQ(i, j) = 1. (Sj , zQ, p) satisfies (BC)
by Lemma 5.6, hence νji(−pij) ≤ r

Sj

j . Since ε≤ min{ε5, ε6} and by Lemma 5.4, we get

νji(−pij(ε)) ≤ r
Sj

j (ε), (5.34)

where r
Sj

j (ε) is calculated by (5.7) for p(ε). Now let νji(−pij(ε)) > 0. If νji(−pij) > 0 then
|Sj | = µ(j). If νji(−pij) ≤ 0 then pij(ε) < pij , that is, (i, j) ∈ R(i0), and Lemma 5.5 (vii)
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implies that |Sj | = µ(j). This together with (5.34) implies that (Sj , zQ, p(ε)) satisfies (BC).
[end of proof of Claim]

We first consider the case when [Step 5 (a)→ Step 7] is executed. Set Ŝk̂ = Sk̂∪{̂i}. Then
by Lemma 5.5 (ii), we have χbSk̂

(i) ≤ ẑP (ε)(i, k̂) for all i ∈ P . We show that Ŝk̂ ∈ ηk̂(ε). By

the above Claim, (Sk̂, zQ, p(ε)) satisfies (BC) for k̂. Then obviously (Ŝk̂, zQ, p(ε)) satisfies
(BC) for k̂. Also µ̃(ε)(k̂) ≤ |Ŝk̂| ≤ µ(k̂). Hence Ŝk̂ ∈ ηk̂(ε).

Now if î = i0 then X̂ = {(Sj , j) | j ∈ Q \ {k̂}}∪{(Ŝk̂, k̂)} is a matching satisfying (5.13).
Suppose î 6= i0 and, without loss of generality, assume that î ∈ Sĵ . Then there exists a
shortest path S from i0 to (̂i, ĵ) in T denoted by

S = (i0, j0), (i1, j0), . . . , (is, js) = (is, ĵ), (is+1, ĵ) = (̂i, ĵ) (5.35)

such that ((ih, jh), (ih+1, jh)) ∈ A1 for h = 0, 1, . . . , s − 1 and ((ih, jh−1), (ih, jh)) ∈ A2 for
h = 1, . . . , s. Then by the construction of the graph T , ih /∈ Sjh

and ih+1 ∈ Sjh
for all

h = 0, 1, . . . , s. Now define

Ŝjh
= {Sjh

\ {ih+1}} ∪ {ih} (∀h = 0, 1, . . . , s). (5.36)

Also for any i ∈ P , Lemma 5.5 (ii) gives χbSjh
(i) ≤ ẑP (ε)(i, jh) for all h = 0, 1, . . . , s.

We prove that (Ŝjh
, zQ, p(ε)) satisfies (BC), for all h = 0, 1, . . . , s. From the above Claim,

(Sjh
, zQ, p(ε)) satisfies (BC). Since ((ih, jh), (ih+1, jh)), for all h = 0, 1, . . . , s, lies on the

shortest path from i0 to (̂i, ĵ), by Lemma 5.4 and the fact that ε ≤ min{ε5, ε6}, we have

r
bSjh
jh

(ε) = νjhih
(−pihjh

(ε)) = νjhih+1(−pihjh+1(ε)) = r
Sjh
jh

(ε) (∀h = 0, 1, . . . , s),

which shows that (Ŝjh
, zQ, p(ε)) satisfies (BC) for jh, h = 0, 1, . . . , s. Let Q̂ = {jh | h =

0, 1, . . . , s}∪{k̂}. Then note that X̂ = {(Sj , j) | j ∈ Q \ Q̂}∪{(Ŝj , j) | j ∈ Q̂} is a matching
in the bipartite graph (η(ε), Q; Γ(ε)) satisfying (5.13) and hence one can find a matching at
Step 1 in (t + 1)-th iteration satisfying (5.13)−(5.15). The case when [Step 5 (b) → Step
7] or [Step 5 (e) → Step 7] is executed, Lemma 5.5 and the above Claim guarantee that X
is a matching in the bipartite graph (η(ε), Q; Γ(ε)) satisfying (5.13). Next, we deal the case
when [Step 5 (c) → Step 7] is executed. By Lemma 5.3 and since ε = ε3 < min{ε1, ε2}, we
get

χSj (i) ≤ ẑP (ε)(i, j) (∀(i, j) ∈ E with i 6= î). (5.37)

If î = i0 then from (5.37) and by the above Claim, obviously X is a matching in the
bipartite graph (η(ε), Q; Γ(ε)) satisfying (5.13). If î 6= i0 then by the modification at Step
5 (c), we get ẑP (ε)(̂i, j) = 0 for all j ∈ Q. Obviously, X is not a matching in the graph
(η(ε), Q; Γ(ε)) and we need some manipulation. Since there exists j ∈ Q such that î ∈ Sj ,
without loss of generality, we assume that î ∈ Sĵ . Then there exists a shortest path S from
i0 to (̂i, ĵ) in the graph T denoted by (5.35). Defining the sets Ŝjh

, for all h = 0, 1, . . . , s,
by (5.36), analogously we can show that (Ŝjh

, zQ, p(ε)) satisfies (BC) for jh, h = 0, 1, . . . , s.
Let Q̂ = {jh | h = 0, 1, . . . , s} and set

X̂ = {(Sj , j) | j ∈ Q \ Q̂} ∪ {(Ŝj , j) | j ∈ Q̂}.

Observe that X̂ is a matching in the graph (η(ε), Q; Γ(ε)) satisfying (5.13).
Finally, we consider the case when [Step 5 (d) → Step 7] is executed. Lemma 5.3 and

the inequality ε = ε4 < {ε1, ε2, ε3} yield (5.37). Now if î /∈ Sĵ then inequality (5.37) holds
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for all (i, j) ∈ E. Above Claim implies that X is a matching in the graph (η(ε), Q; Γ(ε)).
If î ∈ Sĵ then just like the previous case, we can find a matching X̂ in the bipartite graph
(η(ε), Q; Γ(ε)) satisfying (5.13). This completes the proof.

Lemma 5.8. In each iteration of Job Allocation, the quadruple (X; p, zP , zQ) at Step 1
satisfies (ps′1w), (ps′2)−(ps′4).

Proof. Since in each iteration, ε ≤ ε3 and for any j ∈ Q, χSj (i) ≤ ẑP (i, j) for all i ∈
P . Therefore, the definition of ẑP implies that (ps′1w) holds. It is obvious to see that if
(Sj , zQ, p), for all j ∈ Q, satisfies (BC) then (ps′2) holds, where zQ is updated at Step 1.
By the Lemma 5.6, (Sj , zQ, p) satisfies (BC) for all j ∈ Q at Step 1, therefore (ps′2) always
holds at Step 1. As discussed earlier that the initial selection of zP and zQ by (5.3) and
(5.17) implies that (ps′3) and (ps′4) hold. Now zP decreases or remains the same and zQ

increases or remains the same in each iteration by Lemma 5.5. Whenever some component
of zP is decreased at Step 5 (d), the corresponding components of zQ and p are 1 and the
lower bound, respectively. Therefore, (ps′3) and (ps′4) hold in each iteration.

Next is our main result which shows that if Job Allocation terminates then we get a
pairwise stable job allocation.

Theorem 5.9. If Job Allocation terminates then the output (X; p, zP , zQ) satisfies (ps′1)−
(ps′4) and hence X is pairwise stable.

Proof. By Theorem 3.1, X is pairwise stable if (X; p, zP , zQ) satisfies (ps′1)−(ps′4). By
Lemma 5.8, (ps′1w), (ps′2)−(ps′4) are satisfied at Step 1 in each iteration. If Job Allocation
terminates at Step 2, we observe that P = SP or for all (i, j) ∈ E with i ∈ P \ SP , we
have z̃P (i, j) = 0. This means that (ps′1w) and (ps′1) coincide at termination, that is,
(X; p, zP , zQ) satisfies (ps′1)−(ps′4).

In the rest of the work, we shall prove that the Job Allocation terminates after a finite
number of iterations.

Let S, S′ ∈ 2P such that S ∩ S′ = ∅ and |S| = |S′| 6= 0. We say that j ∈ Q replaces S
by S′ in the t-th iteration of Job Allocation, t ≥ 2, if

(i) S ⊆ Sj and S′ ∩ Sj = ∅ in (t− 1)-th iteration.

(ii) S′ ⊆ Sj and S ∩ Sj = ∅ in t-th iteration.

For each j ∈ Q, we define ρ(j) ⊆ P in each iteration of Job Allocation at Step 1 by

ρ(j) := {i ∈ Sj | νji(−pij) = r
Sj

j }.

Lemma 5.10. In each iteration of Job Allocation, if |ρ(j)| decreases for some j ∈ Q then
µ̃(j) increases or zQ(i, j) increases for some i ∈ P , where zQ is the vector updated at Step
1.

Proof. If |ρ(j)| decreases for some j ∈ Q at Step 1 in t-th iteration, t ≥ 2, then either µ̃(j)
increases or there exists S, S′ ∈ 2P with S ∩S′ = ∅ and |S| = |S′| 6= 0 such that j replaces S
by S′. In the later case, one can easily see that zQ increases. This completes the proof.

Lemma 5.11. Job Allocation terminates in a finite number of iterations.
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Proof. We first mention that in each iteration at Step 4 and Step 6, we use Moore-Bellman-
Ford algorithm to find the shortest distances from a single source to all other vertices of the
graph T . We show that all executions of Job Allocation for different values of ε are finite.

If [Step 5 (a) → Step 7] is executed then µ̃ increases. By Lemma 5.5 (i), µ̃ increases or
remains the same in each iteration. Therefore this execution is possible at most

∑
j∈Q µ(j)

times.
If [Step 5 (b)→ Step 7] is executed then ẑP increases by Lemma 5.5 (ii). From Lemma 5.5

(v), we observe that [Step 5 (b) → Step 7] can be executed at most |E| times.
By Lemma 5.5 (i), zP and z0 decrease or remain the same in each iteration and if [Step

5 (c) → Step 7] is executed then z0 decreases. Therefore [Step 5 (c) → Step 7] is executed
atmost |P | times. Similarly, if [Step 5 (d)→ Step 7] is executed then zP decreases. Therefore
[Step 5 (d) → Step 7] is executed at most |E| times.

Note that in any iteration, if
∑

j∈Q |ρ(j)| = |SP | at Step 1 then [Step 5 (e) → Step 7]
cannot be executed. For any j ∈ Q, |ρ(j)| may increase, decrease or remain unchanged in
any iteration. Lemma 5.10 implies that if |ρ(j)|, for some j ∈ Q, decreases then µ̃ or zQ

increase. By Lemma 5.5 (i), µ̃ and zQ remain the same or increase. Therefore, the total
number of possible iterations when |ρ(j)|, for some j ∈ Q, decreases are

∑
j∈Q µ(j) + |E|.

Hence [Step 5 (e) → Step 7] can be executed at most 2
∑

j∈Q µ(j) + |E| times.
Next, we consider the case when [Step 5 (f) → Step 7] is executed. We suppose that the

above mentioned cases do not occur. Then the sum in (5.14) remains the same or increases.
Since P and Q are finite, this sum can be increased a finite number of times only. If the
sum in (5.14) remains the same then the sum in (5.15) increases. Again, since P and Q
are finite, the sum in (5.15) can be increased a finite number of times if the sum in (5.14)
remains same constantly. Therefore, [Step 5 (f) → Step 7] can be executed only a finite
number of times.

Finally, we see that [Step 5 (f) → Step 6] is executed in a finite number of times if the
other cases do not occur. Let us suppose the other cases do not occur. Then in execution of
[Step 5 (f) → Step 6], R(i0) enlarges or remains the same. Since R(i0) can be enlarged at
most |E| times, we discuss the case when R(i0) remains the same. In such a case, distance
of some (i, j) ∈ R(i0) is decreased. Also, the distance of each element of R(i0) remains the
same or decreases in each execution of [Step 5 (f) → Step 6]. Since finite number of paths
from i0 to each (i, j) ∈ R(i0) can be found, therefore, [Step 5 (f) → Step 6] is executed finite
number of times if the other cases do not occur. By Lemma 5.5 (iv), observe that the graph
(η, Q; Γ) remains intact and X is a matching in (η, Q; Γ) satisfying (5.13)−(5.15).

Thus, Job Allocation terminates after a finite number of iterations.

Remark 5.12. We have shown the existence of a stable outcome in the job market with
linear valuations and possibly bounded salaries. In our model, each worker can work for at
most one firm and each firm can employ as many workers as it wishes. One can see that the
complexity of the Job Allocation may not be polynomial, specially when µ 6= (1, . . . , 1).
We leave it as an open problem to design an algorithm which finds a stable outcome in our
model having a polynomial complexity.
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